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Planck - May 2025 Clockwork For Dirac Neutrinos 

The clockwork sector contains (0,1,…n-1) left handed chiral fields and

 (0,1,….n) right handed chiral fields. 

We begin with one generation and the generalise to  N generations. 

Choi and Im, JHEP 2016

Kaplan and Rattazzi, 2016

Giudice and McCoullough,2016

HCW
ij = mδij + qm δi+1,j
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Figure 2. Composition of the left-handed (left panel) and right-handed (right panel) mass eigen-
modes in terms of the original clockwork fields in the uniform clockwork model with N = 15, m = v,
q = 4.887, and y = 0.01.

for the massive states. For the left-handed fields,

Ũ00
L = 1, Ũ0j

L = Ũ j0
L = 0;

Ũ jk
L =

√
2

N + 1
sin

jkπ

N + 1
, j, k = 1, · · · , N. (2.10)

In terms of the pictorial representation of the clockwork in figure 1, the massive left- and

right-handed eigenmodes appear “delocalized”, mixing the fields at all sites in roughly equal

measure. On the other hand, the zero mode is strongly localized. The left-handed part of

the zero mode corresponds exactly to the field νL. The right-handed zero mode consists

mainly of the field χN , with rapidly decreasing admixtures from the fields located further

to the left. In particular, the contribution of χ0 is suppressed by a factor of 1/qN . (These

features are illustrated in figure 2.) When the Yukawa coupling is turned on, the resulting

Dirac mass of the pseudo-zero mode is suppressed by the same factor, yielding an expo-

nentially small neutrino mass for moderate values of q and N . In this way, the clockwork

mechanism generates a small Dirac neutrino mass without small input parameters.

When a Yukawa coupling is present and the Higgs acquires a vev, the mass matrix has

the form

Mα = m





pα 0 0 · · · 0 0

−q 1 0 · · · 0 0

0 −q 1 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · −q 1




, (2.11)

where α = 1 . . . 3 is the flavor index, and we defined

pα =
yαv√
2m

. (2.12)

Here v = 246GeV is the Higgs vev. The spectrum consists of N + 1 Dirac neutrinos for

each flavor:

Nj = (NL j ,NRj), j = 0 . . . N (2.13)

– 5 –

Hong, Kurup and Perelstein, 
JHEP010 (2019) 073
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physics. The clockwork mechanism consist of a series of fields n left handed
 Li(i = 0, ..., n � 1) and n + 1 right handed fermions  Ri(i = 0, ..., n), with
symmetry G = GSM ⇥ U(1)R0 ⇥ U(1)L0 ⇥ U(1)R1 ⇥ U(1)L1 .... ⇥ U(1)Rn�1 ⇥

U(1)Ln�1⇥U(1)Rn . After symmetry breaking, as shown in Section 3, the remnant
symmetry is GSM ⇥ U(1). Considering U(1) as lepton number associated with
the neutrino, the Higgs (H) and left-handed lepton doublet (LL) have a Yukawa
coupling with the last site of a fermionic clockwork

L = �Y HLL Rn + h.c. (21)

Once we write the  Rn in terms of mass eigenstates, using  Rn =
Pn

j=0 OnjNR j

 R,0  L,0  R,1  L,1  R,2  L,2  L,n�1  R,n ⌫L

m m m m m m hHi

q q q Ȳ

1

Figure 4: Clockwork Mechanism .

the e↵ective interaction becomes

L = �Y HLL

 
f0NR 0 �

nX

k=1

(�)k fkNRk

!
+

nX

k=1

MkNLNR + h.c. (22)

f0 ⌘
M0

qn
, fk ⌘ Mk q sin

nk⇡

n+1
. (23)

where Y is naturally of O(1). After electroweak symmetry breaking neutrino
mass term in basis N⌫

L = (⌫L, NL 1, ...., NLn) and N⌫
R = (NR 0, NR 1, ...., NRn)

as N
⌫
LMN⌫

R is given as

M =

0

BBB@

vY0 vY1 · · · vYN

0 M1 · · · 0
... 0

. . . 0
0 0 · · · MN

1

CCCA
. (24)

where Mk is the mass of k-th clockwork gears for Nk. Y0 = Y f0, Yk = Y fk and
v = 246.6/

p
2. Hence, there will be a mixing of the standard model neutrino

⌫L with the heavy clockwork gears. To obtain the small masses neutrino mass
we need Y0 ⌧ 1. To obtain the physical neutrino states we can diagonalize the
MM† matrix. We can define a unitary transformation U , such that U †MM†U
matrix is diagonalized. This would determine the mass eigen states via  ⌫

L =
U mstate

L . The lightest neutrino can be define in terms of mixing angles ✓ as
⌫L = cos ✓⌫mstate. The mixing is constraint by the LEP data where the invisible
decay width of Z boson yields n⌫ = 2.985± 0.008.

The mass of physical neutrino and eigen state can be easily understood using
2⇥ 2 matrix

M =

✓
vY0 vY1

0 M1

◆
. (25)
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Figure 1: Dirac masses (left panel) and Yukawa couplings (right panel) of the singlet fermions of the clockwork
sector, normalized respectively to m and Y , for the specific case n = 10 and q = 2.

with

Y0 ⌘ Y (uR)n =
Y

qn

s
q2 � 1

q2 � q�2n
, (26)

Yk ⌘ Y (UR)nk = Y

s
2

(n+1)�k


q sin

nk⇡

n+1

�
, k = 1, ..., n . (27)

The Yukawa coupling of the massless mode Y0 is suppressed by q
n, provided q > 1, whereas the couplings

of the kth-mode are of the same order as Y . This is illustrated in Fig. 1, right panel, which shows the
Yukawa couplings of the clockwork fermions to the Standard Model lepton doublets, normalized to Y , for
the same values of n and q as in the left panel (in this case, |Y0|/Y ⇡ 8⇥ 10�4 and is not visible from
the figure.)

The mass matrix of the electrically neutral fermion fields now reads:

m
D
⌫ =

0

BBBBB@

NR0 NR1 NR2 · · · NRn

⌫L vY0 vY1 vY2 · · · vYn

NL1 0 M1 0 · · · 0
NL2 0 0 M2 · · · 0
...

...
...

...
. . .

...
NLn 0 0 0 · · · Mn

1

CCCCCA
. (28)

Concretely, a mass term for the active neutrinos is generated. Assuming that Mk � Y0v, which as we
will see below is justified from the current limits on rare leptonic decays, one can approximate the active
neutrino mass by

m⌫ ⇡ vY0 (29)

and can be made small by choosing appropriate values of Y , q and n. For instance, assuming Y = O(1),
q = 2, one obtains m⌫ = O(0.1) eV for n ⇡ 40.

The generalization of the above setup to three leptonic generations and N clockwork generations is
straightforward. The clockwork Lagrangian is:

Lclockwork = Lkin �N
↵
Lm

↵
⌫N

↵
R + h.c. (30)

with N
↵
L = (⌫↵L , N

↵
L1, ..., N

↵
Ln) and N

↵
R = (N↵

R0, N
↵
R1, ..., N

↵
Rn), where

N
↵
Rk =

1
p
2
(�↵

k + �
↵
k+n) , k = 0, ..., n ↵ = 1..., N , (31)

N
↵
Lk =

1
p
2
(��

↵
k + �

↵
k+n) , k = 1, ..., n, ↵ = 1..., N , (32)
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Figure 1: Dirac masses (left panel) and Yukawa couplings (right panel) of the singlet fermions of the clockwork
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R0, N
↵
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N
↵
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After EW 
symmetry breaking 


from the 
interaction term

a kind of multi-degenerate-seesaw mechanism for Dirac neutrinos, 

where large n reduces the neutrino mass

Kushwaha, Ibarra and Vempati,2017 
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Figure 2: Values of q1 and q2 (left panel) and di↵erence between them (right panel), as a function of n1 and
n2, compatible with the measured values of the neutrino mass splittings and mixing angles within 1�, for a
scenario with two clockwork generations.

and the interaction Lagrangian,

Lint = �

nX

k=0

Y
a�
k L

a
L
eH0N

�
Rk , (33)

with Y
a�
k = Y

a↵
U

↵�
nk .

After electroweak symmetry breaking the neutrino mass matrix reads:

m
D
⌫ =

0

BBBBBB@

N
�
R0 N

�
R1 N

�
R2 · · · N

�
Rn

⌫
a
L vY

a�
0 vY

a�
1 vY

a�
2 · · · vY

a�
n

N
�
L1 0 M

�
1 0 · · · 0

N
�
L2 0 0 M

�
2 · · · 0

...
...

...
...

. . .
...

N
�
Ln 0 0 0 · · · M

�
n

1

CCCCCCA
. (34)

where M
�
k is the mass of k-th clockwork gear for the Dirac pair N�

L ,N
�
R.

We analyze in detail the case where the clockwork consists of two generations with n1 and n2 gears,
respectively. We scan Y

a↵ within the ranges 1
4 < |Y

a↵
| < 4, q↵ between 1.5 and 6 and n↵ between

15 and 55, and we select the points that reproduce the observed values of the solar and atmospheric
mass splitting and mixing angles within 1�, as determined in Ref. [47]. In Fig. 2 (left panel) we show as
green circles (yellow triangles) the values of n1 (n2) as a function of q1 (q2) that satisfy the experimental
constraints. As apparent from the plot, larger q↵ require a smaller number of gears to reproduce the
small neutrino Yukawa coupling. Furthermore, the allowed values for n1 and n2 have a big overlap, which
is a consequence of our assumption of comparable elements in the coupling Y

a↵ and the necessity of
producing a mild hierarchy between the solar and the atmospheric neutrino mass scales. In particular, we
find that the scenario with q1 = q2 and n1 = n2, namely the scenario where the clockwork parameters are
universal also among generations, is allowed by observations. This is illustrated in Fig. 2 (right panel),
which shows the allowed values of q1 � q2 as a function of n1(green circle) and n2(yellow triangle); the
scenario with n1 = n2 and q1 = q2 corresponds to the region where the green circles and the yellow
triangles overlap.

2.2 MLi,MRi 6= 0 for some i

In this case the mass matrix of the model is given by Eq. (15) and the Yukawa couplings by Eq. (27).
Identifying eq as the order parameter of the U(1)CW symmetry breaking, one can consider two limits of
interest: eq ⌧ q, 1 and eq � q, 1.

Fig. 3 shows the masses of the singlet fermions (left panel) and their corresponding Yukawa couplings
(right panel) for the specific case n = 10, q = 2, and eq = 0.1 (dark blue) or eq = 10 (light blue); the
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At least two clockworks for two mass scales. 

Results with three clockworks similar 
Kushwaha, Ibarra and Vempati,2017 
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II. PRELUDE TO LOCALIZATION

The fermionic action for the aliphatic model with link fields connecting left and right chiral fermions

of consecutive groups is given by

S =
NX

j=1

Z
d4x{ ̄ (i�µDµ) +

�
Lj�j,j+1Rj+1 + Lj+1�j+1,jRj

�

+ LjMRj + h.c.} (1)

Hence, the new physics Lagrangian for this moose diagram and connectivity of matter fields at IR

limit becomes

LNP = Lkin �
nX

i,j=1

LiHi,jRj + h.c. (2)

with

Hi,j =✏i�i,j � ti(�i+1,j +K�i,j+1) (3)

with ✏i 2 [2t, 2t+W ]. Mass matrix for the fermionic fields in this lagrangian with K = 1, in the basis

(L1, L2, ...LN , R1, R2, ...RN ) is a symmetric anti-diagonal block matrix

Mmass =

2

4 0 MA

MA 0

3

5

Matrix MA elements are given as MA,ij = < LiMARj > and it takes the form

MA =

2

6666666664

✏1 �t 0 ... 0

�t ✏2 �t ... 0

0 �t ✏3 ... 0

... ... ... ... ...

0 ... ... �t ✏N

3

7777777775

Eigenvalues of matrix MA in the limiting case ✏i = a 8 i are given by[? ],[? ],[? ]

�k = a� 2
p
t2 cos

k⇡

N + 1
, (4)

with a = e/t and b = c = -1. Or it can be rearranged as

�k = a+ 2
p
bc cos

k⇡

n+ 1
,
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X X X X X

G1 G2 G3 G4 GN

R1 R2 R3 R4 RN

L1 L2 L3 L4 LN

m1 m2 m3 m4 mN

p1 p2 p3

p4

pN-1

r1 r2 r3

r4

rN-1

Deconstruction Model

X

Right Handed Weyl Fermion

Left Handed Weyl Fermion

Coupling between Left handed Li and right handed

 Weyl fermion Ri+1

pi

Coupling between Left handed Li+1 and right handed

 Weyl fermion Ri

riK = 1,ti = t
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For t=1, W =  3,  N = 8 

W ≫ t

Strong localisation limit 

7

III. ANDERSON LOCALIZATION

Anderson localization phenomenon gives localized eigenmodes in disordered systems. The extent of

localization depends on the connectivity and amount of disorderliness introduced in the system [4].

The localization of a mode on a particular site results in it having a small component on other lattice

sites. This natural emergence of a small component can be used in field theories to produce a small

coupling between two fields.

