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Spontaneous particle creation

• The Schwinger effect has been known for a long time
Fritz, Sauter (1931); W. Heisenberg, H. Euler (1936); J. Schwinger (1951)

• Pairs of charged particles and anti-particle created by background E⃗

• Strong Electric fields are required

• Effects are exponentially suppressed by the mass

log Γ ∝ m2c3

ehE
→ ECR ≃ 1.32 × 1018 Vm−1

• It can happen for constant E⃗ , but requires time dependent vector potential A⃗

27th May 2025 2 / 15



Spontaneous particle creation
• A similar effect can happen in Curved backgrounds

L. Parker (1966); S. W. Hawking (1975)

• Particle production from vacuum under time dependent gravitational field

• Effects are already important in cosmology
• LSS might be seeded by accelerated expansion during inflation

Cosmological Schwinger effect, J. Martin 0704.3540

Sloan Digital Sky Survey, in Saraswati supercluster. Credit: IUCAA
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Spontaneous particle creation by time-varying backgrounds

Combining the two examples: Schwinger effect in de Sitter

Inflationary Magnetogenesis
• Generate the observed magnetic fields present in voids our universe

T. Kobayashi, N. Afshordi 2014
Generation of Dark Sectors
• Candidates for non-thermal dark matter M. Bastero-Gil, P. Ferraz, L. Ubaldi, R. Vega-Morales 2023

During inflation (Φ), in practice this could be realized with

S = −
∫

d4x
√−g

[
1
2
∂µΦ∂

µΦ+ V (Φ) +
1
4

FµνFµν +
α

4f
ΦFµν F̃µν + Lch(ϕ,Aν)

]
,

• But no analytical solutions, difficult to test if (renormalization) results make sense
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Scalar QED in de-Sitter

Forget about inflation
• Fix a de-Sitter background
• Set a constant electric field E⃗ (along z direction)

Aµ =
E

H2τ
δz
µ, FµνFµν = −2E2

S =

∫
d4x

√−g
{
−gµν (∂µ − ieAµ)ϕ

∗ (∂ν + ieAν)ϕ− (m2
ϕ + ξR)ϕ∗ϕ− 1

4
FµνFµν

}

• Equations of motion

ϕ′′k + 2aHϕk + ω2
kϕk = 0 −→ ϕk =

e−πλr/2

a
√

2k
Wiλr ,µ(2ikτ)

∇νFµν = Jϕ
µ with Jϕ

µ =
ie
2
[
ϕ† (∂µ + ieAµ)ϕ− ϕ (∂µ − ieAµ)ϕ

†]
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Renormalization (Scalar) QED in de-Sitter

• Divergent expectation value.
〈

0
∣∣∣Jϕ

z

∣∣∣0
〉
=

2e
a4

∫
d3k
(2π)3 (kz + eAz) |ϕk |2 .

• Renormalized current

⟨Jz⟩ren = aH
e2E
4π2

[
1
6
ln

m2
ξ

H2 − 2λ2

15
+ Fϕ(λ, µ)

]
.

λ =
eE
H2 , µ2 =

9
4
−

m2
ξ

H2 − λ2 and m2
ξ = m2

ϕ + 12 ξH2.

• Adiabatic Subtraction T. Kobayashi, N. Afshordi 2014
• Point Splitting T. Hayashinaka, J. Yokoyama 2016
• Pauli Villars M. Banyeres, G. Domenèch, J. Garriga 2018

• Similar for fermions w. Adiabatic Subtraction T. Hayashinaka, T. Fujita, J. Yokoyama 2016
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Renormalization QED in de-Sitter

T. Hayashinaka, T. Fujita, J. Yokoyama 2016

IR divergence ∼ ln m
H

Dashed: Scalars ξ = 0

Solid: Fermions
⇓

Negative J when λ < 1

= λ = eE
H2

27th May 2025 7 / 15



Revising the Renormalization

• Schwinger effect with classical E⃗

• Aµ not quantized (charged particles do not accelerate in dS)

