Large Neutrino Masses in Cosmology: DARK JEGOR TO THE RESCUE

Drona Vatsyayan

28th May 2025, PLANCK 2025, Padova

Based on: JCAP 04 (2025) 054 [Cristina Benso, Thomas Schwetz, DV] arXiv: 2410.23926

Dark Sectors? DM vs. Visible Sector

Particle DMSevera
stateOnly one DM state makes up the
entire dark sectorSevera
stateDM χ $\mathbf{Z}_2 / U(1)_{dark}$ Ele
Pro
New
PhDM states are symmetric, abundance set
by freeze-out/freeze-inAbundance set
asymmetry of

Why should there be just one particle on the dark side?

Abundance set by the **baryon** asymmetry of the universe $\eta_B \sim 10^{-10}$

 $\rho_{DM} = 5\rho_B$

Multi-component Dark Sectors Generic features

Many degrees of freedom \rightarrow e.g. **N**-component dark sector, may have the following interactions:

Complex system \rightarrow behaviour characterised by power laws and exponentials

Relaxation of existing bounds on direct/indirect detection, collider searches, etc.

A. Bas, J. Herrero-Garcia, DV JHEP 10 (2022) 075

Neutrino Mass Bounds Oscillations

$$\sum_{i=1}^{3} m_{i} = \begin{cases} m_{0} + \sqrt{\Delta m_{21}^{2} + m_{0}^{2}} + \sqrt{\Delta m_{31}^{2} + m_{0}^{2}} & \text{(Ne} \\ m_{0} + \sqrt{|\Delta m_{32}^{2}| + m_{0}^{2}} + \sqrt{|\Delta m_{32}^{2}| - \Delta m_{21}^{2} + m_{0}^{2}} & \text{(IC} \end{cases}$$

 $m_0 \rightarrow 0$

NuFit Collaboration

$$\sum m_{\nu} > \begin{cases} 0.058 \text{ eV} & \text{Normal ordering} \\ 0.098 \text{ eV} & \text{Inverted ordering} \end{cases}$$

95% CL

Origin of mass unknown!

Absolute mass unknown!

 $\uparrow m^2$

Neutrino Mass Bounds Terrestrial Experiments

Experiments looking for absolute neutrino mass scale and $0
u\beta\beta$

 $m_{\rm lightest} < 0.084 - 0.353 \ {\rm eV}$

Neutrino Masses Cosmology

Alter the expansion history of the universe near matter-radiation equality epoch

Free-streaming affects the growth of structures at late times

Credit: Troels Haugbølle

Cosmological observables \rightarrow CMB + LSS

Neutrino Mass Bounds Cosmology

 $m_{\nu} \neq 0 \rightarrow \text{Cosmological Implications} \rightarrow \text{Suppression of growth of small scale structures; Affect on CMB anisotropies}$ $\sum_{i} m_{\nu} \equiv \sum_{i} m_{i}$ can be constrained from cosmological surveys

PLANCK CMB+BAO (2018)

$$\sum m_{\nu} < 0.12 \text{ eV}$$

Neutrino mass bounds from cosmology keep getting stronger

Neutrino Mass Bounds **Oscillations vs. Cosmology**

Oscillations

NuFit Collaboration

0.058 eVNormal ordering0.098 eVInverted ordering

95% CL

DESI bound is in significant tension with IO, very close to NO

2-zero neutrino mass te

extures
$$\rightarrow \sum m_{\nu} > 0.12 \text{ eV}$$

Alcaide et al: 1806.06785; Lattanzi et al: 2007.01650

Neutrino Mass Bounds Laboratory vs. Cosmology

Standard cosmological scenario \rightarrow We may not observe finite absolute neutrino mass in the laboratory

Can the two be reconciled? Can cosmological bounds be relaxed?

Courtesy: Thomas Schwetz (Durham 2025); updated from 2302.14159 1.0lower upper bound from KATRIN (2024) normal inverted ord 0.8 bound from oscillat probability ord 0.6 0.4 preferred by terrestrial cosmology experiments 0.2 0.0 10^{-1} 10^{-2} 10^{0}

sum of neutrino masses [eV]

Relaxing the Cosmological ν mass bound Large ν mass cosmology

Relaxing the cosmological bound requires non-standard scenarios \rightarrow Large ν mass cosmologies

Relaxing the Cosmological ν mass bound Large ν mass cosmology

Large m, Cosmology **Presence of dark radiation**

$$\Omega_{\nu}h^{2} \equiv \frac{\sum m_{\nu}n_{\nu}^{0}h^{2}}{\rho_{\text{critical}}} < 1.3 \times 10^{-3} \ (95 \% \text{ CL})$$

