Lack of propagating degrees of freedom in degenerate f(R) models.

Adrián Casado-Turrión,

FTMC (Center for Physical Sciences and Technology), Lithuania.

In collaboration with:

- Álvaro de la Cruz-Dombriz (Salamanca U. and U. Cape Town),
- Antonio Dobado (Complutense U. Madrid).

Based on:

- PRD 111 (2025) 4, 044030 (arXiv:2412.09366),
- PRD 108 (2023) 6, 064006 (arXiv:2303.02103).

Introduction.

Simplest possible generalisation of GR, with action

$$S[g_{\mu\nu},\Psi] = \frac{1}{16\pi G} \int_{\mathscr{M}} \mathrm{d}^4 x \sqrt{-g} f(R) + S_{\mathrm{matter}}[g_{\mu\nu},\Psi],$$

leading to **fourth-order EOM**:

$$f'(R)R_{\mu\nu} - \frac{f(R)}{2}g_{\mu\nu} - (\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\Box)f'(R) = 8\pi G T_{\mu\nu}.$$

Equivalence to **GR** + **an additional dynamical scalar** (scalaron) in the so-called 'Einstein frame:'

$$\phi(R) = \sqrt{\frac{3}{16\pi G}} \ln f'(R), \qquad V(\phi) = \frac{f'(R)R - f(R)}{16\pi G f'^2(R)}.$$

The extra scalar mode was attested **early studies of GWs** in f(R) gravity,¹ linearising around Minkowski space-time $\eta_{\mu\nu}$:

$$\Box \bar{h}_{\mu\nu} + \mathscr{O}(h^2) = 0,$$

$$(\Box - m_{\text{eff}}^2)R^{(h)} + \mathscr{O}(h^2) = 0,$$

where $R = R^{(h)} + \mathcal{O}(h^2)$ and we have introduced:

$$\bar{h}_{\mu\nu} \equiv h_{\mu\nu} - \left[\frac{h}{2} + \frac{f''(0)}{f(0)}R^{(h)}\right]\eta_{\mu\nu}, \qquad m_{\rm eff}^2 \equiv \frac{f'(0)}{3f''(0)}$$

Three polarisations: +, \times (graviton) and scalar.

¹S. Capozziello, C. Corda, M. F. De Laurentis, PLB 669 (2008) 255-259.

The previous picture has been put into question several times:

- Some authors claimed there was a second scalar mode (the **breathing mode**). Rigorously proven not to exist.
- Other authors showed that some particular f(R) models (such as $f(R) \propto R^2$) lack the graviton modes.^{2,3}
- Later works confirmed that *f*(*R*) ∝ *R*² does not propagate neither the graviton nor the scalaron modes.^{4, 5, 6}

²L. Álvarez-Gaumé *et al.*, Fortsch. Phys. 64 (2016) 2-3, 176-189.

- ³ACT, Á. de la Cruz-Dombriz, A. Dobado, PRD 108 (2023) 6, 064006.
- ⁴A. Hell, D. Lüst, G. Zoupanos, JHEP 02 (2024) 039.

⁵A. Golovnev, IJTP 63 (2024) 8, 212.

⁶G. K. Karananas, PRD 111 (2025) 4, 044068; arXiv:2408.16818 [hep-th].

- **Unify** and **extend** all previous results on the topic.
- Provide a complete picture of the number of degrees of freedom propagated by f(R) gravities and their associated instabilities.
- Prove that there are no propagating degrees of freedom in maximally-symmetric (MS) backgrounds in the large class of so-called degenerate f(R) models (including the aforementioned $f(R) \propto R^2$).
- Compare with the **non-degenerate models**.

⁷ACT, Á. de la Cruz-Dombriz, A. Dobado, PRD 111 (2025) 4, 044030.

A brief glossary: degenerate and non-degenerate f(R) models.

Glossary: **Constant curvature; non-degenerate** f(R) **models.**

• **Constant-curvature space-time**: one having constant Ricci scalar $R = R_0$ (e.g. Schwarzschild).

For $R = R_0$, the f(R) **EOM** become:

$$f'(R_0)R^{(0)}_{\mu\nu} = \frac{f(R_0)}{2}g^{(0)}_{\mu\nu} \implies f'(R_0)R_0 = 2f(R_0).$$

Glossary: **Constant curvature; non-degenerate** f(R) **models.**

• **Constant-curvature space-time**: one having constant Ricci scalar $R = R_0$ (e.g. Schwarzschild).