• Only charged particles (ϕ/ψ) are quantized
• No photon loops → ϕ/ψ propagator not corrected at loop level

• Running of charge e ⇐⇒ Aµ (from Ward Identity)

• Only one counter-term in Lagrangian

L = −1
4
(Fµν)

2 − 1
4
δ3(Fµν)

2 − eAµJµ + ... ,

And the corrected equations of motion will be

(δ3 + 1)∇νFµν = ⟨Jµ⟩ .
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Revising the Renormalization
• For a constant electric field in de-Sitter ,

(δ3 + 1)∇νFµν = (δ3 + 1) (−2aHEδz
ν) .

• Define the renormalized current

∇νFµν = ⟨Jµ⟩ren

⟨Jµ⟩ren = ⟨Jµ⟩reg − (−2aHEδz
ν)δ3 reg .

• To get physical renormalized current, on-shell counter-term!

Π(p2 = m2
A) = 0 → δ3 = −e2Π2(m2

A)

• With classical Aµ, Π2 is fully defined (at one loop) by
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Revising the Renormalization: Constant E⃗ in dS?

• Standard literature result is obtained with by treating Π2 as in Minkowski

δ3 = −e2Π2(p2 = 0) → δPV
3 = − e2

48π2 ln
Λ2

m2

• This results in lnm/H term that creates negative conductivies when m ≪ H

• But does this condition actually hold for our setting?

S = −
∫

d4x
√−g

1
4

FµνFµν → gανgβσ∇αFνσ = 0 .

Taking Aµ = E
H2τ

δz
µ, in e.o.m. we find

gανgβσ∇αFνσ = −2a−4 E
τ3H2 δ

z
i ̸= 0 .

• Just a kinetic term is not compatible with constant E⃗ in de-Sitter
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Revising the Renormalization: Constant E⃗ in dS?

• Introduce an effective mass in Lagrangian

S = −
∫

d4x
√−g

(
1
4

FµνFµν +
1
2

m2
AAµAµ

)
.

e.o.m. gives
−a−42

E
τ3H2 δ

z
i − m2

Aa−2 E
τH2 δ

z
i = 0 → m2

A = −2H2.

• Get effective tachyonic mass

• Interpreted as effective source that ensures that E⃗ is not diluted with expansion

• Consistency with constant electric field background implies

Π(p2 = m2
A) = 0 → δ3 = −e2Π2(p2 = −2H2)
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Revising the Renormalization: Constant E⃗ in dS?

Computing δ3 as in Minkowski with the external momentum fixed by p2 = m2
A = −2H2

19.2 Two-point functions 343

Then we can use the on-shell renormalization conditions

Σ(/p)
∣∣
/p=mP

= 0,
d

d/p
Σ(/p)

∣∣∣∣
/p=mP

= 0, (19.23)

with mR = mP to fix δ2 and δm as

δ2 = − d

d/p
Σ2(/p)

∣∣∣∣
/p=mP

, δm =
1

mP
Σ2(mP ), (19.24)

as in Eqs. (18.43) and (18.44).
Of particular interest to us in this chapter will be the value of the δ2 counterterm in the

on-shell scheme, which was calculated in Chapter 18 both in dimensional regularization,

δ2 =
e2
R

8π2

(
−1

ε
− 1

2
ln

µ̃2

m2
R

− 5

2
− ln

m2
γ

m2
R

)
(DR), (19.25)

and with a Pauli–Villars regulator,

δ2 =
e2
R

8π2

(
−1

2
ln

Λ2

m2
R

− 9

4
− ln

m2
γ

m2
R

)
(PV). (19.26)

Next we will use a similar analysis for the photon self-energy to fix δ3.