Reduce number density of neutrinos \rightarrow Mass bound can be relaxed

At earlier times for ultra-relativistic ν s: Energy density characterised by $N_{
m eff}\propto \langle p_{
u}
angle n_{
u}$

$$N_{\rm eff} \equiv \frac{8}{7} \left($$

Compensate decrease in n_{ν} : Add new light/massless d.o.f \rightarrow Dark radiation

Cosmological bounds are sensitive to neutrino energy density

$$\sum m_{\nu} \times \left(\frac{n_{\nu}^{0}}{56 \text{ cm}^{-3}} \right) < 0.12 \text{ eV} (95\% \text{ CL})$$
 PLANCK 2018

$$2.99 \pm 0.17$$
 PLANCK 2

3.044(1)SM prediction

$$\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{\rm rad} - \rho_{\gamma}}{\rho_{\gamma}}\right)$$

Large m, Cosmology **Presence of dark radiation**

Large m_{ν} **Cosmology Presence of Dark Matter?**

The dark sector can be enlarged to contain a light keV fermionic DM candidate along with the dark radiation \rightarrow Multi-component DS

Problem

keV scale sterile neutrino (ν_s) DM from oscillations: Dodelson Widrow is severely constrained

Solution

Non-standard neutrino interactions open up parameter space

Thermal DM below MeV possible if DM comes into thermal equilibrium post ν -decoupling

Berlin, Blinov: 1706.07046

The Model Minimally Extended Type-I Seesaw with U(1)_x

 $-\mathscr{L}_{\text{new}} = Y_{\nu}\bar{N}l_{L}\tilde{H}^{\dagger} + Y_{\chi}\bar{N}\chi_{L}\Phi + Y_{\psi}\bar{N}\psi_{L}\Phi + Y_{\nu}'\bar{N}'l_{L}\tilde{H}^{\dagger} + Y_{\chi}'\bar{N}'\chi_{L}\Phi + Y_{\psi}'\bar{N}'\psi_{L}\Phi + \frac{1}{2}M\bar{N}N^{c} + \frac{1}{2}M'\bar{N}'N'^{c} + \text{H.c.}$ $V(H,\phi) = \mu_{H}^{2}H^{\dagger}H + \lambda_{H}(H^{\dagger}H)^{2} + \mu_{\phi}^{2}|\Phi|^{2} + \lambda_{\phi}|\Phi|^{4} + \lambda_{H\phi}|\Phi|^{2}H^{\dagger}H$ Genue interaction $\mathscr{L} = \sum_{\mu} Q_{\mu}q^{\mu}f$

Gauge interaction $\mathscr{L}_{int} =$

Similar to $\nu\Lambda$ MDM: Ko and Tang: 1404.0236

$$\sum_{f} Q_{f} g Z'_{\mu} \bar{f} \gamma^{\mu} f \qquad g \equiv m_{Z'} / v_{\phi}$$

The Model Masses & Mixings

Neutral fermion mixing matrix: $(\chi_L^c, \nu_L^c, \psi_L^c, N', N)$ basis

$$m_{N} \approx M, m_{N'} \approx M'$$

$$m_{\chi} = 0 \qquad N_{\chi} \text{ massless fermions}$$

$$M \gg M' \gg m_{D} \gg \kappa', \Lambda \gg m'_{D}, \Lambda', \kappa$$

$$Massive: 2N_{heavy}$$

$$Massless: (3 + N_{hight} - N_{heavy})$$

$$Massless: (3 + N_{hight} - N_{heavy})$$

$$m_{\chi'} \approx \kappa' M'^{-1} \kappa'^{T}$$

$$m_{\psi'} \approx 10 \text{ keV} \left(\frac{\kappa'}{10^{4} \text{ keV}}\right)^{2} \left(\frac{10 \text{ Ge}}{M'}\right)$$

$$\psi$$
 becomes the DM candidate in the model

DM freeze-out in DS **Production & Depletion**

$\nu\nu\leftrightarrow Z'\leftrightarrow\chi\chi$ DM can be produced by $Z' \leftrightarrow \psi \psi \ (m_{Z'} > 2m_{\psi})$ or $Z'Z' \leftrightarrow \psi \psi$ and $\chi \chi \leftrightarrow \psi \psi \ (m_{\psi} > m_{Z'})$

