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Motivation

Modular symmetry has been successfully used as a guiding
principle to explain several puzzles in the SM:

Fermion mass hierarchy,
Flavor mixing,
CP violation,

where a scalar (modulus) field, determines the Yukawa coupling.

Vev of modulus is determined by parameter fitting.
Dynamically fix the vev by its potential, can also realize inflation.
Combination of Modular inflation and flavor model can be used to
discuss reheating and leptogenesis.
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Modular Symmetry I

Modular Group SL(2,Z)

Γ =

{(
a b
c d

) ∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.

Modular Transformation

τ → γτ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ Γ, Imτ > 0 .

S =

(
0 1

−1 0

)
: τ → −1

τ
, T =

(
1 1
0 1

)
: τ → τ + 1 ,

Modular Forms

f(γτ) = (cτ + d)kf(τ), γ ∈ Γ ,

where the weight k is a generic non-negative integer.
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Modular Symmetry II:Fundamental domain
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Modular Symmetry III

The derivative of a weight k modular form f satisfies:

f ′(γτ) = (cτ + d)k+2f ′(τ) +
k

2πi
c(cτ + d)k+1f(τ), γ ∈ Γ ,

For a weight 0 modular form, its derivative is a weight 2 modular form.
There are 3 fixed points (under S or T or their combinations) in the
fundamental domain:

i, ω = e
2πi
3 , i∞

Derivatives of wight 0 modular form have to vanish there.

i and ω are natural candidates for vacuum.
ω and i∞ have been used for inflation.
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Modular Symmetry from String Theory

D = 10 Superstring Dialton S and other fields

D = 4, N = 1 SUGRA Modular invariant scalar potential for S and τ

Compactifycation modulus fields: massless scalar fields with no potential

moduli stabilization: generate potential, positive mass and vev
M10 = M6 ×M4

M6 = T 2 × T 2 × T 2

Kähler modulus τ and complex structure modulus

Modular group is the mapping class group of torus
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SuperGravity framework

In SUGRA, scalar potential is determined by Kähler potential K and
superpotential W in a combined way:

G(τ, τ̄ , S, S̄) = K(τ, τ̄ , S, S̄) + ln |W(τ, S)|2 ,

And the scalar potential reads:

V (τ, S) = eK(KαβDαWDβW − 3|W|2)
= eG(GαGαβ̄Gβ̄ − 3)

where the covariant derivative is defined by DαW ≡ ∂αW +W(∂αK)

and Kαβ is the inverse of the Kähler metric Kαβ = ∂α∂βK. The total
bosonic action:

S =

∫
d4x

√−g

[
M2

Pl
2

R− gµνKαβ∂µϕ
α∂νϕβ − V (ϕ)

]
,
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Potential setup I

K(τ, τ̄ , S, S̄) = K(S, S̄)− 3 ln(−i(τ − τ̄)) ,

W(S, τ) = Λ3
W

Ω(S)H(τ)

η6(τ)
,

We assume dialton S is stabilized.
η is the Dedekind eta function with a modular weight 1/2:

η(τ) = q1/24
∞∏
n=1

(1− qn), q ≡ e2πiτ ,

Under Modular transformation, they reads:

−3 ln [−i(τ − τ̄)] → −3 ln [−i(τ − τ̄)] + 3 ln(cτ + d) + 3 ln(cτ̄ + d) .

W → eiδ(γ)(cτ + d)−3W ,

G(τ, τ̄ , S, S̄) and potential are modular invariant.
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Potential setup II

The most general form without singularity inside the fundamental
domain:

H(τ) = (j(τ)− 1728)m/2j(τ)n/3P(j(τ)) , m, n ∈ N ,

where j is called Klein j invariant.

j(i∞) = +∞ , j(ω) = 0 , j(i) = 1728 = 123 .

m, n determine vacua of the potential and we choose:
m = 0, n ≥ 2, slow roll from i (saddle point) to ω (Minkowski
minimum) along the arc.
m ≥ 2, n ≥ 2, we consider slow roll from i∞ to the fixed point ω
(Minkowski minimum) along the left boundary.
m = n = 0, slow roll from i (saddle point) to ω (dS minimum)
along the arc (King, Wang, 2405.08924).
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Inflation in the Fundamental domain

Modular symmetry + Reality of potential
stabilize the orthogonal direction of inflation!
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Full potential

We choose the following polynomial:

P(j(τ)) = 1 + β

(
1− j(τ)

1728

)
+ γ

(
1− j(τ)

1728

)2

,

and the full potential reads:

V (τ) =
Λ4
S

i(τ − τ̄)3|η(τ)|12
[
(A(S, S̄)− 3)|H(τ)|2 + V̂ (τ, τ̄)