For $R = R_0$, the f(R) **EOM** become:

$$f'(R_0)R^{(0)}_{\mu\nu} = \frac{f(R_0)}{2}g^{(0)}_{\mu\nu} \qquad \Longrightarrow_{\text{trace}} \qquad f'(R_0)R_0 = 2f(R_0).$$

• R_0 -non-degenerate f(R) models: $f'(R_0) \neq 0$.

Constant-curvature solutions: only those of $\mathbf{GR} + \mathbf{\Lambda}$.

$$R^{(0)}_{\mu\nu} = \Lambda g^{(0)}_{\mu\nu}, \qquad \Lambda = \frac{R_0}{4} = \frac{f(R_0)}{2f'(R_0)}.$$

Example: $f(R) = R - 2\Lambda + \alpha R^2$ with $R_0 = 4\Lambda$.

Glossary: R_0 -degenerate f(R) models.

• R_0 -degenerate f(R) models: $f'(R_0) = 0 \implies f(R_0) = 0$.

Every metric with $R = R_0 = \text{const.}$ solves the EOM!

 $f'(R_0)R^{(0)}_{\mu\nu} = \frac{f(R_0)}{2}g^{(0)}_{\mu\nu}$ becomes 0 = 0 identically!

Example: $f(R) \propto R^{1+\delta}$ for $\delta > 0$ and $R_0 = 0$.

⁸ACT, Á. de la Cruz-Dombriz, A. Dobado, PRD 108 (2023) 6, 064006.

Glossary: R_0 -degenerate f(R) models.

• R_0 -degenerate f(R) models: $f'(R_0) = 0 \implies f(R_0) = 0$.

Every metric with $R = R_0 = \text{const. solves the EOM!}$

 $f'(R_0)R^{(0)}_{\mu\nu} = \frac{f(R_0)}{2}g^{(0)}_{\mu\nu} \quad \text{becomes} \quad 0 = 0 \text{ identically!}$ Example: $f(R) \propto R^{1+\delta}$ for $\delta > 0$ and $R_0 = 0$.

These models are **inherently pathological**:⁸

- *R*₀-degenerate solutions are generically **unstable**.
- Other unphysical features (naked singularities).

⁸ACT, Á. de la Cruz-Dombriz, A. Dobado, PRD 108 (2023) 6, 064006.

Main results.

MS backgrounds are constant-curvature space-times:

$$g_{\mu\nu}^{(0)} = \begin{cases} \text{de Sitter (dS)} & \text{if } R_0 > 0, \\ \text{Minkowski} & \text{if } R_0 = 0, \\ \text{Anti-de Sitter (AdS)} & \text{if } R_0 < 0, \end{cases}$$

We consider small **perturbations around** $g^{(0)}_{\mu\nu}$:

$$g_{\mu\nu} = g_{\mu\nu}^{(0)} + h_{\mu\nu}, \qquad |h_{\mu\nu}| \ll |g_{\mu\nu}^{(0)}|;$$

$$R = R_0 + R^{(h)} + \mathcal{O}(h^2), \qquad R^{(h)} = -\Box h + \nabla_{\mu}\nabla_{\nu}h^{\mu\nu} - \frac{R_0}{4}h.$$

Note that $R^{(h)}$ is gauge-invariant $(x^{\mu} \rightarrow x'^{\mu} = x^{\mu} + \xi^{\mu})$.

MS backgrounds: Linearised f(R) gravity.

At linear level around a MS $g_{\mu\nu}^{(0)}$, the f(R) EOM become

$$0 = f''(R_0) \left[\frac{R^{(0)}}{4} g^{(0)}_{\mu\nu} - (\nabla_{\mu} \nabla_{\nu} - g^{(0)}_{\mu\nu} \Box) \right] R^{(h)} + f'(R_0) \left[R^{(h)}_{\mu\nu} - \frac{R^{(h)}}{2} g^{(0)}_{\mu\nu} \right] - \frac{f(R_0)}{2} h_{\mu\nu} + \mathscr{O}(h^2),$$

while their trace reads:

$$f''(R_0)\left(\Box + \frac{R_0}{3}\right)R^{(h)} - \frac{f'(R_0)}{3}R^{(h)} + \mathscr{O}(h^2) = 0.$$

Note we have never divided by $f(R_0)$, $f'(R_0)$ or $f''(R_0)$!