Annihilations $\psi \psi \rightarrow \chi \chi$ and $\psi \psi \rightarrow Z'Z'$ freeze-out at $T_{dark} < m_{\psi}$

DM freeze-out in DS Relic abundance

 ψ comes into thermal equilibrium with the DS and finally freezes out

$$\Omega_{\psi}h^2 \simeq x_f \frac{10^{-10} \,\mathrm{GeV}^{-2}}{\langle \sigma v \rangle_{\mathrm{tot}}}$$

Depends on DS temperature

$$(\sigma v)_{\psi\psi\to\chi\chi} \approx \tilde{N} \frac{g^4}{48\pi} \frac{m_{\psi}^2}{(m_{Z'}^2 - 4m_{\psi}^2)^2} v^2$$

$$(\sigma v)_{\psi\psi\to Z'Z'} \approx \frac{g^4}{16\pi m_{\psi}^2} \left(1 - \frac{m_{Z'}^2}{m_{\psi}^2}\right)^{1/2} \left(1 + \frac{m_{\psi}^4}{m_{Z'}^4}v^2\right)$$

Extreme limits: $m_{Z'} \gg m_{\psi}$ or vice versa $\rightarrow (\sigma v) \propto v_{\phi}^{-4}$

18

Constraints Structure formation

Potentially large free-streaming scale \rightarrow Prevent formation of small scale structures

Post freeze-out DM ψ remains in thermal contact with dark radiation χ via elastic processes $\psi \chi \leftrightarrow \psi \chi$

$$M_{\rm hm} = \frac{4\pi}{3} \rho_{\rm DM} \left(\frac{\lambda_{\rm hm}}{2}\right)^3 \approx 1.9 \times 10^7 M_{\odot} \left(\frac{\lambda_{\rm hm}}{0.1 \,\rm Mpc}\right)^3$$

Depends on temperature of kinetic decoupling $T_{\rm kd}$

Viable Parameter Space Putting everything together

Thermalisation

us should thermalise with Z' in $0.7 \text{ MeV} > T_{\gamma} > 10 \text{ eV}$

BBN constraints

us should not thermalise with Z'; avoid

 χ 's exponential growth $\nu\chi \leftrightarrow \chi\chi$ at

$$T_{\gamma} > 0.7 \,\,{\rm MeV}$$

Taule, Escudero, Garny: 2207.04062

•

CMB constraints

- $\nu\nu \rightarrow Z'$ and $Z' \rightarrow \chi\chi$ must be
- inefficient at $z \sim 10^5$; CMB not

perturbed by lack of χ free streaming

Active-sterile mixing

- Constrain production of χ from
- oscillations before BBN using

$$\Delta N_{\rm eff} < 0.3 \rightarrow 10^{-4} \le \theta_{\nu\chi} <$$

20

Neutrino Mass Suppression **N**_{eff} and **DS Temperature**

$$\rho_{\nu}(T_{\nu}^{\text{eq}}) = \sum_{f=\nu,\chi,\psi} \rho_f(T_{\text{eq}}) + \rho_{Z'}(T_{\text{eq}})$$

New degrees of freedom come into equilibrium with neutrinos at $T_{
u}^{
m eq}$ to form a system with $T_{
m eq}$

System evolves adiabatically from T_{eq} to T_{fin} when ψ, Z' become non-relativistic, use $a_{eq}^3 s_{eq}(T_{eq}) = a_{fin}^3 s_{fin}(T_{fin})$

$$N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\rm dark}}{\rho_{\gamma}} = \frac{g_{\nu} + \tilde{g}}{2} \left(\frac{T_{\rm dark}}{T_{\nu}^{\rm SM}}\right)^4$$

Neutrino Mass Suppression Neff and DS Temperature

Summary

Comparing cosmology and laboratory bounds on $\sum m_{\nu} \rightarrow \text{Hints of new physics}$

The cosmological neutrino mass bound can be relaxed with a light dark sector

We embed the mechanism in an extended seesaw model $\rightarrow \nu$ masses, DM and leptogenesis

Model has a complex particle content though not so numerous free parameters $\rightarrow m_{\psi}, m_{Z'}, v_{\phi}, \theta_{\nu\gamma}, N_{\gamma}$

Dark sector particles play no role above $T_{\gamma} \sim 1$ MeV and come into equilibrium after ν -decoupling

neutrinos

Signatures of the model \rightarrow Slightly increased $N_{\rm eff}$ at late times, Suppressed matter power spectrum at small scales (warm DM)

- DM thermalises with the DS and then freezes out \rightarrow Abundance set by DS gauge interactions, not by mixing with SM