A. Nathaniel Craig and Dave Sutherland

N. Craig and Sutherland have used this phenomenon of Anderson localization to naturally produce

exponentially suppressed couplings between two fields [13]. They have assumed randomness in the

fundamental parameters which in lattice picture corresponds to site and hopping strength. The

Hamiltonian used is the nearest neighbour tight binding Anderson Hamiltonian.[4]

Hi,j = ✏i�i,j + t(�i+1,j + �i,j+1) (9)

with ✏i site terms drawn randomly from [0 , W] and t is the hopping strength. For W � t, we

have a strong localization scenario, that is, the modes are highly localized on sites and the localization

length for small t is given by [13]

L
�
m2

i , t,W
�
⇠

✓
ln

W

2t
� 1

◆�1

For W ⌧ t, it is weak localization scenario. Localization length in this case is given by [13]

L
�
m2

i , t,W
�
⇠

8
><

>:

�
t
W

� 2
3 if

2t�|2t�mm2
⌦|

w
t
3 t

1
3

⌧ 1,

24
W 2

⇣
4t2 �

�
m2

n � 2t
�2⌘

otherwise.

Once the modes are localized, their component on some other site gives rise to a small coupling

strength, which is exponentially small in disordered systems and hence can be used for the production

of hierarchical mass.
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For large sparse Hamiltonians, one can find the spectral density using the Bray-Rodgers equation

[? ] or Edwards and Jones formulation [? ]. Following are plots of orthonormalized eigenvectors �i

obtained from ⇤i using the Gram-Schmidt process for various cases.

Fig.4 (A) - Mass modes of Non-Local lattice having uniform sites ✏i = 2W, g = 1, N = 8 and

increasing(left), constant(middle) and decreasing(right) non-neighbouring couplings with b = 0.7, 1

and 2 respectively.

Fig.4 (B) - Mass modes of Non-Local lattice with random site terms ✏i 2 [-2W, 2W] with W = 5, g

= 1/4, b = 2 and N = 8.

In this graph, 1) for case b > 1 highly localized modes are found for W � g/b, 2) for case b = 1,

highly localized modes are found for W � g, and 3) for case b < 1, highly localized modes are found

for either W � g/bN�1 or g/b < W ⌧ g/bN�1.

1. Mixed Local and Non-local structures

The Petersen graph we are considering belongs to a broader collection of graphs known as the

’generalized Petersen’ graph denoted by GP(n, k). The graphs we are considering have k = n/2

chosen. The number of vertices and edges that GP(n, n/2) have are 2n and 2n + n/2 respectively.

The Hamiltonian of this graph is used in (??) to account for the new physics Lagrangian. Each vertex

in the graph will translate to one left & one right BSM Weyl fermion and an edge between any two

vertices or nodes will lead to a coupling between Weyl fermions of opposite chirality of those two

ϵi ∈ [2t, W + 2t] ≈ [0,W]

1) All modes are localised 

2) With every iteration the position of the localisation changes. 

Exponential hierarchies 

 can be generated 
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B. Neutrino Masses and Flavor Mixing In Strong Localisation Regime

Once the localized modes are produced we need to couple SM uncharged leptons with new fields to

produce hierarchical mass.

1. Dirac Scenario

One Flavor Case - In the Dirac scenario, neutrino mass is obtained by assuming both left ⌫L and

right-handed ⌫R neutrino existence. Left-handed and right-handed neutrinos are Yukawa coupled to

di↵erent site Right R1 and Left-handed Ln BSM fields respectively in Lagrangian (??) with SM Higgs

field i.e.,

Lint. = Y1⌫̄LHR1 + Y2⌫̄RHLn + h.c.

with Y1 and Y2 are Yukawa couplings of the O(1). The Dirac Mass matrix in basis

{⌫L,�L,1,�L,2, ...,�L,n} and {⌫R,�R,1,�R,2, ...,�R,n} is given by

Mfermion =

2

6666666666664

0 v11 v21 v31 ... vn1

v1n �1 0 0 ... 0

v2n 0 �2 0 ... 0

v3n 0 0 �3 ... 0

... ... ... ... ... ...

vnn 0 0 0 ... �n

3

7777777777775

vi1 is the coupling of neutrino with �Ri and vin is the coupling with �Li after SSB. The smallest mass

mode for this matrix is given by

m0 ⇡
nX

i=1

vi1v
i
n

�i
/

nX

i=1

v2
e�

n
Ln

�i

v is the expectation value of the Higgs field. Other mass modes are slight perturbations about their

initial eigenvalues �is.

We find for ✏i/2 2 [0, t+W], ti 2 [-t, t] and n = 7 with t=1 and W = 5, it produces O(1)eV masses

from TeV scale.

Neutrino Masses with Anderson Localisation

Craig and Sutherland 2017

For one generation this looks good !! Tiny neutrino masses can be generated !  

1) What about Flavour Mixing ?  
2) What about generalisations  in “geometry”  
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Dirac Case 
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Fig.8 - KK modes mass spectrum (left) and product of couplings of neutrinos with L1 and Rn

(right) for t = 1 and W = 5 with n = 7.

3-Flavor Case - Extension to the 3-flavour case of the above new physics Lagrangian can be done

as,

LNP = Lkin �
nX

i,j=1

L↵
i H

↵,�
i,j R�

j + h.c. (12)

with the interaction between di↵erent flavours of SM and BSM fields given by

LInt. = Y a,↵⌫̄aLHR↵
1 + Y b,� ⌫̄bRHL�

n + h.c.

where a, b, ↵ and � are flavor index.

For the below scenario, N = 3 and big randomness range i.e., ✏i 2 [W,3W] and ti = t with W =

5 and t = 0.02 are considered with flavour diagonal left-handed SM neutrino Yukawa couplings Y a,↵

but non-diagonal right-handed neutrino Yukawa coupling Y b,� with o↵-diagonal elements being 10%

of O(1) diagonal elements in Fig. 9(B) left and diagonal Y b,� with o↵-block H↵,� (”Dirac mixing”)

considered in Fig. 9(B) right.

Fig.9(A) - Figure shows histogram(left) for 100000 runs and median of 1000 runs(right) for 100

cases with W = 5 and N = 3.O(1) eV neutrino masses 
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Fig.9(B) - Figure shows the histogram of mixing angle for 5000 runs produced in local theory space

for neutrino-like mixing (left) and Dirac-like mixing(right).

The o↵-block NP flavor mixing H↵,� is

H↵,� = Y ↵,�
Y ukawaH

The produced mass plots and mixing plots for neutrino and Dirac-like mixing for non-local and Pe-

tersen Hamiltonian are given in Appendix ??.

TABLE III: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

⌫R Flavour Mixing Small mix Small mix Small mix

Dirac Flavour Mixing Large mix, Anarchical Large mix, Anarchical Large mix, Anarchical

In this scenario, results are independent of underlying graph connectivity.

2. Majorana Scenario

One Flavor case - In the Majorana scenario, The lagrangian with Majorana BSM field for the

local case is given by [? ]

LNP = Lkin � tL̄1 �
nX

i,j=1

LiHi,jRj �W  + h.c. (13)

with

Hi,j = ✏i�i,j + t(�i+1,j + �i,j+1) (14)

and interaction between BSM fields and SM fields is given by

Mixing angles are anarchical. 

Straight forward generalisation to three generations 
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We now turn our attention to the impact of underlying geometries in the strong localization regime.

We compare three cases all of which show very similar results except for the di↵erence in the magnitude

of Lloc. In the first case, we show the spectrum of the mass modes with and without assuming

randomness for the local Hamiltonian given by eq.(??).

Fig.2 - Mass modes of Local lattice with uniform sites ✏i = W & ti = t (left) and random sites ti = t

& ✏i 2 [2W, -2W] (right) for W = 4 and t = 1/4 with N = 8 sites..

In Figure 2, we plot the first eight mass modes (N=8) of the local Hamiltonian eq.(??) without the

site terms being random (left) and when the site terms are random (right). As can be seen from the

y-axis in the figure, in the uniform case all the components are delocalized. Whereas in the Anderson

case, all the modes are localized. Parameters ✏i and ti are chosen respectively to be W & 1/4 for

uniform and [-2W, 2W] & 1/4 for random case with W = 4 and N = 8 sites..

The theory space described by Lagrangian (??) with Hi,j (??) is local in nature as the lattice has

coordination number 2 with adjacent sites linked to each other.

Following [? ], we consider a non-local lagrangian with Hamiltonian containing decaying hopping

terms given by [? ]

(Hlong-range )j,k = ✏j�j,k +
g

b|j�k| (1� �j,k) , (6)

The toy model scalar field lagrangian inspired by non-local Hamiltonian (??) is

L+ =
1

2

NX

i=1

(@µ⇡i)
2 � 1

2

NX

j=1

✏j⇡
2
j �

1

2

N�1X

i=1

NX

j=i+1

g

bj�i
(⇡i + ⇡j)

2 (7)

As shown by Trooper and Fans in [? ], this long-range Hamiltonian has good localization due to

randomness in lattice for b >1, a decaying strength parameter. Hence it can be implemented to

produce localized fermionic modes. A corresponding Fermionic lagrangian is given by

Llong�range = LKin �
NX

i,j=1

Li✏i,jRj �
NX

i,j=1

Li
g

b|i�j| (1� �i,j)Rj + h.c.

7

with ✏i 2 [-2W, 2W]. Dirac mass matrix for long-range Hamiltonian with fermionic fields Li, Rj is

given by

Mlong�range =

2

6666666664

✏1
g
b

g
b2 ... g

bN�1

g
b ✏2

g
b ... g

bN�2

g
b2

g
b ✏3 ... g

bN�3

... ... ... ... ...

g
bN�1 ... ... g

b ✏N

3

7777777775

Fig.3 - Long-range non-local lattice representation for N = 10 sites.

The eigenvalues and corresponding eigenvectors for matrixMlong�range in uniform limiting case , b ! 1

and ✏i ! ✏ is given by

�1 = ✏+ (N � 1)g

�i = ✏� g, with i 2 2, 3, ...N (8)

⇤1 =
1p
N

{1, 1, 1, ...1}

⇤2 =
1p
2
{�1, 1, 0, ...0}

⇤3 =
1p
2
{�1, 0, 1, ...0}

...

⇤N =
1p
2
{�1, 0, 0, ...1} (9)

Completely Non-local

8

For large sparse Hamiltonians, one can find the spectral density using the Bray-Rodgers equation

[? ] or Edwards and Jones formulation [? ]. Following are plots of orthonormalized eigenvectors �i

obtained from ⇤i using the Gram-Schmidt process for various cases.

Fig.4 (A) - Mass modes of Non-Local lattice having uniform sites ✏i = 2W, g = 1, N = 8 and

increasing(left), constant(middle) and decreasing(right) non-neighbouring couplings with b = 0.7, 1

and 2 respectively.

Fig.4 (B) - Mass modes of Non-Local lattice with random site terms ✏i 2 [-2W, 2W] with W = 5, g

= 1/4, b = 2 and N = 8.

In this graph, 1) for case b > 1 highly localized modes are found for W � g/b, 2) for case b = 1,

highly localized modes are found for W � g, and 3) for case b < 1, highly localized modes are found

for either W � g/bN�1 or g/b < W ⌧ g/bN�1.

1. Mixed Local and Non-local structures

The Petersen graph we are considering belongs to a broader collection of graphs known as the

’generalized Petersen’ graph denoted by GP(n, k). The graphs we are considering have k = n/2

chosen. The number of vertices and edges that GP(n, n/2) have are 2n and 2n + n/2 respectively.

The Hamiltonian of this graph is used in (??) to account for the new physics Lagrangian. Each vertex

in the graph will translate to one left & one right BSM Weyl fermion and an edge between any two

vertices or nodes will lead to a coupling between Weyl fermions of opposite chirality of those two

8
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b=0.7, W = 4 

28

FIG. 24: Figure shows the median of 100 runs(left) for 20 cases and histogram of mixing angle for

2000 runs produced for Yukawa mixing (middle) and site mixing(right).

FIG. 25: Figure shows the median of 100 runs(left) for 20 cases and histogram of mixing angle for

2000 runs produced for Yukawa mixing (middle) and site mixing(right).

the o!-diagonal coupling parameters for the Dirac case. The values of the parameters chosen are given

in the table at the end of the section. As can be seen from the figure, the masses produced are not

hierarchical in this case. This happens because the wavefunctions in this case are not highly localized

as shown in Fig. 23. Also, the mixing angles are not localized for both the Yukawa mixing and site

mixing cases.

2. Non-Local Lattice -

In this scenario, the underlying lattice is completely non-local with decaying random hopping terms.