19.2.1 Photon self-energy

Proceeding as with the electron self-energy, we define the Fourier-transformed Green’s
function Gµν(p) in terms of the exact 2-point function in the full interacting theory as

⟨Aµ(x)Aν(y)⟩ =

∫
d4p

(2π)
4 eip(x−y)iGµν(p). (19.27)

At order e2
R there is a contribution to Gµν from the 1-loop graph using the ordinary Feyn-

man rules in Eq. (19.12). The result was calculated in Section 16.2 and found to have the
form

p p
= −i(p2gµν − pµpν)e2

RΠ2(p
2), (19.28)

where

Π2(p
2) =

8

(4π)d/2
Γ

(
2− d

2

)
µ4−d

∫ 1

0

dx x(1− x)

(
1

m2
R − p2x(1− x)

)2− d
2

=
1

2π2

∫ 1

0

dx x(1− x)

[
2

ε
+ ln

(
µ̃2

m2
R − p2x(1− x)

)
+ O(ε)

]
. (19.29)

The other contribution at order e2
R in renormalized perturbation theory comes from the

counterterm graph,

= −iδ3
(
p2gµν − pµpν

)
. (19.30)

These are the only two one-particle irreducible graphs contributing at order e2
R.

• Corrected lnm/H factor → Currents in the massless limit become finite
• But for fermions and conformal scalars (ξ = 1/6), when eE ≪ H2 they are negative

• Minkowski propagators in the loop are not accurate
• Do not capture correctly IR effects

• We try a correction as exact de-Sitter does not seem doable (to us)

Scalars m2 → m2 + ξR Fermions m2 → m2 +
1
4

R
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Finally δ3

• Pauli-Villars to regularize both δ3 and ⟨Jµ⟩

∇νFµν = ⟨Jµ⟩ren = ⟨Jµ⟩PV
reg−(−2aHEδ z

ν )δPV
3

With

δ3 =
( e

12π

)2
(

3 ln

(
m2

Λ2

)
− 12

(m
H

)2
+ 6

(
2
(m

H

)2
+ 1
)3/2

coth−1

(√
2
(m

H

)2
+ 1

)
− 8

)

• We find the renormalized current to be
〈

Jϕ
z

〉PV

ren
= aH

e2E
4π2

[
1
3
ln

m
H

− 4
9
− 2

3

(m
H

)2
− 2λ2

15
+ Fϕ

+

(
1 + 2

(m
H

)2
)3/2

3
coth−1

(√
2
(m

H

)2
+ 1

)

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Results
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Conclusions

• We have revised Schwinger pair production for constant E in de-Sitter

• Obtain the renormalised Lagrangian and correspondent parameters

• Imposed physical renormalisation conditions

• We were able to address and clarify literature’s negative conductivities in H > m case
• Unphysical result comes from wrong physical conditions

• Minkowski propagators are inadequate for IR behavior

• Obtained an UV and IR divergence free Schwinger current.
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Backup
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Revising PV M. Banyeres, G. Domenèch, J. Garriga 2018

• An arbitrary number of additional auxiliary fields are introduced to cancel divergences
• The mass of these extra fields will then be sent to infinity, making them non-dynamical

Introduce 3 fields
3∑

i=0

(−1)i = 0 and
3∑

i=0

(−1)im2
i = 0,

m0 = m , m2
2 = 4Λ2 − m2 and m2

1 = m2
3 = 2Λ2, Λ → ∞

The regularized current ⟨Jz⟩reg = lim
Λ→∞

3∑
i=0

(−1)i ⟨Jz⟩i .

〈
Jϕ

z

〉
reg

= aH
e2E
4π2 lim

Λ→∞

[
1
6
ln

Λ2

H2 − 2λ2

15
+ Fϕ(λ, µ, r)

]
• ln Λ/H divergence to be reabsorbed with renormalization of the charge

⟨Jµ⟩reg = (δ3 + 1)∇νFµν

∇νFµν = ⟨Jµ⟩ren = ⟨Jµ⟩PV
reg − (−2aHEδ z

ν )δPV
3
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