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Axion inflation

@ For successful slow-roll inflation we need the inflaton potential to be
sufficiently flat. However, the radiative corrections may break this
flatness and spoil inflation.

@ This usually happens unless the flatness of the potential is protected
by a shift symmetry ¢ — ¢ + const.

E.g., natural inflation model [Freese et al., PRL 65 (1990)]

@ Interaction terms with matter fields should also be shift-symmetric.
The simplest choice for the gauge field is [Garretson et al., PRD 46 (1992)]

Ser / d*xv/—g [ ~Fu F — §¢FW/EW

@ Such scalar field ¢ is often called axion (or axion-like field).
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Gauge-field generation during axion inflation

1 1 v ﬁ %
S= /dAX\/ —8 [Eau(ﬁa“(b - V((b) - ZF/U/FM - M¢F;w":“ + L:ch(Au>X):|
pseudoscalar free_ axion coupling charged field
inflaton gauge field of GF to inflaton (Schwinger eff.)

Equations of motion:

o Friedmann eq.: H? = [%gf?%— V(¢)+%<E2+Bz>+px]

3M3
o Klein-Gordon eq.: ¢ +3H¢ + V/(¢) = M£<E . B)
P
@ Maxwell equations:
. 1 B . )
E+2HE — -rotB+ — ¢ B +j =0,
a Mp

B+ 2HB + érotE =0, divE=0, divB=0.

@ Eq. for charged particles: p, +4Hp, =j - E.
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Schwinger effect during inflation

Strong electric component may lead to the Schwinger pair production
[Schwinger, PR 82 (1951)].

Studied analytically [Domcke, JHEP 02 (2020)]

@ De Sitter space

@ Constant and collinear electric and

magnetic fields

@ Strong-field regime

A
En =

2m,

< 1018 v/
eh -

|eE| > H? E
®
T '
= = €
E ,7|6E‘ H
. _ (elQI)* |BIE 7|B] mm’
= th — .
672 H < |E] )e"p< |eQE|>
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Schwinger induced current: different representations

1) Electric picture:

2

, (elQD?[BI 7| B| ™m
— ocE - coth - :
JTOER BT T ¢ ( IE| )exp< |eQE|>'

0. Sobol (UniMS, TSNUK) PLANCK 2025 May 27, 2025



Schwinger induced current: different representations

1) Electric picture:

, (elQD?[BI 7| B| Tm?
— ocE - coth - :
JTOER BT T ¢ ( IE| )exp< |eQE|>'

2) Magpnetic picture:
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Schwinger induced current: different representations

1) Electric picture:

, (elQD?[BI 7| B| Tm?
— ocE - coth - :
JTOER BT T ¢ ( IE| )exp< |eQE|>'

2) Magpnetic picture:

_ _ (|’ |E] m|B| m?
Jj=o08B, 0B= o o coth( E ) exp ( | QE’>SIgH(EB)
3) Mixed picture:

Bl ?

D IBE comn( T ero (-~ o).

j=0cgE+o0ogB=
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Schwinger induced current: different representations

1) Electric picture:

, (elQD?[BI 7| B| Tm?
— ocE - coth - :
JTOER BT T ¢ ( IE| )exp< |eQE|>'

2) Magpnetic picture:

_ _ (elQI)° |E] m|B| m?
Jj=o08B, 08 = "¢ 3 Hcoth( |E‘)exp< |QE’>51gn(EB)

3) Mixed picture:

, (elQI)* |BIE 7|B| mm?
— oeE +ogB = coth - .
j=oeE +opB = S eoth (] IE| = |eQE|)

No difference at the classical level. But how to incorporate this current
into the Maxwell equation for the quantum gauge field?
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Schwinger induced current: different representations

Typical approach: current is linear in gauge-field operators with
conductivities being classical functions (depends on mean fields).
Then, three pictures appear to be inequivalent!
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Schwinger induced current: different representations

Typical approach: current is linear in gauge-field operators with
conductivities being classical functions (depends on mean fields).
Then, three pictures appear to be inequivalent!

1) Electric picture [Kobayashi, JHEP 10 (2014); Gorbar, PRD 104 (2021)]:

5 2 (elQD)?[BI 7| B| Tm?
oeE, = coth — -
= ET Tor2 HC ( IE] )ex"( |eQE|)'

2) Magnetic picture [Domcke, JHEP 11 (2018); JHEP 02 (2020)]:

o

(e|Q])* [E| th(”’B‘)exp(— mm?

J=cB 6r2 H \|E| eQE|

) op =

3) Mixed picture:

)sign(EB) ;
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Schwinger induced current: vector decomposition

Lab frame

_ [(el@])*|B] m|B'| mm 2
7E = [ et E e ( - \eQE’|> (1= ~B%)
(@B /7B m?
78 [ sz b £ )eo (- \eQE’]) wE-B
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Relevant scales

1) Tachyonic instability scale:
<t k

— . 02 /
kh(t)fm2x<maxk.Q (k,t)<0>.

Maximal momentum of the Fourier mode which undergoes (or underwent
in the past) tachyonic instability: A} + Q2(k,t)Ax =0, Q2 < 0.
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Relevant scales

1) Tachyonic instability scale:

— . 02 /
kh(t)fgjgx(ml?xk.ﬂ (k,t)<0>.