Thank You

xkcd

Neutrinos In cosmology

$$n_{\nu} = \frac{g}{(2\pi)^3} \int d^3p \, f_{\nu}(E, T_{\nu})$$

Weak interactions and ν 's in equilibrium $n+\nu_e \leftrightarrow p+e^-$

$$f_{\nu}(E, T_{\nu}) = \frac{1}{1 + \exp[(E - \mu)/T_{\nu}]}$$

Fermi-Dirac distribution

$$\rho_{\nu} = \frac{g}{(2\pi)^3} \int d^3p \ E f_{\nu}(E, T_{\nu})$$

$$T \sim \text{MeV}$$
Weak interactions drop out: $\Gamma \sim G_F^2 T^5 < H$
 ν 's decouple while relativistic at $T \simeq 2$ MeV
$$f_{\nu}(E, T_{\nu}) = \frac{1}{1 + \exp[p/T_{\nu}]}$$
Well-approximated
$$\sum_{i} \rho_{\nu,i} \equiv N_{\text{eff}} \rho_{\nu,0}$$

Neutrinos In cosmology

Neutrinos In cosmology

 $T_{\nu,0} \gg m_{\nu}$

 $\langle E_{\nu} \rangle \simeq \langle \rho_{\nu} \rangle$, energy density characterised by $N_{\rm eff} \propto \langle p_{\nu} \rangle n_{\nu}$

 $\Omega_{\nu} = \frac{\rho_{\nu}}{\rho_{\text{critical}}} \propto \sum \langle E_{\nu} \rangle n_{\nu}$

 $T_{\nu,0} \ll m_{\nu}$ $\langle \rho_{\nu} \rangle = m_{\nu}, \ \rho_{\nu} = \sum m_{\nu} n_{\nu}$ ν 's contribute to expansion rate as DM $\Omega_{\nu}h^{2} \equiv \frac{\sum m_{\nu}n_{\nu}^{0}h^{2}}{(95\% \text{ CL})}$ $ho_{\rm critical}$ **PLANCK 2018**

Neutrino Masses Cosmology

Credit: PDG 2022; Lesgourges, Verde

Symmetric Components 2DM

$$\frac{dY_1}{dx} = -\frac{s}{Hx} \left[\langle \sigma_1 v \rangle (Y_1^2 - \bar{Y}_1^2) + \langle \sigma_{12} v \rangle (Y_1^2 - \frac{Y_2^2}{\bar{Y}_2^2}) \right]$$

No conversions: DM abundance dominated by the particle with smallest $\langle \sigma v \rangle$

$$\Omega h^{2} \propto \frac{1}{\langle \sigma_{1} v \rangle} + \frac{1}{\langle \sigma_{2} v \rangle} \equiv \frac{1}{\langle \sigma v \rangle}_{\text{eff}}$$
$$\simeq \frac{1}{2.2 \cdot 10^{-26} \,\text{cm}^{3}/\text{s}}$$

$$\int \frac{dY_2}{dx} = -\frac{s}{Hx} \left[\langle \sigma_2 v \rangle (Y_2^2 - \bar{Y}_2^2) - \langle \sigma_{12} v \rangle (Y_1^2 - \frac{Y_2^2}{\bar{Y}_2^2} \bar{Y}_1^2) \right]$$

With conversions: heavier components have *reduced* abundance

$$\Omega h^2 \propto \frac{1}{\langle \sigma_1 v \rangle + \langle \sigma_{12} v \rangle} + \frac{1}{\langle \sigma_2 v \rangle} \equiv$$

Aoki et al: 1207.3318 Bhattacharya et al: 1607.08461

Symmetric Components 10DM

Constraints Stability & X-ray bounds

DM decay $\rightarrow \psi$ lifetime should be larger than the age of the universe

$$\begin{split} m_{\psi} < m_{Z'} \\ \psi \to \nu \chi \chi \\ \theta_{\nu\psi}^2 < 2 \times 10^{-16} \left(\frac{15 \text{ keV}}{m_{\psi}}\right)^5 \left(\frac{21}{\tilde{N}}\right) \left(\frac{v_{\phi}}{2 \text{ GeV}}\right)^4 \\ m_{\psi} > m_{Z'} \\ \psi \to Z'\nu \\ \theta_{\nu\psi}^2 < 1.2 \times 10^{-30} \left(\frac{m_{Z'}}{10 \text{ keV}}\right)^2 \left(\frac{10^{-4}}{g}\right)^2 \left(\frac{40 \text{ keV}}{m_{\psi}}\right)^5 \end{split}$$