Fig. 25 shows the median of three masses produced (left), the mixing angles due to Yukawa mixing

Y b,ω (middle) and site mixing Hε,ω (right). The scenario is a non-local lattice with large randomness

in the o!-diagonal coupling parameters for the Dirac case. The values of the parameters chosen are

given in the table at the end of the section. As can be seen from the figure, the masses produced

are not hierarchical in this case too. Also, the mixing angles are not localized for both the Yukawa

mixing and site mixing cases. In this case, the site mixing is producing bigger mixing among flavours

as compared to the local lattice as can be seen from the right figure.
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Pietersen Graph
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vertices. The new physics Lagrangian for this Petersen structure for general even n is given by

LPetersen = LKin �
NX

i,j=1

Li✏i,jRj �
N/4X

i,j=1

Li
g

b|i�j|
�
�i,j+N/4 + �i+N/4,j

�
Rj

�
N/2X

i,j=1

Li
g

b|i�j|
�
�i,j+N/2 + �i+N/2,j

�
Rj �

NX

i,j=N/2+1

Li
g

b|i�j| (�i,j+1)Rj

�
NX

i,j=N/2+1

Li
g

b|i�j| (�i+1,j)Rj + h.c. (10)

with N + 1th site is identified with N/2 + 1th site and ✏i 2 [-2W, 2W]. In the Lagrangian formulation,

we have considered the decaying non-local hopping terms. Dirac mass matrix for this Petersen Hamil-

tonian for N = 8 with fermionic fields Li, Rj can be obtained by weighting the elements of adjacency

and degree matrices of the graph

MPetersen =

2

66666666666666666664

✏1 0 g
b2 0 g

b4 0 0 0

0 ✏2 0 g
b2 0 g

b4 0 0

g
b2 0 ✏3 0 0 0 g

b4 0

0 g
b2 0 ✏4 0 0 0 g

b4

g
b4 0 0 0 ✏5

g
b 0 g

b3

0 g
b4 0 0 g

b ✏6
g
b 0

0 0 g
b4 0 0 g

b ✏7
g
b

0 0 0 g
b4

g
b3 0 g

b ✏8

3

77777777777777777775

Fig.5 - Generalized Petersen graph for 8 (left) and 48 (right) vertices with k = n/2 and n = 4 and

24 respectively.
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The eigenvalues and corresponding unnormalized eigenvectors for matrix MPetersen in uniform limiting

case , b ! 1 and ✏i ! ✏ is given by

�i =
n1

2

⇣
�
p
5g � g + 2✏

⌘
,
1

2

⇣
�
p
5g � g + 2✏

⌘
,
1

2

⇣
�
p
5g + 3g + 2✏

⌘
,
1

2

⇣p
5g � g + 2✏

⌘
,
1

2

⇣p
5g � g + 2✏

⌘
,

1

2

⇣p
5g + 3g + 2✏

⌘
,
1

2

⇣
�
p
13g � g + 2✏

⌘
,
1

2

⇣p
13g � g + 2✏

⌘o

⇤1 =

⇢
0,

1

2

⇣p
5 + 1

⌘
, 0,

1

2

⇣
�
p
5� 1

⌘
, 0,�1, 0, 1

�

⇤2 =

⇢
1

2

⇣p
5 + 1

⌘
, 0,

1

2

⇣
�
p
5� 1

⌘
, 0,�1, 0, 1, 0
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(11)

In general, this mass matrix will not have a 0-mode though one can produce a 0-mode by carefully

choosing the site term in a uniform limiting case. In a random site scenario, 0 mode is rarely present.

The following figure shows plots of normalized eigenvectors �i obtained from eigenvectors ⇤i.

Fig.6 - Mass modes of Petersen graph with uniform sites (left) and random sites(right) for N = 8,

W = 5, g = 1/4 and b = 1.4.

As is evident from Fig.6 (left) plot, for b > 1 in the uniform scenario, the mass matrix with the

Petersen structure produces half modes which are localized on one-half of the total number of nodes

Anarchic mixing angles 
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Fig.9(B) - Figure shows the histogram of mixing angle for 5000 runs produced in local theory space

for neutrino-like mixing (left) and Dirac-like mixing(right).

The o↵-block NP flavor mixing H↵,� is

H↵,� = Y ↵,�
Y ukawaH

The produced mass plots and mixing plots for neutrino and Dirac-like mixing for non-local and Pe-

tersen Hamiltonian are given in Appendix ??.

TABLE III: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

⌫R Flavour Mixing Small mix Small mix Small mix

Dirac Flavour Mixing Large mix, Anarchical Large mix, Anarchical Large mix, Anarchical

In this scenario, results are independent of underlying graph connectivity.

2. Majorana Scenario

One Flavor case - In the Majorana scenario, The lagrangian with Majorana BSM field for the

local case is given by [? ]

LNP = Lkin � tL̄1 �
nX

i,j=1

LiHi,jRj �W  + h.c. (13)

with

Hi,j = ✏i�i,j + t(�i+1,j + �i,j+1) (14)

and interaction between BSM fields and SM fields is given by

16

di are the diagonal entries of matrix DN⇥N . Other mass modes are slight perturbations about their

initial eigenvalues �is. For ✏ 2 [2t-W, 2t+W] with N = 8 and W = 5, t = 1
4 , we get O(eV ) mass from

TeV fields.

3 Flavor case - BSM Lagrangian for ↵ flavours of fermions is given by:

LNP = Lkin � t↵,�L̄↵
1 

� �
nX

i,j=1

L↵
i H

↵,�
i,j R�

j �W↵� ↵ � + h.c. (15)

Here the Majorana field  ↵ is coupled to the first mode of left-handed fermion of the � flavour. With

H↵,�
i,j = ✏↵,�i �i,j + t↵,�(�i+1,j + �i,j+1) (16)

The interaction term between SM neutrinos of di↵erent flavours and Anderson fermions is given by:

LInt. = �Y a,↵H̃L̄a
LR

↵
N + h.c. (17)

La
L is the ath generation SM lepton doublet. Here neutrinos are coupled to the last mode of right-

handed fermions of each flavour. Depending on di↵erent sets of assumptions on the parameters t↵,� ,

✏↵,� and W↵,� , one can find di↵erent sets of solutions leading to neutrinos of eV masses.

In this scenario there are two sources of mixing between di↵erent flavours 1) from o↵-diagonal W

matrix elements and, 2) from o↵-block diagonal ✏↵,� terms in H↵,� . For the value of t and W of O(1)

TeV and N = 8, we get the mass of all three neutrinos to be O(0.1) eV.

For the below scenario, n = 5 and big randomness range i.e., ✏i 2 [-3W, 3W] and ti = t with W =

5 and t = 0.5 are considered with flavour diagonal left-handed SM neutrino Yukawa couplings Y a,↵

but non-diagonal right-handed neutrino Yukawa coupling Y b,� with o↵-diagonal elements being 10%

of O(1) diagonal elements in Fig. 10(B) left and diagonal Y b,� with o↵-block H↵,� (”Dirac mixing”)

considered in Fig. 10(B) right.

Fig.10(A) - Figure shows histogram(left) for 100000 runs and median of 1000 runs(right) for 100

cases.
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Fig.10(B) - Figure shows the histogram of mixing angle for 10000 runs produced in local theory

space for Majorana neutrino mixing (left) and Dirac-like mixing(right).

The produced mass plots and mixing plots for neutrino and Dirac-like mixing for non-local and Pe-

tersen Hamiltonian are given in Appendix ??.

TABLE IV: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

 Majorana Mixing Small mix,L Small mix, L Small mix, L

Dirac Flavour Mixing Large mix, random Large mix, random Large mix, random

In this scenario, results are independent of underlying graph connectivity.

III. WEAK DISORDER: ROLE OF GEOMETRY

A. Dirac Scenario

1. Local Lattice -

Fig.11 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for 2000 runs

produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W = 0.1 & ti = t (right).

Hierachial neutrino masses with  but anarchical mixing angles.  
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Strong Localisation Limit :  

3

II. PRELUDE TO LOCALIZATION

The fermionic action for the aliphatic model with link fields connecting left and right chiral fermions

of consecutive groups is given by

S =
NX

j=1

Z
d4x{ ̄ (i�µDµ) +

�
Lj�j,j+1Rj+1 + Lj+1�j+1,jRj

�

+ LjMRj + h.c.} (1)

Hence, the new physics Lagrangian for this moose diagram and connectivity of matter fields at IR

limit becomes

LNP = Lkin �
nX

i,j=1

LiHi,jRj + h.c. (2)

with

Hi,j =✏i�i,j � ti(�i+1,j +K�i,j+1) (3)

with ✏i 2 [2t, 2t+W ]. Mass matrix for the fermionic fields in this lagrangian with K = 1, in the basis

(L1, L2, ...LN , R1, R2, ...RN ) is a symmetric anti-diagonal block matrix

Mmass =

2

4 0 MA

MA 0

3

5

Matrix MA elements are given as MA,ij = < LiMARj > and it takes the form

MA =

2

6666666664

✏1 �t 0 ... 0

�t ✏2 �t ... 0

0 �t ✏3 ... 0

... ... ... ... ...

0 ... ... �t ✏N

3

7777777775

Eigenvalues of matrix MA in the limiting case ✏i = a 8 i are given by[? ],[? ],[? ]

�k = a� 2
p
t2 cos

k⇡

N + 1
, (4)

with a = e/t and b = c = -1. Or it can be rearranged as

�k = a+ 2
p
bc cos

k⇡

n+ 1
,

-independent of geometry of the  mass Chain

- Some universal features for neutrino masses and mixing. 

Hierachial masses and anarchical mixing angles 
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TABLE IV: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

! Yukawa Mixing Small mix Small mix Small mix

Site Flavour Mixing Large mix, Anarchical Large mix, Anarchical Large mix, Anarchical

In this scenario, results are independent of underlying graph connectivity.

FIG. 15: Figure shows the wavefunctions for three geometries 1) local (left), 2) nonlocal (middle)

and 3) Petersen (right) with ωi → [W ↑ t,W + t], W = 6 TeV, b = 2 and ti = t = 0.2 TeV, N = 12.

compared to the magnitude of hopping terms.

FIG. 16: Figure shows the median of 1000 runs(left) for 100 cases and histogram of mixing angle for

100000 runs produced for Yukawa mixing with parameters as in table (middle) and site mixing

couplings (right) with W = 5 TeV.

Fig. 16 demonstrates the median of three masses produced (left), the mixing angles due to Yukawa

mixing Y b,ω (middle) and site mixing Hε,ω (right). The scenario is local lattice with small randomness

in the diagonal mass parameters for the Dirac case. The values of the parameters chosen are given

below the figure and in the table at the end of the section. As can be seen from the figure, the masses

produced are of eV scale and the mixing angles are localized at the experimentally observed PMNS

angles for the Yukawa mixing. The mixing angle distribution is more random in the site mixing case

which is expected since in site mixing the number of random parameters is more compared to the

But may be strong localisation is not needed at all ! 
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TABLE IV: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

! Yukawa Mixing Small mix Small mix Small mix

Site Flavour Mixing Large mix, Anarchical Large mix, Anarchical Large mix, Anarchical

In this scenario, results are independent of underlying graph connectivity.

FIG. 15: Figure shows the wavefunctions for three geometries 1) local (left), 2) nonlocal (middle)

and 3) Petersen (right) with ωi → [W ↑ t,W + t], W = 6 TeV, b = 2 and ti = t = 0.2 TeV, N = 12.

compared to the magnitude of hopping terms.

FIG. 16: Figure shows the median of 1000 runs(left) for 100 cases and histogram of mixing angle for

100000 runs produced for Yukawa mixing with parameters as in table (middle) and site mixing

couplings (right) with W = 5 TeV.

Fig. 16 demonstrates the median of three masses produced (left), the mixing angles due to Yukawa

mixing Y b,ω (middle) and site mixing Hε,ω (right). The scenario is local lattice with small randomness

in the diagonal mass parameters for the Dirac case. The values of the parameters chosen are given

below the figure and in the table at the end of the section. As can be seen from the figure, the masses

produced are of eV scale and the mixing angles are localized at the experimentally observed PMNS

angles for the Yukawa mixing. The mixing angle distribution is more random in the site mixing case

which is expected since in site mixing the number of random parameters is more compared to the

Role of Geometry : Weak Disorder 

No strong localisation of the modes !! But still it works !  
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angles for the Yukawa mixing. For non-symmetric Yukawa coupling matrix with site mixing PMNS

matrix is produced by y12 = 0.3, y13 = 0.2, y23 = 0.5, y21 = 0.9, y32 = 0.2, y31 = 0.7 with Inverted

Hierarchy

For non-symmetric Yukawa coupling matrix with Yukawa mixing PMNS matrix is produced by y12 =

0.3, y13 = 0.2, y23 = 0.1, y21 = 0.3, y32 = 0.6, y31 = 0.4 with Inverted Hierarchy.

YYukawa =





1 0.3 0.2

0.3 1 0.1

0.4 0.6 1




(22)

In all these cases on increasing the hopping magnitude, the mass of the smallest mode produced also

increases and it also stabilizes the localization of mixing angles i.e., the density of the histogram around

specific values increases.

TABLE V: Parameters considered for above scenario unless mentioned are b = 7 and t = 0.2 TeV

Scenario N ωi ti

Local 9 [W-t, W+t] t

Non-local 14 [W-t, W+t] t

Petersen 12 [W-t, W+t] t

TABLE VI: Comparison of Local, Non-local and Petersen Graph for weak localization

Mixing Type Local Non-local Petersen

εR Yukawa Mixing large mix, localized large mix, localized large mix, localized

Site Flavour Mixing Large mix, localized Large mix, localized Large mix, localized

In this scenario, results are dependent on underlying graph connectivity.