 $f''(R_0) \neq 0$ $R^{(h)}$ satisfies a **massive Klein-Gordon equation**:

$$(\Box - m_{\text{eff}}^2)R^{(h)} + \mathcal{O}(h^2) = 0, \qquad m_{\text{eff}}^2 = \frac{1}{3} \left[\frac{f'(R_0)}{f''(R_0)} - R_0 \right].$$

Therefore, $R^{(h)}$ is a **propagating DOF** (the **scalaron**).

$$f''(R_0) = 0 \quad f''(R_0)^{\bullet 0} \left(\Box + \frac{R_0 - f'(R_0)}{3} \right) R^{(h)} + \mathcal{O}(h^2) = 0.$$

Result 1. MS backgrounds with $R = R_0$ are **strongly-coupled** in f(R) models with $f''(R_0) = 0$.

$$f'(R_0) = 0$$
 R₀-degenerate case. (Assuming $f''(R_0) \neq 0$.)

The linearised EOM and their trace reduce to:

$$0 = \left[\frac{R^{(0)}}{4}g^{(0)}_{\mu\nu} - (\nabla_{\mu}\nabla_{\nu} - g^{(0)}_{\mu\nu}\Box)\right]R^{(h)} + \mathcal{O}(h^2),$$

$$0 = \left(\Box + \frac{R_0}{3}\right)R^{(h)} + \mathcal{O}(h^2).$$

We notice that:

- The graviton has disappeared! (Strong-coupling.)
- The remaining **scalaron** *R*^(*h*) is **constrained**.

MS backgrounds: *R*₀-degenerate case.

$$R_0 = 0$$
 The general solution is:

$$R^{(h)} = C_{\mu} x^{\mu} + D.$$

 $R_0 > 0$ The general solution is:

$$R^{(h)} = \mathscr{A} e^{H_0 t}.$$

Neither represent a localised perturbation unless $C_{\mu} = 0$, D = 0 and $\mathscr{A} = 0$. In other words, the **only solution** is $R^{(h)} = 0$.

Result 2. R_0 -degenerate f(R) models with $f''(R_0) \neq 0$ **do not propagate any degrees of freedom** atop MS backgrounds. Only the graviton is truly strongly-coupled.

 $f'(R_0) \neq 0$ Non-degenerate case. (Assuming $f''(R_0) \neq 0$.) Introducing

$$ar{h}_{\mu
u} \equiv h_{\mu
u} - \left[rac{h}{2} + rac{f''(R_0)}{f'(R_0)}R^{(h)}
ight]g^{(0)}_{\mu
u},$$

the **linearised** f(R) **EOM** become:

$$\left(\Box - \frac{R_0}{6}\right)\bar{h}_{\mu\nu} + \mathscr{O}(h^2) = 0.$$

Gauge symmetry: $\nabla^{\mu}\bar{h}_{\mu\nu}=0, \quad \bar{h}=0, \quad \bar{h}_{\mu0}=0.$

 \implies There are **two polarisation modes** (+ the scalaron).

In **de Sitter** space-time ($R_0 \equiv 12H_0^2 > 0$),

$$\mathrm{d} s^2_{(0)} = -\mathrm{d} t^2 + a^2(t) \, \mathrm{d} \vec{x}^2, \qquad a(t) = \mathrm{e}^{H_0 t},$$

simple solutions with wave vector \vec{k} are:

$$\begin{split} \bar{h}_{ij}^{\vec{k}}(t,\vec{x}) &= A_{ij}^{(1)}(\vec{k}) \, \mathrm{e}^{H_0 t/2} \, \psi_{\vec{k}}^{(1)}(t) \, \mathrm{e}^{-\mathrm{i}\vec{k}\cdot\vec{x}} \\ &+ A_{ij}^{(2)}(\vec{k}) \, \mathrm{e}^{H_0 t/2} \, \psi_{\vec{k}}^{(2)}(t) \, \mathrm{e}^{+\mathrm{i}\vec{k}\cdot\vec{x}}, \\ \psi_{\vec{k}=\vec{0}}^{(1,2)}(t) &= \mathrm{e}^{\mp 3H_0 t/2}, \\ \psi_{\vec{k}\neq\vec{0}}^{(1,2)}(t) &= H_{3/2}^{(1,2)} \left(\frac{|\vec{k}|}{H_0} \, \mathrm{e}^{-H_0 t}\right). \end{split}$$