 $heta_{
u\psi}$ should be really suppressed

Noce Masses, Mixing and Parameters

$$\begin{split} m_{\chi} &= 0 ,\\ m_{\nu} &= \frac{(m_D \kappa' - m_D' \kappa)^2 + (m_D' \Lambda - m_D \Lambda')^2 + (\kappa' \Lambda')^2}{M' (m_D^2 + \kappa^2 + \Lambda^2) + M (m_D'^2 + \kappa'^2 + \Lambda'^2)} \\ m_{\psi} &\approx \frac{m_D^2 + \kappa^2 + \Lambda^2}{M} + \frac{m_D'^2 + \kappa'^2 + \Lambda'^2}{M'} ,\\ m_{N'} &\approx M' ,\\ m_N &\approx M . \qquad \theta_{\nu N} = \frac{m_D}{M} , \quad \theta_{\nu \chi} = \frac{\Lambda}{m_D} , \quad \theta_{N \chi} \\ \theta_{\nu N'} &= \frac{m_D'}{M'} , \quad \theta_{\nu \psi} = \frac{m_D'}{\kappa'} , \quad \theta_{N'} \end{split}$$

DS Freeze-out Analytical Solution

 $g_{\rm eff} = g_{\gamma} + g_{\rm d}$

 $x_f = m_{\psi}/T_{\gamma,f}$

DS Freeze-out Numerical Solution

$$\begin{split} \frac{dY_{\nu}}{dx} &= \frac{\langle \Gamma_{\nu} \rangle}{Hx} \left(Y_{Z'} - Y_{Z'}^{\mathrm{eq}} \frac{Y_{\nu}^{2}}{Y_{\nu}^{\mathrm{eq}2}} \right) ,\\ \frac{dY_{Z'}}{dx} &= \sum_{i=\nu,\chi,\psi} -\frac{\langle \Gamma_{i} \rangle}{Hx} \left(Y_{Z'} - Y_{Z'}^{\mathrm{eq}} \frac{Y_{i}^{2}}{Y_{i}^{\mathrm{eq}2}} \right) + \frac{s \langle \sigma v \rangle_{\psi\psi \to Z'Z'}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{Z'}^{\mathrm{eq}2}} Y_{Z'}^{2} \right) ,\\ \frac{dY_{\chi}}{dx} &= \frac{\langle \Gamma_{\chi} \rangle}{Hx} \left(Y_{Z'} - Y_{Z'}^{\mathrm{eq}} \frac{Y_{\chi}^{2}}{Y_{\chi}^{\mathrm{eq}2}} \right) + \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{Z'}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) ,\\ \frac{dY_{\psi}}{dx} &= \frac{\langle \Gamma_{\psi} \rangle}{Hx} \left(Y_{Z'} - Y_{Z'}^{\mathrm{eq}} \frac{Y_{\chi}^{2}}{Y_{\psi}^{\mathrm{eq}2}} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{\mathrm{eq}2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi \to \chi\chi}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi}}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi}}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{2}} Y_{\chi}^{2} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi}}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{2}}{Y_{\chi}^{2}} \right) - \frac{s \langle \sigma v \rangle_{\psi\psi}}}{Hx} \left(Y_{\psi}^{2} - \frac{Y_{\psi}^{\mathrm{eq}2}}{Y_{\chi}^{2}} \right)$$

Constraints Structure formation

Free-streaming
$$\lambda_{\text{FS}} \approx \frac{1}{2} \int_{t_{\text{kd}}}^{t_{\text{MRE}}} dt \frac{v_{\psi}}{a(t)} \approx \frac{1}{2} \left(\frac{4\pi^3 g_{\text{eff}}}{135} \right)^{-1/2} \sqrt{\frac{\xi}{T_{\text{kd}} m_{\psi}}} \frac{M_{\text{pl}}}{T_0} \log \frac{T_{\text{kd}}}{T_{\text{MRE}}}$$

Acoustic oscillations
$$\lambda_{AO} = \int_0^{t_{kd}} \frac{dt}{a(t)} = \frac{1}{aH} \bigg|_{kd} \approx \left(\frac{4\pi^3 g_{eff}}{45}\right)^{-1/2} \frac{M_{pl}}{T_{kd}T_0}$$

 $\lambda_{\text{cutoff}} = \max(\lambda_{\text{FS}}, \lambda_{\text{AO}}) < 0.1 \text{ Mpc}$