B. Majorana Scenario

1. Local Lattice -

In this scenario, the underlying lattice is local i.e., only neighbouring sites have non-zero couplings

between them and site terms are drawn from a random distribution.

W ≫ t
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hence for t → ω, ωi
ε
↑ 1 ↓ i. For this case, the approximate value of m0 is given as

m0 ↔ v2
n∑

i=1

vi1v
i
n

εi

= v2
n∑

i=1

vi1v
i
n

ω

ω

εi

= v2
1

ω

n∑

i=1

vi1v
i

n(1↗ xi)
→1

=
v2

ω

n∑

i=1

vi1v
i

n +
v2

ω

n∑

i=1

vi1v
i

nxi + ...

m0 ↔
v2

ω

n∑

i=1

vi1v
i

nxi (33)

where,

xi =
2t

ω
cos

iϑ

n+ 1

so xi ↑ 0 ↘ m0 ↑ 0. This mechanism will work better for matrices whose eigenvalue spectrum

has the same range order as in ADD models. For hierarchical spectra as in warped models, this will

not work e!ciently. As the separation between the magnitude of minimum and maximum eigenvalue

increases, this mechanism’s e”ectiveness in producing hierarchical scale decreases.

We find for ω = 10, t = 0.5 and n = 8, we get a small mass of the order 0.1 eV from the TeV scale i.e,

O(012) magnitude smaller scale than the fundamental parameter scales of the theory. Fig. 12 shows

the mass spectra and eigenvectors for some massive modes for n = 15, t = 0.5 and ω = 10. The figure

demonstrates that modes are not localized and mass spectra are close to degenerate. Fig. 13 shows a

comparison for the smallest mass scale produced between the DD model, uniform clockwork (UCW)

and generalized clockwork (GCW) models. This figure shows that for chosen parameters, the mass

scale produced by DD is a few orders of magnitude smaller than both UCW and GCW for various

values of sites. Fig. 14 shows the smallest mass scale produced by this model for varying ω and t (left)

and for varying sites n and t (right). The figure shows that large values of n & ω and/or small values

of t produce smaller mass scale which is in agreement with the above understanding of the model.

2. Three Flavour Scenario

This can be extended to 3 flavour cases to account for all three SM active neutrino masses. The

number of sites for each flavour is taken to be the same with di”ering flavour neutrinos coupling to

Unitarity comes in to play ! 

12

B. Neutrino Masses and Flavor Mixing In Strong Localisation Regime

Once the localized modes are produced we need to couple SM uncharged leptons with new fields to

produce hierarchical mass.

1. Dirac Scenario

One Flavor Case - In the Dirac scenario, neutrino mass is obtained by assuming both left ⌫L and

right-handed ⌫R neutrino existence. Left-handed and right-handed neutrinos are Yukawa coupled to

di↵erent site Right R1 and Left-handed Ln BSM fields respectively in Lagrangian (??) with SM Higgs

field i.e.,

Lint. = Y1⌫̄LHR1 + Y2⌫̄RHLn + h.c.

with Y1 and Y2 are Yukawa couplings of the O(1). The Dirac Mass matrix in basis

{⌫L,�L,1,�L,2, ...,�L,n} and {⌫R,�R,1,�R,2, ...,�R,n} is given by

Mfermion =

2

6666666666664

0 v11 v21 v31 ... vn1

v1n �1 0 0 ... 0

v2n 0 �2 0 ... 0

v3n 0 0 �3 ... 0

... ... ... ... ... ...

vnn 0 0 0 ... �n

3

7777777777775

vi1 is the coupling of neutrino with �Ri and vin is the coupling with �Li after SSB. The smallest mass

mode for this matrix is given by

m0 ⇡
nX

i=1

vi1v
i
n

�i
/

nX

i=1

v2
e�

n
Ln

�i

v is the expectation value of the Higgs field. Other mass modes are slight perturbations about their

initial eigenvalues �is.

We find for ✏i/2 2 [0, t+W], ti 2 [-t, t] and n = 7 with t=1 and W = 5, it produces O(1)eV masses

from TeV scale.

Neutrino masses in weak disorder : 
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Dirac Scenario : Local Lattice 

(only nearest neighhour)
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Fig.10(B) - Figure shows the histogram of mixing angle for 10000 runs produced in local theory

space for Majorana neutrino mixing (left) and Dirac-like mixing(right).

The produced mass plots and mixing plots for neutrino and Dirac-like mixing for non-local and Pe-

tersen Hamiltonian are given in Appendix ??.

TABLE IV: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

 Majorana Mixing Small mix,L Small mix, L Small mix, L

Dirac Flavour Mixing Large mix, random Large mix, random Large mix, random

In this scenario, results are independent of underlying graph connectivity.

III. WEAK DISORDER: ROLE OF GEOMETRY

A. Dirac Scenario

1. Local Lattice -

Fig.11 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for 2000 runs

produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W = 0.1 & ti = t (right).
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Fig.10(B) - Figure shows the histogram of mixing angle for 10000 runs produced in local theory

space for Majorana neutrino mixing (left) and Dirac-like mixing(right).

The produced mass plots and mixing plots for neutrino and Dirac-like mixing for non-local and Pe-

tersen Hamiltonian are given in Appendix ??.

TABLE IV: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

 Majorana Mixing Small mix,L Small mix, L Small mix, L

Dirac Flavour Mixing Large mix, random Large mix, random Large mix, random

In this scenario, results are independent of underlying graph connectivity.

III. WEAK DISORDER: ROLE OF GEOMETRY

A. Dirac Scenario

1. Local Lattice -

Fig.11 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for 2000 runs

produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W = 0.1 & ti = t (right).Mixing angles are “localised”. 
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B. Neutrino Masses and Flavor Mixing In Strong Localisation Regime

Once the localized modes are produced we need to couple SM uncharged leptons with new fields to

produce hierarchical mass.

1. Dirac Scenario

One Flavor Case - In the Dirac scenario, neutrino mass is obtained by assuming both left ⌫L and

right-handed ⌫R neutrino existence. Left-handed and right-handed neutrinos are Yukawa coupled to

di↵erent site Right R1 and Left-handed Ln BSM fields respectively in Lagrangian (??) with SM Higgs

field i.e.,

Lint. = Y1⌫̄LHR1 + Y2⌫̄RHLn + h.c.

with Y1 and Y2 are Yukawa couplings of the O(1). The Dirac Mass matrix in basis

{⌫L,�L,1,�L,2, ...,�L,n} and {⌫R,�R,1,�R,2, ...,�R,n} is given by

Mfermion =

2

6666666666664

0 v11 v21 v31 ... vn1

v1n �1 0 0 ... 0

v2n 0 �2 0 ... 0

v3n 0 0 �3 ... 0

... ... ... ... ... ...

vnn 0 0 0 ... �n

3

7777777777775

vi1 is the coupling of neutrino with �Ri and vin is the coupling with �Li after SSB. The smallest mass

mode for this matrix is given by

m0 ⇡
nX

i=1

vi1v
i
n

�i
/

nX

i=1

v2
e�

n
Ln

�i

v is the expectation value of the Higgs field. Other mass modes are slight perturbations about their

initial eigenvalues �is.

We find for ✏i/2 2 [0, t+W], ti 2 [-t, t] and n = 7 with t=1 and W = 5, it produces O(1)eV masses

from TeV scale.
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angles for the Yukawa mixing. For non-symmetric Yukawa coupling matrix with site mixing PMNS

matrix is produced by y12 = 0.3, y13 = 0.2, y23 = 0.5, y21 = 0.9, y32 = 0.2, y31 = 0.7 with Inverted

Hierarchy

For non-symmetric Yukawa coupling matrix with Yukawa mixing PMNS matrix is produced by y12 =

0.3, y13 = 0.2, y23 = 0.1, y21 = 0.3, y32 = 0.6, y31 = 0.4 with Inverted Hierarchy.

YYukawa =





1 0.3 0.2

0.3 1 0.1

0.4 0.6 1




(22)

In all these cases on increasing the hopping magnitude, the mass of the smallest mode produced also

increases and it also stabilizes the localization of mixing angles i.e., the density of the histogram around

specific values increases.

TABLE V: Parameters considered for above scenario unless mentioned are b = 7 and t = 0.2 TeV

Scenario N ωi ti

Local 9 [W-t, W+t] t

Non-local 14 [W-t, W+t] t

Petersen 12 [W-t, W+t] t

TABLE VI: Comparison of Local, Non-local and Petersen Graph for weak localization

Mixing Type Local Non-local Petersen

εR Yukawa Mixing large mix, localized large mix, localized large mix, localized

Site Flavour Mixing Large mix, localized Large mix, localized Large mix, localized

In this scenario, results are dependent on underlying graph connectivity.

B. Majorana Scenario

1. Local Lattice -

In this scenario, the underlying lattice is local i.e., only neighbouring sites have non-zero couplings

between them and site terms are drawn from a random distribution.

W ≫ t

Assuming Y’s are not anarchical 
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In this scenario, the underlying lattice is local i.e., only neighbouring sites have non-zero couplings

between them. The site terms are considered to have randomness but the randomness is microscopic

compared to the magnitude of hopping terms. The Lagrangian is the same but the parameters

considered and their ranges chosen are di↵erent. The chosen values are tabulated at the end of the

section for all of the three cases taken into consideration here. We also find for symmetric neutrino

mixing Yukawa matrix with y1 = 0.4, y2 = 0.7, y3 = 0.5, we get the SM neutrino mixing angles in

the Inverted Hierarchy of neutrino masses. For non-symmetric Yukawa coupling matrix with Dirac

mixing PMNS matrix is produced by y12 = 0.5, y13 = 0.4, y23 = 0.5, y21 = 0.1, y32 = 0.7, y31 = 0.2

with Normal Hierarchy

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

= 0.5, y13 = 0.4, y23 = 0.3, y21 = 0.5, y32 = 0.9, y31 = 0.5 with Inverted Hierarchy.

2. Non-Local Lattice -

In this scenario, the underlying lattice is completely non-local with decaying random hopping terms.

Fig.12 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for

2000 runs produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W =

0.01(right).

We also find for symmetric neutrino mixing Yukawa matrix with y1 = 0.6, y2 = 0.5, y3 = 0.8, we

get the SM neutrino mixing angles in the Inverted Hierarchy of neutrino masses. For non-symmetric

Yukawa coupling matrix with Dirac mixing PMNS matrix is produced by y12 = 0.4, y13 = 0.3, y23 =

0.1, y21 = 0.2, y32 = 0.6, y31 = 0.3 with Normal Hierarchy and y12 = 0.1, y13 = 0.3, y23 = 0.2, y21 =

0.5, y32 = 0.3, y31 = 0.7 with Inverted Hierarchy.

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

= 0.4, y13 = 0.3, y23 = 0.7, y21 = 0.2, y32 = 0.6, y31 = 0.8 with Inverted Hierarchy
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In this scenario, the underlying lattice is local i.e., only neighbouring sites have non-zero couplings

between them. The site terms are considered to have randomness but the randomness is microscopic

compared to the magnitude of hopping terms. The Lagrangian is the same but the parameters

considered and their ranges chosen are di↵erent. The chosen values are tabulated at the end of the

section for all of the three cases taken into consideration here. We also find for symmetric neutrino
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with Normal Hierarchy

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

= 0.5, y13 = 0.4, y23 = 0.3, y21 = 0.5, y32 = 0.9, y31 = 0.5 with Inverted Hierarchy.

2. Non-Local Lattice -

In this scenario, the underlying lattice is completely non-local with decaying random hopping terms.

Fig.12 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for

2000 runs produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W =

0.01(right).

We also find for symmetric neutrino mixing Yukawa matrix with y1 = 0.6, y2 = 0.5, y3 = 0.8, we

get the SM neutrino mixing angles in the Inverted Hierarchy of neutrino masses. For non-symmetric

Yukawa coupling matrix with Dirac mixing PMNS matrix is produced by y12 = 0.4, y13 = 0.3, y23 =

0.1, y21 = 0.2, y32 = 0.6, y31 = 0.3 with Normal Hierarchy and y12 = 0.1, y13 = 0.3, y23 = 0.2, y21 =

0.5, y32 = 0.3, y31 = 0.7 with Inverted Hierarchy.

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

= 0.4, y13 = 0.3, y23 = 0.7, y21 = 0.2, y32 = 0.6, y31 = 0.8 with Inverted Hierarchy

Fully non-local 

Partially  non-local 
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3. Petersen Lattice -

In this scenario, the underlying lattice has generalized Petersen graph networking with randomized

site and coupling terms.

Fig.13 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for

2000 runs produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W = 0.05 & ti

= t(right).

For non-symmetric Yukawa coupling matrix with Dirac mixing PMNS matrix is produced by y12 =

0.3, y13 = 0.2, y23 = 0.5, y21 = 0.9, y32 = 0.2, y31 = 0.7 with Inverted Hierarchy

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

= 0.3, y13 = 0.2, y23 = 0.1, y21 = 0.3, y32 = 0.6, y31 = 0.4 with Inverted Hierarchy.