All graviton modes are tachyonic regardless of \vec{k} :

$$ar{h}_{ij}^{\vec{k}}(t,\vec{x}) \underset{t \to +\infty}{\sim} a^2(t) = \mathrm{e}^{2H_0 t} \to \infty.$$

However, **there is** <u>no tachyonic instability</u>, because the modes do *not* grow faster than the background:

$$g_{ij}^{(0)} = a^2(t) \, \delta_{ij} = e^{2H_0 t} \, \delta_{ij} \implies \frac{|h_{ij}^{\vec{k}}|}{|g_{ij}^{(0)}|} \ll 1 \text{ at all times.}$$

'Cosmic expansion dilutes the tachyonic (exponential) growth of perturbations.'

MS backgrounds: Non-degenerate case, scalaron.

In **de Sitter** space-time ($R_0 \equiv 12H_0^2 > 0$), the **scalaron EOM**,

$$(\Box - m_{\text{eff}}^2)R^{(h)} + \mathscr{O}(h^2) = 0, \qquad m_{\text{eff}}^2 = \frac{1}{3} \left[\frac{f'(R_0)}{f''(R_0)} - R_0 \right]$$

also admits **simple solutions** with wave vector \vec{q} :

$$\begin{split} R_{\vec{q}}^{(h)}(t,\vec{x}) &= A^{(1)}(\vec{q}) \, \mathrm{e}^{-3H_0t/2} \, \psi_{\vec{q}}^{(1)}(t) \, \mathrm{e}^{-\mathrm{i}\vec{q}\cdot\vec{x}} \\ &+ A^{(2)}(\vec{q}) \, \mathrm{e}^{-3H_0t/2} \, \psi_{\vec{q}}^{(2)}(t) \, \mathrm{e}^{+\mathrm{i}\vec{q}\cdot\vec{x}}, \\ \psi_{\vec{q}=\vec{0}}^{(1,2)}(t) &= \mathrm{e}^{\pm\mathrm{i}\omega_0 t}, \qquad \omega_0^2 &= m_{\mathrm{eff}}^2 - \frac{9H_0^2}{4}, \\ \psi_{\vec{q}\neq\vec{0}}^{(1,2)}(t) &= H_{\nu}^{(1,2)} \left(\frac{|\vec{q}|}{H_0} \, \mathrm{e}^{-H_0 t}\right), \qquad \nu^2 &= -\frac{\omega_0^2}{H_0^2}. \end{split}$$

Result 3. Non-degenerate models with $f''(R_0) \neq 0$ propagate **graviton** + **scalaron** atop MS backgrounds. The scalaron is **tachyonically unstable** if $m_{\text{eff}}^2 < 0$.

Summary and conclusions.

Summary and conclusions.⁹

- Even in simple theories such as f(R) gravity, determining the number of propagating DOF is convoluted, yet crucial.
- *R*₀-degenerate *f*(*R*) models propagate:
 - $f''(R_0) \neq 0$: no degrees of freedom, strongly-coupled graviton.
 - $f''(R_0) = 0$: no degrees of freedom, strongly-coupled graviton and scalaron.
- **Non-degenerate** *f*(*R*)**-models** propagate:
 - *f*["](*R*₀) ≠ 0: graviton and scalaron (latter having a tachyonic instability if *m*²_{eff} < 0).
 - $f''(R_0) = 0$: graviton, strongly-coupled scalaron.

⁹ACT, Á. de la Cruz-Dombriz, A. Dobado, PRD 111 (2025) 4, 044030.

Thank you!

Grazie!

This project has received funding from the Research Council of Lithuania (LMTLT), agreement No. S-PD-24-135; Grant No. PID2022-137003NB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by ERDF 'A way of making Europe;' and Universidad Complutense de Madrid–Banco Santander pre-doctoral/early-career researcher contract CT63/19-CT64/19.