]
,

A(S, S̄) =
KSS̄DSWDS̄W̄

|W |2
=

KSS̄ |ΩS +KSΩ|2

|Ω|2
,

V̂ (τ, τ̄) =
−(τ − τ̄)2

3

∣∣∣∣Hτ (τ)−
3i

2π
H(τ)Ĝ2(τ, τ̄)

∣∣∣∣2 ,
Z(τ, τ̄) =

1

i(τ − τ̄)3|η(τ)|12
,

In short, 3 parameter sets: (m,n), (β, γ), A(S, S̄)
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Slow roll along the unit arc

m = 0, n ≥ 2: τ = ρeiθ and τ = i is the start point of inflation:

V > 0 ⇒ A(S, S̄) > 3 ,

εV =
1

2

(
V ′

V

)2

≪ 1 ⇒ modular symmetry ,

ηV =
V ′′

V
≪ 1 ⇒ (β, γ) .
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Example: m = 0, n = 2, A = 24.3091 and β = 0.126425, γ = 0.
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Slow roll along the unit arc
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(b) with β.
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(c) with γ.

Taylor expansion: V (ϕ) = V0(1−
∑∞

k=1C2kϕ
2k) ,

The simplest case, P (j) = 1 gives too small spectral index.
The rest: r < 10−6, α ≈ −10−4.
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Slow roll at Infinity

A series of work in realizing α attractors with SL(2, Z) symmetry.
2408.05203, 2411.07552, 2503.13682, 2503.14904

At large Im(τ), the squared norm of modular j-invariant can be
approximated as

|j(τ)|2 ≈ e4π Im(τ) .

One can define

I(τ, τ̄) =
ln
(
|j(τ)|2 + β2

)
lnβ2

, I(τ, τ̄)

∣∣∣∣∣
Im(τ)→∞

≈ 4π

ln(β2)
Im(τ) ≡ c Im(τ) ,

and construct an inflation potential:

V (τ, τ̄) = V0

(
I(τ, τ̄)− 1

I(τ, τ̄) + 1

)2

, V (τ, τ̄)

∣∣∣∣∣
Im(τ)→∞

≈ V0

(
1− 8

c Im(τ)
+ ...

)
,

Other possibilities:
Starobinsky inflation: 2407.12081
Higgs-Modular Inflation: 2504.01622
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Modular approach to lepton flavor problem

Assign different weight and representations under finite modular group
ΓN to supermultiplets, we choose A4 as an example :

L ∼ 3 , ec ∼ 1′ , µc ∼ 1′ , τ c ∼ 1′′ , N c ≡ {N c
1 , N

c
2 , N

c
3} ∼ 3

kL = 1 , kec = 1 , kµc = 5 , kτc = 5 , kN = 1 .

We use a Type-I seesaw to generate neutrino masses:

Wν = yD1

(
(LN c)3SY

(2)
3

)
1
Hu + yD2

(
(LN c)3AY

(2)
3

)
1
Hu

+yN1 Λ
(
(N cN c)3SY

(2)
3

)
1
.

Expanding the modulus field around its minimum gives the mass
matrix and coupling among the fields. Has a best fit value(on the arc):

τ0 = 0.48 + 0.87i
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Modular approach to lepton flavor problem

vev of τ in various models
. Feruglio, Ferruccio, 2211.00659
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A small deviation of fixed point can be used as the Froggatt-Nielsen charge.
P. P. Novichkov, J. T. Penedo, S. T. Petcov, 2102.07488
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Modular approach to lepton flavor problem

Vacuum of the potential:

H(τ) = (j(τ)− 1728)m/2j(τ)n/3P(j(τ)) , m, n ∈ N ,

Make an analogy:

H(τ) = (j(τ)− j(τ0))
2

(
1 + β

(
1− j(τ)

1728

)
+ γ

(
1− j(τ)

1728

)2
)

,

For large field: I(τ, τ̄) =
ln (|j(τ)|2+β2)
ln (|j(τ0)|2+β2)

Minkowski minimum at τ = τ0, Taylor expansion of Canonical field ϕ:
Zero Order: Right handed neutrino (RHN) mass, Yukawa coupling.
First Order: Interactions between Inflaton and other fields.