In all these cases on increasing the hopping magnitude, the mass of the smallest mode produced also

increases and it also stabilizes the localization of mixing angles i.e., the density of the histogram around

specific values increases.

TABLE V: Parameters considered for above scenario unless mentioned are b = 1.2 and g = t = 10.

Scenario N ✏i ti

Local 8 [2t-W, 2t+W] t
2

Non-local 8 [2t-W, 2t+W] t
2

Petersen 8 [2t-W, 2t+W] t
2

TABLE VI: Comparison of Local, Non-local and Petersen Graph for weak localization

Mixing Type Local Non-local Petersen

⌫R Flavour Mixing large mix,L large mix, L large mix, L

Dirac Flavour Mixing Large mix, localized Large mix, localized Large mix, localized

In this scenario, results are dependent on underlying graph connectivity.
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Hierarchial neutrino masses with anarchic mixing angles 

is a feature of the strong localisation regime independent of the 


type of geometry, couplings (non-local, partially local etc.) 

In the case of strong disorder in couplings (t) parameter,  

geometry does play a mild role, but mixing angles are 


mostly anarchic,  except one !. 

Strong disorder-> strong localisation while nice to explain large hierarchies

 is not  necessarily useful to explain flavour mixings as it leads to 


anarchical mixing angles. 

Weak disorder is sufficient to generate models which give

 reasonable hierarchies in masses and more importantly flavour mixing ! 
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VI. PHENOMENOLOGY SIGNATURES

A. Branching Ratio

One of the biggest constraints that come to a model of this kind is the flavour-changing constraints.

From SM, the leptonic flavour change branching ratio for the process µ ! e� is ⇡ 10�55 ⌧ 10�50.

So, if there is any contribution to such processes from these NP interactions, the theoretical BR for

this model will deviate from the SM BR and hence will be a defining signature for BSM models. The

current experimental bounds (MEG bounds) on BR(µ ! e�) is < 4.2 ⇥ 10�13 [? ]. The expression

for the branching ratio with these models is given by [? ]

B(µ ! e�) =
3↵

32⇡

�
�0v
�2

where

�0v = 2
X

i

U⇤
eiUµig

✓
m2

i

M2
W

◆

with

g(x) =

Z 1

0

(1� ↵)d↵

(1 · ↵) + ↵⌧
[2(1� ↵)(2� ↵) + ↵(1 + ↵)x]

Fig.29 - Figure shows one of the 1-loop level Feynman diagrams with BSM heavy neutrinos

contributing to the charged lepton flavour change (l↵ ! l��).

Phenomenological Signatures depend on the geometry of the mass chain 

42

Models pp̄ → 3ω+ /ET in pb e→e+ → ωεjj in pb

14(TeV) 100(TeV) 6(TeV) 9(TeV) 15(TeV)

Local 3.744 ↑10→9 4.32 ↑10→6 3.913 ↑10→6 7.503 ↑10→6 4.093 ↑10→6

Petersen 6.558 ↑10→9 7.898 ↑10→6 6.866 ↑10→6 1.398 ↑10→5 7.69 ↑10→6

Non-local 6.709↑ 10→9 8.184 ↑10→6 7.158 ↑10→6 1.457 ↑10→5 8.004 ↑10→6

TABLE XVII: Comparison of cross-section (in pb) for the above process via a particular channel

with BSM heavy neutrinos as propagators for Local, Non-local and Petersen models with Yukawa

mixing BP. LEP processes are computed for a specific channel shown in Figure 41.

FIG. 43: Feynman diagram of order 4 QED vertex in the electron-proton collider (left) producing

leptons and hadrons with NP heavy modes in intermediate propagators and in proton-proton collider

(right) producing 2 leptons and hadrons as final states.

2.3.49. Finally, the showering was done using Pythia 8 and detector simulation was done using Delphes

3.5.0. For the selection cuts, the transverse momentum pT for hadrons and leptons had a lower bound

of 20 GeV and 10 GeV respectively. The pseudorapidity magnitude |ϑ| had an upper bound of 5 and

2.5 for hadronic jets and leptons. Finally, the bounds on the minimum distance between jets !Rjj

and jet and lepton !Rlj taken was 0.4. The model is the ‘Random1 UFO’ file in the repository.

The model considered for detector simulations is the local-Dirac graph Lagrangian with parameters

ϖi ↓ [W ↔ t,W + t], ti = t ↗i and W = 5, t = 1/5, N = 9 with mixing coming from Yukawa mixing with

matrix mentioned in (32). For the output charged leptons only electron, muon and their anti-particles

were considered for the analysis. But for neutral leptons, all sm flavours were considered as missing

energy carriers. As for the background signals, the process taken into consideration was e→e+ →

43

Models pp → ωω̄jj in pb pe→ → ωnjj in pb

14(TeV) 100(TeV) 6(TeV) 9(TeV) 15(TeV)

Local 0.4508 2.413 4.786 ↑10→5 0.0096 0.08389

Petersen 0.4501 2.402 2.507 ↑10→5 0.01511 0.1597

Non-local 0.4422 2.261 12.38 ↑10→5 0.02083 0.1725

TABLE XVIII: Comparison of cross-section (in pb) for the above process via a particular channel

with BSM heavy neutrinos as propagators for Local, Non-local and Petersen models.

FIG. 44: Signal (blue) and background (red) distributions for the Local model at a 5400 GeV e→e+

collider Mljj (left) and Mlv (right) after pre-selection cuts.

W→W+ with one of the W bosons decaying via the leptonic channel and the other via the hadronic

channel. As this process mimics e→e+ → εljj and is also of QED vertex order 4. The parameters

Mljj , Mlω , Mjj and !Rjj are the standard parameters defined by Mljj =
√

(pl + pj1 + pj2)2, Mlω =
√

(pl + pω)2, Mjj =
√

(pj1 + pj2)2 and !Rjj =
√

(ϑj1 ↓ ϑj2)2 + (ϖj1 ↓ ϖj2)2 with pi, ϑi and ϖi being

the four-momentum, pseudorapidity and azimuthal angle of the ith species. The results show that the

signal and background histograms for Mljj and Mjj are peaked at di”erent energy scales and hence

are easily distinguishable. A similar case is for !Rjj but for Mlω , there is a large overlap between

signal and background signatures. The Signal over Background ratio S
B for this scenario turned out

to be 2.02 with S↑
B

= 87.80 and S↑
S+B

= 50.44 hence the signals can be easily distinguished from the

background.
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Using randomness in couplings to generate exponential hierarchies.

Applications to neutrino masses  

Sources of randomness : 

Balasubramaniam et.al(I) stringy landscapes 

(II) dark sectors Dienes, kumar et.al

Anderson localisation in particle physics 
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LCW = Lkin −
n

∑
i=1

ψ̄LiHijψRj
+ H . C

Hij = mi δij + qimi δi+1,j

Zero Mode  ! 

Localisation possible for regions 
of parameters (no large hierarchies) 

Tiny Dirac neutrino masses ! 

8

The first-order corrections to the eigenvalues of the coupled matrix in perturbation limit are given by

��i =

⌧
⇤(i)

����
�M2

m2

����⇤
(i)

�
= p2f(q1, q2, . . . , qn) = O(p2)

⇤i are eigenvectors of unperturbed matrix and f(q1, q2, . . . , qn) denotes function f coming from de-

pendence of components of eigenvectors ⇤i on variables (q1, q2, . . . , qn). This gives leading order

corrections to be of the second order with respect to p. Since non-zero eigenvalues of MM † and M †M

are identical, left fermions will also have perturbative corrections of the same order. The perturbative

eigenvector analysis follows similar to shown in the appendix in [5].

The KK mass spectrum for Clockwork gears and their coupling strength with SM neutrino is shown

in plot 1(A). For this scenario n = 20 gears are considered with mi = 1 TeV and qi = -3 -i ⇥0.5.

Plot 1(A) - Left plot shows the mass distribution and the right plot shows the coupling strength for

the general clockwork scenario with n = 20 clockwork fermions.

Plot 1(B) demonstrates the localization of di↵erent eigenvectors in CW fields on di↵erent sites. The

Yukawa coupling strength to SM neutrino y is considered to be 0.1.

Plot 1(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW

fields and the right plot for right-handed mass eigenbasis with y = 0.1.

B. Both sided Clockwork

This scenario is an extension of CW Hamiltonian where fermions of both chiralities are connected to

each other for neighbouring matter fields. The Hamiltonian is diagrammatically represented in fig.3

Hong, Kurup, Perelstein 
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LCW = Lkin −
n

∑
i=1

ψ̄LiHijψRj
+ H . C Hij = m(δij + qiδi+1,j + q′￼δi,j+1)

8

where

xn�j
k = �2cos

k⇡

n+ 1
xn�j+1
k � xn�j+2

k , j = 2, 3, ...n (8)

with

xn�1
k =

a� 2bcos k⇡
n+1

b
xnk (9)

xnk represents the nth component for kth eigenvector and can be chosen as per normalization condition.

The eigenvector for 0-mode is given by ⇤0. For n = 13, ai = a - 0.05⇥i and bi = 2 + 0.5⇥i, we get

suppression of the order of 10�12. To compare it with uniform CW, it took n = 40 for a = 1 and b =

2 to produce suppression of this order.

C. Both sided Clockwork

This scenario is an extension of CW Hamiltonian where fermions of both chiralities are connected

to each other for neighbouring matter fields. The connection is diagrammatically represented in fig.3.

Fig.3 - CW with both side interactions.

The Lagrangian for the Goldstone bosons in this theory at IR can be written as

L =�
f2

2

NX

j=0

@µU
†
j @

µUj +
m2f2

2

N�1X

j=0

⇣
U †
jU

q1
j+1 + h.c.

⌘

+
m2f2

2

N�1X

j=1

✓
U †
jU

q
0
1+ h.c.

j�1

◆
+

m2f2

2

N�1X

j=1

✓
U †
j+1

q1U q
0
1+ h.c.

j�1

◆
(10)

Tiny Dirac neutrino masses ! 

Zero Mode  ! 

Localisation 
possible for 

regions 
of 

parameters 
(no large 

hierarchies) 

Deconstruction Model 

Linear Moose 
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Plot 2(A) - Left plot shows the mass distribution and the right plot shows the coupling strength for

the general clockwork scenario with n = 20 clockwork fermions.

Plot 2(B) demonstrates the localization of di↵erent eigenvectors in CW fields on di↵erent sites. The

Yukawa coupling strength to SM neutrino y is considered to be 0.1.

Plot 2(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW

fields and the right plot for right-handed mass eigenbasis with y = 0.1.

III. NON-LOCAL CLOCKWORK MODELS

A. NNN CW

In non-local CW theory space, matter fields corresponding to groups which are not adjacent in the

moose diagram also have link fields connecting them. These connections are formulated in the model

by modifying the underlying Hamiltonian in the Lagrangian of the model. The Hamiltonian for NNN

(next to nearest neighbour) CW is given by

Hi,j = mi�i,j + q(1)i mi�i+1,j + q(2)i �i+2,j (18)

LNP = Lkin �

nX

i

miLiRi �

nX

i

miq
(1)
i LiRi+1 �

n�1X

i

miq
(2)
i LiRi+2 + h.c. (19)

with i 2 {1, 2, ...n} and j 2 {1, 2, ...n+ 1}.
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Fig.5 - Product of coupling of neutrinos with L1 and Rn for t=1 and W = 5.

Following are plots showing the comparison of the minimum components an eigenvector has on a site

for random clockwork’s 0-mode and lightest mode in disorders Models for various scenarios.

Fig.6 - Figure shows the Log of minimum component 0-mode of CW and lightest mode of disorder

models achieved with n = 10 sites.

For RCW (random clockwork) randomness is considered in both site terms mis and nearest coupling

terms qis as per [Gero ref] with mi , qi 2 [-m-q , m+q] for m=1 and q=5. For the disordered model

three cases are considered i) randomness only in site terms ✏i 2 [2t, 2t+2W] with ti =
t

2 , ii) randomness

only in coupling terms ti 2 [-t , t] with ✏i = W , and iii) randomness in both site and coupling terms

✏i 2 [2t, 2t+2W] and ti 2 [-t , t] with t = 1 and W = 5.

Fig.7 - Figure shows the Log of minimum component 0-mode of CW and lightest mode for disorder

models achieved with varying sites.

Extremely efficient localisation with randomness/disorder  

Singh and vempati to appear  

6

We now turn our attention to the impact of underlying geometries in the strong localization regime.

We compare three cases all of which show very similar results except for the di↵erence in the magnitude

of Lloc. In the first case, we show the spectrum of the mass modes with and without assuming

randomness for the local Hamiltonian given by eq.(??).

Fig.2 - Mass modes of Local lattice with uniform sites ✏i = W & ti = t (left) and random sites ti = t

& ✏i 2 [2W, -2W] (right) for W = 4 and t = 1/4 with N = 8 sites..