Maximal momentum of the Fourier mode which undergoes (or underwent
in the past) tachyonic instability: A} + Q2(k,t)Ax =0, Q2 < 0.
2) Pair-creation scale:

ks(t) = a(t)/|eQE'(1)|

Modes with wavelengths much shorter than Ag ~ 1/kg cannot feel the
presence of a conducting medium.
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Relevant scales

1) Tachyonic instability scale:

kn(t) = max (m’?xk - Q?%(k, t) < 0) .

t'<t

Maximal momentum of the Fourier mode which undergoes (or underwent
in the past) tachyonic instability: A} + Q2(k,t)Ax =0, Q2 < 0.
2) Pair-creation scale:

ks(t) = a(t)v/|eQE'(t)]

Modes with wavelengths much shorter than A\g ~ 1/kg cannot feel the
presence of a conducting medium.
3) Curvature (Hubble) scale:

kn(t) = a(t)H(t)

If ks < kp, i.e., |eE'| < H?, the Schwinger pair production is not
effective, but also irrelevant for the gauge-field evolution.
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Scale-dependent damping

a) Damping on all scales k < kg b) Damping on all scales k& < ky,

. 2
1 | vacuum modes %
s

cuum modes ¥

e

510
151100

k/aH

k/aH

curvature scale «

10° 100

30 10 50
e-folds N

60 30 40 50 60
e-folds N

One must track the evolution of all relevant scales and “turn on” the

Schwinger conductivities in the right moments of time (depending on the
momentum).
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Gradient-expansion formalism

[Gorbar, Schmitz, OS, Vilchinskii, PRD 104 (2021); PRD 105 (2022)]
We introduce an infinite set of quantities:

n 1 n n 1 n n 1 n
€0 = —(E 1ot"E), G =——(E rot"B), B =_(B:rot"B).

They satisfy the following chain of equations ({ = BQIS/(QHI\/IP)):
EM 4 (n+4)HEM — aHE G 4 26 +) — [£(M],,

G + (n+4)HG™ — gnt) 4 B+ _ope B = [G(M],,
B 4 (n+ 4)H B — 2g(n+1) = [3(M],.

0. Sobol (UniMS, TSNUK) PLANCK 2025

May 27, 2025



Gradient-expansion formalism

[Gorbar, Schmitz, OS, Vilchinskii, PRD 104 (2021); PRD 105 (2022)]
We introduce an infinite set of quantities:

n 1 n n 1 n n 1 n
€0 = —(E 1ot"E), G =——(E rot"B), B =_(B:rot"B).

They satisfy the following chain of equations ({ = BQIS/(QHI\/IP)):
)+ [(n+ 8)H+20£) M — [4HE+205] G 4 26D = [£(M],

G+ [(n+ HH+0e] G — £ 4 B — HE +o5] BO = [¢17)],,
B 4 (n+ 4)H B — 2g(n+1) — [5(M],.
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Gradient-expansion formalism

[Gorbar, Schmitz, OS, Vilchinskii, PRD 104 (2021); PRD 105 (2022)]
We introduce an infinite set of quantities:

n 1 n n 1 n n 1 n
€0 = —(E 1ot"E), G =——(E rot"B), B =_(B:rot"B).

They satisfy the following chain of equations ({ = BQIS/(QHI\/IP)):
)+ [(n+ 8)H+20£) M — [4HE+205] G 4 26D = [£(M],
G +[(n+ 4)H+0e) G — 00D 4 B — 2HE+05] B = [G17],,
B 4 (n+ 4)H B — 2g(n+1) — [5(M],.

Thus, we trade an infinite number of Fourier-modes for an infinite set
of scalar functions in the coordinate space — what’s the gain?

The chain can be truncated!
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Boundary terms

Any function X(") has the following spectral decomposition:

ki (t)
Y
0 k dlnk

There are two sources of time dependence:
@ The spectral density depends of Ay(k, t) and its derivatives.
@ The upper integration limit ky,(t) is time dependent!
E.g., w/o Schwinger effect, ky(t) = 2a(t)H(t)|£(t)].
Boundary terms describe the latter time dependence, i.e., they take into

account the fact that the number of physically relevant modes grows
in time during inflation.

_dX dInky
T dink|,,  dt

(X)b

They are expressed in terms of Whittaker functions.
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Comparison of di nt approaches: old vs new

“Old” approach: j = o E (electric), damping of all gauge-field modes.
“New” approach: j = ogE + ogB (mixed), damping only for k < ks(t).

107 mixed picture & electric picture & /
Schwinger damping on scales k < kg Schwinger damping on all scales k 4

PE PB - Px | 7T pPE  TTTTT P TTTTT Py

—_
(e
0
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o
=1
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[e=]
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density p / H?

—_
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T

end of inflation

104
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1
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Comparison of different approaches: three pictures

| Schwinger damping on all scales k | | Schwinger damping on scales & < kj | | Schwinger damping on scales k < kg |

magnetic picture
""" electric picture
—— mixed picture

<+ electric energy density pp —

< magnetic energy density pp — /|

< Fermion encrgy
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Comparison of different types of scale-dependence

density p / H*

J magnetic picture |

| electric picture | J mixed picture |
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Schwinger

Schwinger

damping on all scales &
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s

T
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Conclusions

@ Schwinger production of charged particles strongly ;.:-‘ NI
alters the gauge-field dynamics in axion
inflation.

@ Taking into account that the electric and magnetic
fields are in general not collinear, we derived the
vector decomposition of the Schwinger-induced
current in terms of these fields and determined the arXiv:2408.16538
corresponding effective electric and magnetic
conductivities.

© We incorporated Schwinger damping of the gauge
field in a scale-dependent fashion in the
equations of motion.

@ In some cases, our new results differ from the old
ones by more than one order of magnitude.
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Thank you very much for your attention!

Peace to all of us!

#StandWithUkraine
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