Γ(ϕ → N c
i N

c
j ) =

(
mNλij

1

Mpl

)2
(m2

ϕ − 4m2
Ni
)3/2

8πm2
ϕ

Γ(ϕ → Ñ c
i Ñ

c
j ) =

(
(mN )2λij

2

Mpl

)2
1

8πmϕ

(
1−

4m2
Ni

m2
ϕ

)
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Reheating and leptogenesis

Consider all possible channels:

Γtot = Γ(ϕ → N c
i N

c
j )+Γ(ϕ → Ñ c

i Ñ
c
j )+Γ(ϕ → LiHN c

j )+Γ(ϕ → others)

The reheating temperature:

Treh ∼
(

90

g∗π2

) 1
4 √

MplΓtot

Non-thermal production of RHN can generate lepton asymmetry:

nL

s
≃ 3

4

Trh

mϕ

∑
i

ϵi × (2BR2 + BR1) ,
nB

s
≃ − 8

23

nL

s
≃ 8.6× 10−11

where the ϵi measures the asymmetry in the right handed neutrino
decays:

ϵi =
Γ(Ni → Hu + L)− Γ(Ni → Hu + L)

Γ(Ni → Hu + L) + Γ(Ni → Hu + L)
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Reheating and Leptogenesis

Required lepton asymmetry:

nL

s
≃ 3

4

Trh

mϕ

∑
i

ϵi × (2BR2 + BR1) ≃ 2.5× 10−10 ,

Several points to get the target asymmetry:
We need sphaleron process to be active: Treh > 100 GeV
Non-thermal RHNs: Treh < mN

otherwise we have to take account the wash-out effects.
For this model, Degenerate RHNs mN2 = 1.03mN1 ,

enhancement in ϵi, resonant leptogenesis [hep-ph/0309342]
Need mϕ > 1011GeV, without introducing additional coupling.
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Reheating and Leptogenesis
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Caveat:
We have fixed the expansion direction along the arc; the results do not
directly apply to other cases.
The inflation mass is not high enough for leptogenesis for our specific
inflation model.
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Summary

It is interesting to combine modular symmetry with inflation.
Modular symmetry is a strong constraint as well as a useful handle.
Three parameter sets: A(S, S̄), (m,n), (β, γ).
Two inflationary trajectories: Along the arc or left boundary.
One Baryon asymmetry: Non-thermal RHNs decay.
More to explore:

Maybe fine-tuned. A more natural way (multi-field inflation)?
Inside the fundamental domain?
Other inflationary models?
1604.02995, 2303.02947, 2403.02125, 2407.12081, 2408.05203
Dynamics of dilaton field?
Stabilization at a higher energy scale.
DM in the framework?
1904.03937, 2108.09984, 2409.02178.
CP-problem?
2305.08908, 2404.08032, 2406.01689, 2504.03506.

Thanks for your attention!
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Eisenstein series

The Eisenstein series G2k(τ) of weight 2k for integer k > 1 is defined as:

G2k(τ) =
∑

n1,n2∈Z
n1,n2 ̸=(0,0)

(n1 + n2 τ)
−2k ,

and the Fourier series of Eisenstein series read:

G2k(q) = 2ζ(2k)

(
1 + c2k

∞∑
i=1

σ2k−1(i)q
i

)
,

where the coefficients c2k are given by

c2k =
(2πi)2k

(2k − 1)!ζ(2k)
= −−4k

B2k
=

2

ζ(1− 2k)
. (1)

Here Bn are the Bernoulli numbers, ζ(z) is the Riemann’s zeta function
and σp(n) is the divisor sum function,

σp(n) =
∑
d|n

dp . (2)
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j invariant

The Klein j-invariant function is a modular form of weight zero, defined
in terms of Dedekind eta function and Eisenstein series as follows:

j(τ) ≡ 3653

π12

G3
4(τ)

η24(τ)
=

3653

π12

G3
4(τ)

∆(τ)
, ∆(τ) ≡ η24(τ) ,

For convenience, the q-expansion of j-function is given by

j(τ) = 744 +
1

q
+ 196884q + 21493760q2 + 864299970q3

+20245856256q4 + 333202640600q5 + 4252023300096q6

+44656994071935q7 +O(q8) .
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Vacuum structure of the potential

The vacuum structure of this potential at τ = i and at τ = ω = ei2π/3

has been extensively studied in 2212.03876, where they find the
following results based on the choice of (m,n):

If m = n = 0, then both fixed points can have a de Sitter (dS)
vacuum.
If m > 1, n = 0, then τ = ω is a dS minimum, while τ = i is
Minkowski minimum.
If m = 0, n > 1, then τ = i is a conditional dS minimum, which
depends on the value of A(S, S̄). τ = ω is always a Minkowski
minimum.
If m = 1, n > 0 or n = 1,m > 0, the vacuum is unstable.
If m > 1, n > 1, then we always have Minkowski extrema in these
two fixed points.
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Slow roll along the unit arc
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P(j) = 1 + β(1− j/1728) .
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Slow roll along the unit arc
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