In Figure 2, we plot the first eight mass modes (N=8) of the local Hamiltonian eq.(??) without the

site terms being random (left) and when the site terms are random (right). As can be seen from the

y-axis in the figure, in the uniform case all the components are delocalized. Whereas in the Anderson

case, all the modes are localized. Parameters ✏i and ti are chosen respectively to be W & 1/4 for

uniform and [-2W, 2W] & 1/4 for random case with W = 4 and N = 8 sites..

The theory space described by Lagrangian (??) with Hi,j (??) is local in nature as the lattice has

coordination number 2 with adjacent sites linked to each other.

Following [? ], we consider a non-local lagrangian with Hamiltonian containing decaying hopping

terms given by [? ]

(Hlong-range )j,k = ✏j�j,k +
g

b|j�k| (1� �j,k) , (6)

The toy model scalar field lagrangian inspired by non-local Hamiltonian (??) is

L+ =
1

2

NX

i=1

(@µ⇡i)
2 � 1

2

NX

j=1

✏j⇡
2
j �

1

2

N�1X

i=1

NX

j=i+1

g

bj�i
(⇡i + ⇡j)

2 (7)

As shown by Trooper and Fans in [? ], this long-range Hamiltonian has good localization due to

randomness in lattice for b >1, a decaying strength parameter. Hence it can be implemented to

produce localized fermionic modes. A corresponding Fermionic lagrangian is given by

Llong�range = LKin �
NX

i,j=1

Li✏i,jRj �
NX

i,j=1

Li
g

b|i�j| (1� �i,j)Rj + h.c.

All modes 
 localised 

Gero Gresdroff  
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The suppression of coupling produced will be more than CW for the following set of parameters

c 2 R^
✓✓

b < 0 ^

✓✓
a < 0 ^

a3 � 1

2ab
< c <

a3 + 1

2ab

◆
_

✓
a > 0 ^

a3 + 1

2ab
< c <

a3 � 1

2ab

◆◆◆
_

✓
b > 0 ^

✓✓
a < 0 ^

a3 + 1

2ab
< c <

a3 � 1

2ab

◆
_

✓
a > 0 ^

a3 � 1

2ab
< c <

a3 + 1

2ab

◆◆◆

For n = 3, a = 1 and b = 2, CW produces 10�1 order suppression whereas this model with c = 0.24,

produces 10�3 order suppression, 2 orders smaller than ordinary CW.

To compare with CW, it took n = 40 gears with a = 1, q = 2 to produce eV mass from the TeV

scale but here it can be done with n = 20 for b = 2 and c = 0.15. For this scenario, this model is

more e�cient than CW for c 2 [0, 0.539] [[0.936112, 0.936908], there are two more intervals of smaller

length.

III. NON-LOCAL AND FRACTAL GEOMETRY THEORY SPACES

A. NNN CW

In non-local CW theory space, matter fields corresponding to groups which are not adjacent in the

moose diagram also have link fields connecting them. These connections are formulated in the model

by modifying the underlying Hamiltonian in the Lagrangian of the model. The Hamiltonian for NNN

(next to nearest neighbour) CW is given by

Hi,j = ai�i,j + bi�i+1,j + di�i+2,j (14)

Fig.4 - CW with NNN (Next to Nearest Neighbour) interactions.
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In non-local CW theory space, matter fields corresponding to groups which are not adjacent in the

moose diagram also have link fields connecting them. These connections are formulated in the model

by modifying the underlying Hamiltonian in the Lagrangian of the model. The Hamiltonian for NNN

(next to nearest neighbour) CW is given by
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Fig.4 - CW with NNN (Next to Nearest Neighbour) interactions.

Zero Mode  ! 

Localisation possible 
for regions 

of parameters (no 
large hierarchies)

Tiny Dirac neutrino masses ! 
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Plot 3(A) - Left plot shows the mass distribution and the right plot shows the coupling strength for

the NNN clockwork scenario with n = 20 clockwork fermions.

Plot 3(B) demonstrates the localization of di↵erent eigenvectors in CW fields on di↵erent sites. The

Yukawa coupling strength to SM neutrino y is considered to be 0.1.

Plot 3(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW

fields and the right plot for right-handed mass eigenbasis with y = 0.1.

B. Completely Non-local CW

In this scenario, we will consider fully non-local theory spaces i.e, theory spaces where the matter

fields of each group are connected via link fields to the matter fields of every other group. The

underlying Hamiltonian considered is rectangular, implying that the number of left chiral fermions is

not equal to the number of right chiral fermions. Firstly we will retain the CW nature of theory space

as shown in fig.4. Hamiltonian for this extension can be written as

Hi,j =
n+1X

k=1

ai,k�i,j�k+1 (27)

with i 2 {1, 2, ...n} and j 2 {1, 2, ...n+1}. Using the CW notation to write the new physics Lagrangian,

one gets

LNP = Lkin �

nX

i=1

miLiRi �

nX

i=1

miq
(1)
i LiRi+1 �

n�1X

i=1

miq
(2)
i LiRi+2 �

n�2X

i=1

miq
(3)
i LiRi+3

�

n�3X

i=1

miq
(4)
i LiRi+4 + . . . �

n�(n�1)X

i=1

miq
(n)
i LiRi+n + h.c.

= Lkin �

nX

i=1

miLiRi �

nX

k=1

n�k+1X

i=1

miq
(k)
i LiRi+k + h.c. (28)

Singh and vempati, 2024 
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Partially non local 

Singh and Vempati, 

Pietersen Graph
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vertices. The new physics Lagrangian for this Petersen structure for general even n is given by

LPetersen = LKin �
NX

i,j=1

Li✏i,jRj �
N/4X

i,j=1

Li
g

b|i�j|
�
�i,j+N/4 + �i+N/4,j

�
Rj

�
N/2X

i,j=1

Li
g

b|i�j|
�
�i,j+N/2 + �i+N/2,j

�
Rj �

NX

i,j=N/2+1

Li
g

b|i�j| (�i,j+1)Rj

�
NX

i,j=N/2+1

Li
g

b|i�j| (�i+1,j)Rj + h.c. (10)

with N + 1th site is identified with N/2 + 1th site and ✏i 2 [-2W, 2W]. In the Lagrangian formulation,

we have considered the decaying non-local hopping terms. Dirac mass matrix for this Petersen Hamil-

tonian for N = 8 with fermionic fields Li, Rj can be obtained by weighting the elements of adjacency

and degree matrices of the graph

MPetersen =

2

66666666666666666664

✏1 0 g
b2 0 g

b4 0 0 0

0 ✏2 0 g
b2 0 g

b4 0 0

g
b2 0 ✏3 0 0 0 g
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b2 0 ✏4 0 0 0 g

b4

g
b4 0 0 0 ✏5

g
b 0 g

b3

0 g
b4 0 0 g

b ✏6
g
b 0

0 0 g
b4 0 0 g

b ✏7
g
b

0 0 0 g
b4

g
b3 0 g

b ✏8

3

77777777777777777775

Fig.5 - Generalized Petersen graph for 8 (left) and 48 (right) vertices with k = n/2 and n = 4 and

24 respectively.
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Fig.5 - Generalized Petersen graph for 8 (left) and 48 (right) vertices with k = n/2 and n = 4 and

24 respectively.
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The eigenvalues and corresponding unnormalized eigenvectors for matrix MPetersen in uniform limiting

case , b ! 1 and ✏i ! ✏ is given by

�i =
n1

2

⇣
�
p
5g � g + 2✏

⌘
,
1

2

⇣
�
p
5g � g + 2✏

⌘
,
1

2

⇣
�
p
5g + 3g + 2✏

⌘
,
1

2

⇣p
5g � g + 2✏

⌘
,
1

2

⇣p
5g � g + 2✏

⌘
,

1

2

⇣p
5g + 3g + 2✏

⌘
,
1

2

⇣
�
p
13g � g + 2✏

⌘
,
1

2

⇣p
13g � g + 2✏

⌘o

⇤1 =

⇢
0,

1

2

⇣p
5 + 1

⌘
, 0,

1

2

⇣
�
p
5� 1

⌘
, 0,�1, 0, 1

�

⇤2 =

⇢
1

2

⇣p
5 + 1

⌘
, 0,

1

2

⇣
�
p
5� 1

⌘
, 0,�1, 0, 1, 0

�

⇤3 =

⇢
1

2

⇣
�
p
5� 1

⌘
,� 2p

5� 1
,
1

2

⇣
�
p
5� 1

⌘
,� 2p

5� 1
, 1, 1, 1, 1

�

⇤4 =

⇢
0,

1

2

⇣
1�

p
5
⌘
, 0,

1

2

⇣p
5� 1

⌘
, 0,�1, 0, 1

�

⇤5 =

⇢
1

2

⇣
1�

p
5
⌘
, 0,

1

2

⇣p
5� 1

⌘
, 0,�1, 0, 1, 0

�

⇤6 =

⇢
1

2

⇣p
5� 1

⌘
,

2p
5 + 1

,
1

2

⇣p
5� 1

⌘
,

2p
5 + 1

, 1, 1, 1, 1

�

⇤7 =

⇢
2p

13 + 3
,� 2p

13 + 3
,
1

2

⇣p
13� 3

⌘
,� 2p

13 + 3
,�1, 1,�1, 1

�

⇤8 =

⇢
� 2p

13� 3
,

2p
13� 3

,
1

2

⇣
�
p
13� 3

⌘
,

2p
13� 3

,�1, 1,�1, 1

�
(11)

In general, this mass matrix will not have a 0-mode though one can produce a 0-mode by carefully

choosing the site term in a uniform limiting case. In a random site scenario, 0 mode is rarely present.

The following figure shows plots of normalized eigenvectors �i obtained from eigenvectors ⇤i.

Fig.6 - Mass modes of Petersen graph with uniform sites (left) and random sites(right) for N = 8,

W = 5, g = 1/4 and b = 1.4.

As is evident from Fig.6 (left) plot, for b > 1 in the uniform scenario, the mass matrix with the

Petersen structure produces half modes which are localized on one-half of the total number of nodes

Anarchical Mixing angles ! 
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For the Majorana case, we get similar “ localisation’’

20

B. Majorana Scenario

1. Local Lattice -

In this scenario, the underlying lattice is local i.e., only neighbouring sites have non-zero couplings

between them. For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is

Fig.14 - Figure shows the median of 100 runs(left) for 20 cases and histogram of mixing angle for 2000 runs

produced for Dirac-like mixing (right) and Majorana neutrino mixing(middle).

produced by y12 = 0.4, y13 = 0.4, y23 = 0.1, y21 = 0.2, y32 = 0.2, y31 = 0.3 with Inverted Hierarchy.

2. Non-Local Lattice -

In this scenario, the underlying lattice is completely non-local with decaying random hopping terms.

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

Fig.15 - Figure shows the median of 100 runs(left) for 20 cases and histogram of mixing angle for 2000 runs

produced for Dirac-like mixing (right) and Majorana neutrino mixing(middle).

= 0.4, y13 = 0.3, y23 = 0.1, y21 = 0.2, y32 = 0.5, y31 = 0.1 with Normal Hierarchy.
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Outlook 

Randomness in couplings can lead to  
exponentially hierarchal couplings. 

In the regime of strong coupling, the geometry of the mass chains  
does not matter significantly. They predict hierarchal neutrino masses  

and anarchical mixing angles for both Dirac or Majorana scenarios.  

In the weak coupling regime, geometry does play a role and  
can be chosen carefully to ``localise” the mixing angles. 

Experimental signatures become weaker for  
non-local /partially non-local cases compared to local case.
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Majorana Case 
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Figure 3: Majorana masses (left panel) and Yukawa couplings (right panel) of the singlet fermions of the
clockwork sector, normalized respectively to m and Y , for the specific case n = 10, q = 2 and eq = 0.1 (dark
blue) or eq = 10 (light blue).

former case corresponds to a mild breaking of the U(1)CW symmetry and the latter to a strong breaking.
For eq = 0.1 one notices that the mode k and the mode n + k have very similar masses and suggest a
pseudo-Dirac structure, which results from the mild U(1)CW breaking; in the limit eq ! 0, they would
form an exact Dirac pair and have identical masses. For eq = 10, however, the masses of all the modes are
markedly di↵erent.

On the other hand, the Yukawa couplings of the singlet fermions to the left-handed leptons, shown in
the right panel, do not depend on the value of eq, as demonstrated in subsection 2.1. The phenomenology
of the scenario eq ⌧ q, 1 is then very similar to the one already discussed in subsection 2.1, while the
phenomenology of the scenario eq � q, 1 can be rather distinct from the one in the (pseudo-)Dirac case.
Indeed, in this scenario one obtains a mass for the active neutrino through the seesaw mechanism given
by:

m⌫ ⇡

X

k

Y
2
k v

2

Mk
. (35)

Then, since the couplings for the higher modes are expected to be O(Y ), the resulting neutrino mass
can be orders of magnitude larger than the value inferred from oscillation experiments, unless Y ⌧ 1
and/or the gear masses are very large, in the same spirit as in the standard seesaw mechanism. A related
analysis was also presented in [29].

3 Lepton Flavor Violation

The clockwork mechanism suppresses the Yukawa couplings for the zero mode, hence explaining the
smallness of neutrino masses. However the Yukawa couplings for the higher modes are in general
unsuppressed and can lead to observable e↵ects at low energies. In particular, the lepton flavor violation
generically present in the Yukawa couplings of the higher modes contributes, through quantum e↵ects
induced by clockwork fermions, to generate rare leptonic decays (such as li ! lj�) or µ-e conversion
in nuclei, with rates that could be at the reach of current or future experiments if the gear masses are
su�ciently low.

We calculate the rate for li ! lj� following [48–50]. For N clockwork generations, we obtain:

B (µ ! e�) '
3↵emv

4

8⇡

�����

NX

↵=1

n↵X

k=1

Y
e↵
k Y

µ↵
k

M
↵
k
2 F (x↵

k )

�����

2

,

where ↵em is the fine structure constant, n↵ is the number of gears in the ↵-th generation, M↵
k is the

mass of the k-th mode in the ↵-th generation (k = 1, ..., n↵), and x
↵
k ⌘ M

↵
k
2
/M

2
W . The loop function

F (x) is defined as

F (x) ⌘
1

6(1� x)4
(10� 43x+ 78x2

� 49x3 + 4x4
� 18x3 log x) , (36)

8

The gears have large  couplings as before. 
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Generalisation with Majorana Masses for the New Fermions

1 Introduction

The smallness of neutrino masses stands as one of the most puzzling open questions in Fundamental
Physics. A plausible solution to this puzzle is provided by the seesaw mechanism, in which the smallness
of neutrino masses is explained by the breaking of the lepton number at a very high energy scale [?, 1–5].
Models with conserved lepton number, on the other hand, can also reproduce the observations, at the
expense of postulating tiny Yukawa couplings of the neutrino to the Standard Model Higgs. Such small
parameters are usually regarded as unnatural, however the existence of tiny Yukawa couplings is a
phenomenologically viable possibility, and can be accomplished in further extensions of the model (for
reviews and recent models, see e.g. in [6–19]).

Recently, a new mechanism of generating small couplings in theories coupled to the Standard Model
has been introduced [20, 21]. The mechanism, reminiscent of deconstruction models [22, 23], can be
summarized as a linear quiver model with no large hierarchies in the theory parameters, that gives rise to
site-dependent suppressed couplings to the zero-mode [24]. Originally, introduced for a quiver of Abelian
Goldstone bosons (axions), it has been generalized to fermions, vectors and other fields [24, 25] (See
also [26]). Recent applications to fermion masses can be found in [27] and those particularly focussing on
neutrino masses are [28, 29]. Other interesting works are [30–46].

In this work we explore the application of the fermionic clockwork to the generation of small neutrino
masses. Concretely, we identify the right-handed neutrinos with the zero modes of a clockwork sector [24],
such that small couplings can be naturally generated and therefore small neutrino masses. We generalize
the clockwork framework for the right handed neutrinos by including also Majorana mass terms. We
show that the clockwork mechanism, i.e., the suppression of the Yukawa couplings by site dependent
power factors, is not a↵ected by the presence of the Majorana mass terms. In fact, the combination of
the clockwork “suppression” and the Majorana “seesaw” sets now the neutrino mass scale. When all the
Majorana terms are set to zero, the clockwork provides an interesting alternative to the existing models
of Dirac neutrinos, which we investigate in this paper. Furthermore, while the clockwork mechanism
suppresses the couplings of the zero mode, the couplings of the higher modes can be sizable and induce,
via loops, potentially large rates for the leptonic rare decays.

The rest of the paper is organized as follows. In section 2, we present the most general framework
for clockwork neutrinos with Dirac and Majorana mass terms, and we discuss their phenomenology in
subsections 2.1 and 2.2, respectively. In section 3, we discuss lepton flavour violation in the clockwork
scenario and calculate limits on the gear masses. We close with a summary.

2 Neutrinos in Clockwork

We extend the Standard Model with n left-handed and n + 1 right-handed chiral fermions, singlets
under the Standard Model gauge group, which we denote as  Li(i = 0, ..., n � 1) and  Ri(i = 0, ..., n)
respectively. The Lagrangian of the model reads:

L = LSM + LClockwork + Lint , (1)

where LSM is the Standard Model Lagrangian, LClockwork is the part of the Lagrangian involving only
the new fermion singlets, and Lint is the interaction term of the new fields with the Standard Model
fields. Following [24], we assume that the Standard Model only couples to the last site of the fermionic
clockwork, therefore,

Lint = �Y eHLL Rn , (2)

with eH = i⌧2H
⇤, H the Standard Model Higgs doublet and LL the left handed lepton fields (we assume

only one generation of fermions; the generalization to more than one generation will be discussed below).
In full generality, the clockwork Lagrangian can be cast as:

LClockwork = Lkin �

n�1X

i=0

�
mi Li Ri �m

0
i  Li Ri+1 + h.c.

�
�

n�1X

i=0

1

2
MLi 

c
Li Li �

nX

i=0

1

2
MRi 

c
Ri Ri , (3)

where Lkin denotes the kinetic term for all fermions, and m, m0 and ML,R are mass parameters. Denoting
 = ( L0, L1, ... Ln�1, 

c
R0, 

c
R1, ..., 

c
Rn), the clockwork Lagrangian can be written in the compact

form:

LClockwork = LKin �
1

2
( cM + h.c.) (4)

2

with M a (2n + 1) ⇥ (2n + 1) mass matrix. We note that Lkin is invariant under the global group
U(n)L⇥U(n+1)R. The mass terms mi break the global group U(n)L⇥U(n+1)R !

Qn�1
i=0 U(1)i, where

U(1)i acts as  L,i ! e
i↵i L,i,  Ri ! e

i↵i Ri, and combined with the mass terms m0
i, break the global

symmetry U(n)L ⇥ U(n+ 1)R ! U(1)CW, where U(1)CW acts as  L,i ! e
i↵
 L,i,  R,i ! e

i↵
 R,i for all

i. Finally, MLi and MRi are Majorana masses for the left and right handed singlet fields. It is su�cient
that MLi or MRi is non-vanishing for one i to break the symmetry group U(n)L ⇥ U(n+ 1)R ! nothing.

We assume for simplicity universal Dirac masses, Majorana masses and nearest neighbor interactions,
namely mi = m, m0

i = mq MRi = MLi = meq for all i. Under this assumption, the mass matrix reads:

M = m

0

BBBBBBBBBBBB@

eq 0 · · · 0 1 �q · · · 0
0 eq · · · 0 0 1 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · eq 0 0 0 �q

1 0 · · · 0 eq 0 · · · 0
�q 1 · · · 0 0 eq · · · 0
...

...
...

...
...

...
...

...
0 0 · · · �q 0 0 0 eq

1

CCCCCCCCCCCCA

, (5)

which has eigenvalues Mk given by:

M0 = meq ,

Mk = meq �m

p
�k , k = 1, . . . , n ,

Mn+k = meq +m

p
�k , k = 1, . . . , n , (6)

with �k defined as

�k ⌘ q
2 + 1� 2q cos

k⇡

n+1
. (7)

The mass eigenstates, which we denote as �k, are related to the interaction eigenstates  j by the
unitary transformation U , namely  j =

P
j Ujk�k. The matrix U can be explicitly calculated, the result

being:

U =

 
~0 1p

2
UL �

1p
2
UL

~uR
1p
2
UR

1p
2
UR

!
. (8)

where ~0 and ~uR are n-dimensional vectors, with entries:

~0j = 0 , j = 1, ..., n , (9)

(uR)j =
1

qj

s
q2 � 1

q2 � q�2n
, j = 1, ..., n , (10)

while UL and UR are, respectively, n⇥ n and (n+ 1)⇥ n matrices with elements

(UL)jk =

r
2

n+ 1
sin

jk⇡

n+ 1
, j, k = 1, ..., n ,

(UR)jk =

s
2

(n+1)�k


q sin

jk⇡

n+1
� sin

(j + 1)k⇡

n+1

�
, j = 0, .., n, k = 1, ..., n , (11)

We note that the mixing matrix U does not depend on the parameter eq, which is a consequence of our
assumption of universality of the Majorana masses MRi = MLi = meq for all i.

The interaction Lagrangian of the clockwork fields to the Standard Model fields, Eq. (4), can now be
recast in terms of mass eigenstates:

Lint = �Y LL
eHUnk�k ⌘ �

2nX

k=0

Yk LL
eH�k , (12)
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No Zero mode !! 
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. (7)

The mass eigenstates, which we denote as �k, are related to the interaction eigenstates  j by the
unitary transformation U , namely  j =

P
j Ujk�k. The matrix U can be explicitly calculated, the result

being:

U =

 
~0 1p

2
UL �

1p
2
UL

~uR
1p
2
UR

1p
2
UR

!
. (8)

where ~0 and ~uR are n-dimensional vectors, with entries:

~0j = 0 , j = 1, ..., n , (9)

(uR)j =
1

qj

s
q2 � 1

q2 � q�2n
, j = 1, ..., n , (10)

while UL and UR are, respectively, n⇥ n and (n+ 1)⇥ n matrices with elements

(UL)jk =

r
2

n+ 1
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jk⇡

n+ 1
, j, k = 1, ..., n ,

(UR)jk =

s
2

(n+1)�k


q sin
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n+1
� sin

(j + 1)k⇡

n+1

�
, j = 0, .., n, k = 1, ..., n , (11)

We note that the mixing matrix U does not depend on the parameter eq, which is a consequence of our
assumption of universality of the Majorana masses MRi = MLi = meq for all i.

The interaction Lagrangian of the clockwork fields to the Standard Model fields, Eq. (4), can now be
recast in terms of mass eigenstates:
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2nX
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Yk LL
eH�k , (12)
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under the universality assumption, the presence of the  
Majorana masses does not change the mixing matrices !!. 

The purely majorana mass mode has same features as  the zero mode
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Figure 3: Majorana masses (left panel) and Yukawa couplings (right panel) of the singlet fermions of the
clockwork sector, normalized respectively to m and Y , for the specific case n = 10, q = 2 and eq = 0.1 (dark
blue) or eq = 10 (light blue).

former case corresponds to a mild breaking of the U(1)CW symmetry and the latter to a strong breaking.
For eq = 0.1 one notices that the mode k and the mode n + k have very similar masses and suggest a
pseudo-Dirac structure, which results from the mild U(1)CW breaking; in the limit eq ! 0, they would
form an exact Dirac pair and have identical masses. For eq = 10, however, the masses of all the modes are
markedly di↵erent.

On the other hand, the Yukawa couplings of the singlet fermions to the left-handed leptons, shown in
the right panel, do not depend on the value of eq, as demonstrated in subsection 2.1. The phenomenology
of the scenario eq ⌧ q, 1 is then very similar to the one already discussed in subsection 2.1, while the
phenomenology of the scenario eq � q, 1 can be rather distinct from the one in the (pseudo-)Dirac case.
Indeed, in this scenario one obtains a mass for the active neutrino through the seesaw mechanism given
by:

m⌫ ⇡

X

k

Y
2
k v

2

Mk
. (35)

Then, since the couplings for the higher modes are expected to be O(Y ), the resulting neutrino mass
can be orders of magnitude larger than the value inferred from oscillation experiments, unless Y ⌧ 1
and/or the gear masses are very large, in the same spirit as in the standard seesaw mechanism. A similar
conclusion was also reached in [38].

3 Lepton Flavor Violation

The clockwork mechanism suppresses the Yukawa couplings for the zero mode, hence explaining the
smallness of neutrino masses. However the Yukawa couplings for the higher modes are in general
unsuppressed and can lead to observable e↵ects at low energies. In particular, the lepton flavor violation
generically present in the Yukawa couplings of the higher modes contributes, through quantum e↵ects
induced by clockwork fermions, to generate rare leptonic decays (such as li ! lj�) or µ-e conversion
in nuclei, with rates that could be at the reach of current or future experiments if the gear masses are
su�ciently low.

We calculate the rate for li ! lj� following [44–46]. For N clockwork generations, we obtain:

B (µ ! e�) '
3↵emv

4

8⇡

�����

NX

↵=1

n↵X

k=1

Y
e↵
k Y

µ↵
k

M
↵
k
2 F (x↵

k )

�����

2

,

where ↵em is the fine structure constant, n↵ is the number of gears in the ↵-th generation, M↵
k is the

mass of the k-th mode in the ↵-th generation (k = 1, ..., n↵), and x
↵
k ⌘ M

↵
k
2
/M

2
W . The loop function

F (x) is defined as

F (x) ⌘
1

6(1� x)4
(10� 43x+ 78x2

� 49x3 + 4x4
� 18x3 log x) , (36)

8

Neutrino mass limits push 

the gear masses to GUT scale. 

Sterile neutrino phenomenology needs to be explored 
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Figure 9: Neutrino Mass at tree level in Majorana Case.

Process Present bound Future Sensitivity

B (µ ! e�) 4.2⇥ 10�13[7] O(10�14
� 10�18)[8, 9]

B (⌧ ! µ�) 4.4⇥ 10�8[10] ⇠ 3⇥ 10�9[11]

B (⌧ ! e�) 3.3⇥ 10�8[10] ⇠ 3⇥ 10�9[11]

Table 3: Present bounds and future experiment sensitivity of lepton flavour
violation.

Given the present bound and future sensitivities of lepton flavour violation
processes (Table 3), would open the possibility of search of new physics.

The four dimensional gauge interaction terms relevant to µ ! e�, ⌧ ! µ�
and ⌧ ! e� process are given by

L
gauge =

X

i=e,µ,⌧

g
p
2
W †

µe
i
L�

µPL⌫
i
L + h.c.

=
X

i=e,µ,⌧

n1+n2+n3+3X

k=1

g
p
2
UikW

†
µe

i
L�

µPLN
k + h.c. , (55)

The field Nk represents the k-th mass eigenstate of the neutrinos. We first
calculate Br(µ ! e�). Br(⌧ ! µ�) and Br(⌧ ! e�) can be calculated in the
same way. The decay amplitude of µ ! e� is generally given by

T (µ ! e�) =
e

16⇡
✏↵⇤ue(p� q)

⇥
i�↵�q

�(ALPL +ARPR)
⇤
uµ(p) , (56)

where PL and PR are the chiral projection operators. The branching ratio (with
me = 0) can then be expressed in terms of the invariant amplitudes AL,R as

B (µ ! e�) =
6e2M4

W

g4m2
µ

⇣
|AL|

2 + |AR|
2
⌘
, (57)

where g is the weak gauge coupling, MW the weak gauge boson mass and mµ is
the mass of the muon. Neglecting the mass of the electron, AL and AR can be

15

Gear masses are pushed to the GUT scale as 

they give large corrections to the 


neutrino masses. 

In this case, no signals at the weak scale 

due to “gears”, the new fermions. 
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B. Neutrino Masses and Flavor Mixing In Strong Localisation Regime

Once the localized modes are produced we need to couple SM uncharged leptons with new fields to

produce hierarchical mass.

1. Dirac Scenario

One Flavor Case - In the Dirac scenario, neutrino mass is obtained by assuming both left ⌫L and

right-handed ⌫R neutrino existence. Left-handed and right-handed neutrinos are Yukawa coupled to

di↵erent site Right R1 and Left-handed Ln BSM fields respectively in Lagrangian (??) with SM Higgs

field i.e.,

Lint. = Y1⌫̄LHR1 + Y2⌫̄RHLn + h.c.

with Y1 and Y2 are Yukawa couplings of the O(1). The Dirac Mass matrix in basis

{⌫L,�L,1,�L,2, ...,�L,n} and {⌫R,�R,1,�R,2, ...,�R,n} is given by

Mfermion =

2

6666666666664

0 v11 v21 v31 ... vn1

v1n �1 0 0 ... 0

v2n 0 �2 0 ... 0

v3n 0 0 �3 ... 0

... ... ... ... ... ...

vnn 0 0 0 ... �n

3

7777777777775

vi1 is the coupling of neutrino with �Ri and vin is the coupling with �Li after SSB. The smallest mass

mode for this matrix is given by

m0 ⇡
nX

i=1

vi1v
i
n

�i
/

nX

i=1

v2
e�

n
Ln

�i

v is the expectation value of the Higgs field. Other mass modes are slight perturbations about their

initial eigenvalues �is.

We find for ✏i/2 2 [0, t+W], ti 2 [-t, t] and n = 7 with t=1 and W = 5, it produces O(1)eV masses

from TeV scale.
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Non Local and Two Dimensional Graphs  

24

Apart from retaining the clockwork nature of left-right chiral fields in non-local extensions, we can

consider both-sided non-local CW extensions too. Hamiltonian for this scenario is given by [8]

(Hlong-range )j,k = aj�j,k +
b

r|j�k| (1� �j,k) , (33)

The Hamiltonian considered is long-range hopping strength decaying Hamiltonian. Dirac mass matrix

for this Hamiltonian in {L1, L2, ...LN} and {R1, R2, ....RN+1} basis is given by

Mlong�range =

2

66666666666664

a1
b
r

b
r2

b
r3 . . . b

rn

b
r a2

b
r

b
r2 . . . b

rn�1

b
r2

b
r a3

b
r . . . b

rn�2

...
...

...
. . .

. . .
...

b
rn�2

b
rn�1 . . . an�1

b
r

b
r2

b
rn�1

b
rn�2

b
rn�3 . . . an

b
r

3

77777777777775

n⇥n+1

For n = 2, in the limiting case, right-hand fermionic eigenvalues are

�i =
n
0,

�b
p
16a2r6 + 16abr4 + b2r4 + 2b2r2 + b2 + 2a2r4 + 3b2r2 + b2

2r4
,

b
p
16a2r6 + 16abr4 + b2r4 + 2b2r2 + b2 + 2a2r4 + 3b2r2 + b2

2r4

o

with 0-mode eigenvector given by

⇤0 =

⇢
�

ab� b2

a2r2 � b2
,�

abr2 � b2

r (a2r2 � b2)
, 1

�
(34)

Hence as b ! ar, the suppression of 0-mode on the last site increases.

Fig.5 - Completely Non-local interaction for n = 9 with both ways interaction. The distance

between the two sites is not parallel to their coupling strength.
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- three zero modes ! 

-localisation of the zero modes !!!

Example with 15 vertices : 

One graph for all the three neutrinos !! 

11

These vectors do not form the orthonormal basis of null-space, they can be used to form an orthonormal

basis using the Gram-Schmidt process as is written in the appendix. For this set of parameters

the Dirac matrix MFractal maps an n-dimensional Hilbert space to its subspace of n-3 dimensions.

Alternatively, this set of parameters will have swapping symmetries in Fractal Lagrangian for a certain

basis. For f > 1, there is a localization of these 0-modes. As the number of iterations m increases,

the number of nodes in the graph increases and hence 0-mode gets bigger localization. The following

figure shows the diagrammatic nomenclature.

Fig.3 - Deconstructed Fermions on Sierpiński Graph. This particular labelling of sites has no

relevance over other possible labellings.

Other Eigenvectors of the system for MFractalM
†
Fractal are given using the perturbative analy sis.

The matrix is written as the sum of two symmetric matrices.

MFractalM
†
Fractal

b2
= M0 +MPert

with

9

Here we will study structure (C) as it produces three left-handed 0-modes which can conveniently be

identified with three flavours of active SM neutrinos (⌫e, ⌫µ, ⌫⌧ ). The explicit Hamiltonian for fractal

in (C) is given by

15X

i,j=1

Hi,j =
15X

i,j=1

mi�i,j +
⇣
b1,7 + b1,8 + b7,4 + b7,9 + b7,8 + b8,5 + b8,9 + b4,9 + b4,11 + b4,12 + b9,5 + b5,13

+ b5,15 + b2,10 + b2,11 + b10,6 + b10,12 + b10,11 + b11,12 + b6,12 + b6,14 + b6,15 + b3,13 + b3,14

+ b3,15 + b13,14 + b14,15
⌘
+ bi$j

where bi$j represents swapping all indices i and j for non-zero bij (bij in the bracket).

The particle content in the fractal Lagrangian has n numbers of left-handed fermions and n numbers

of right-handed fermions with n being the number of vertices in the structure being considered. As

is shown below a certain combination of these left-handed fermions is identified as the active SM

neutrino which on symmetry breaking, with the help of SM Higgs, leads to a small massive neutrino.

Following (8), the full Lagrangian for new physics with 2 iterative transformations of kernel lattice

can be written as

LNP =Lkin �

15X

i,j=1

miLi�i,jRj +m
⇣
L1q1,7R7 + L1q1,8R8 + L7q7,4R4 + L7q7,9R9 + L7q7,8R8 + L8q8,5R5

+ L8q8,9R9 + L4q4,9R9 + L4q4,11R11 + L4q4,12R12 + L9q9,5R5 + L5q5,13R13 + L5q5,15R15+

L2q2,10R10 + L2q2,11R11 + L10q10,6R6 + L10q10,12R12 + L10q10,11R11 + L11q11,12R12 + L6q6,12R12

+ L6q6,14R14 + L6q6,15R15 + L3q3,13R13 + L3q3,14R14 + L3q3,15R15 + L13q13,14R14 + L14q14,15R15

⌘

+mLiqi$jRj + h.c.

In the limiting case mi = m0, and assuming link field �i,j connecting Li to Rj and link field �j,i to

achieve vevs which di↵er by multiplicative factor f , bij will be f i�jb for i > j and b
fj�i for i < j. The

Dirac mass matrix in L and R basis L†
MR is given by
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Plot 2(B) - Left plot shows the absolute value of components of left-handed mass eigenvectors and

the right plot for the right-handed mass eigenvector.

We found that on increasing the number of sites in a graph, the amount of localization of 0-modes

is also increasing and hence in the limit n ! 1, the smallest mass-produced by the graph ms ! 0.

Now to produce SM neutrino masses, a specific amount of localization for 0-modes is required hence

if n ! 1 then to decrease the extent of localization in 0-modes, f ! 1. With these limits, the large

enough iterations of theory space can reproduce extra-dimension physics.

2. Other Examples

Other fractal graph structures can also be used to produce 0-mode which can again be localized

using di↵erent vevs of link fields. One other fractal example is shown in fig.4. The eigenvalues for this

fractal graph with equal interaction strength and in the limiting case, are given by

Fig.4 - Fractal pattern graph.
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3

7775

Once the Higgs field obtains a vev, it will couple the left and right chiral fields for certain sites, which

are capable of producing three small masses satisfying both the normal and inverted mass ordering.

One of the possibles choices is

Lint = �Y eHL̄4R4 � Y eHL̄9R9 � Y eHL̄13R13 + h.c. (15)

for f = 8, it produces three masses of the order 10�13, 10�10 and 10�9 the mass scale with coupling

strength Y of the O(1). On further evolution of fractal structure, these order of masses can be produced

with f = 3. As the fractal evolves, the required value of f to obtain hierarchical masses tends to 1.

The following plot shows the mass distribution of modes in Sierpinski theory space and the coupling

of mass eigenvectors with a particular left-handed field.

Plot 2(A) - Left plot shows the mass distribution and the right plot shows the coupling strength for

the fractal theory space scenario with n = 15 sites.
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with L† and R representing {L1, L7, L8, L4, L9, L5, L11, L12, L13, L15, L2, L10, L6, L14, L3} and

{R1, R7, R8, R4, R9, R5, R11, R12, R13, R15, R2, R10, R6, R14, R3} respectively. The new energy scale is

defined by the parameter m. The eigenvalues for fractal (C) with interaction strength m0 = 2m and

f = 1 is given by :

�j =
n
5.778m, 4.968m, 4.968m, 2.8418m, 2.8418m, 2.710m, 1.742m, 1.742m,m, 0.510m, 0.447m, 0.447m, 0, 0, 0

o
,

for f 6= 1, three left-handed 0-modes and three right-handed 0-modes are still present. The null space

is spanned by the eigenvectors

⇤iL =
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(9)

each row represents one eigenvector. Similarly, the right-handed 0-modes are given by

⇤iR =
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Putting in the full Standard Model (leptonic sector)  
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Figure 10: Diagram contributing for lepton flavour violation in Clockwork Mecha-
nism.

expressed as AL = 0 and

AR =
g2

8⇡
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+ 4x4
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A log xA) , (59)

(xA ⌘ m2
A/M

2
W )

where MW is W boson mass and mk is the mass of the k-th mass eigenstates
of neutrinos. Notice that this model predicts µ�

! e�L� (or µ+
! e+R�) decay.

If all the neutrino masses are small, this amplitude is suppressed by the GIM
mechanism [12, 13]. However, due to the existence of heavy neutrinos, the GIM
cancellation does not work and AR is estimated as
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resulting branching
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Exchange of clockwork gears leads

to lepton flavour violation. 

Consider for example a rare process, 

which has not yet


Been discovered…similar to 

rare flavour violating processes in the


 Hadronic sector. 
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µ ! e+ �

But there are strong limits on it 
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Figure 3: Majorana masses (left panel) and Yukawa couplings (right panel) of the singlet fermions of the
clockwork sector, normalized respectively to m and Y , for the specific case n = 10, q = 2 and eq = 0.1 (dark
blue) or eq = 10 (light blue).

former case corresponds to a mild breaking of the U(1)CW symmetry and the latter to a strong breaking.
For eq = 0.1 one notices that the mode k and the mode n + k have very similar masses and suggest a
pseudo-Dirac structure, which results from the mild U(1)CW breaking; in the limit eq ! 0, they would
form an exact Dirac pair and have identical masses. For eq = 10, however, the masses of all the modes are
markedly di↵erent.

On the other hand, the Yukawa couplings of the singlet fermions to the left-handed leptons, shown in
the right panel, do not depend on the value of eq, as demonstrated in subsection 2.1. The phenomenology
of the scenario eq ⌧ q, 1 is then very similar to the one already discussed in subsection 2.1, while the
phenomenology of the scenario eq � q, 1 can be rather distinct from the one in the (pseudo-)Dirac case.
Indeed, in this scenario one obtains a mass for the active neutrino through the seesaw mechanism given
by:

m⌫ ⇡

X

k

Y
2
k v

2

Mk
. (35)

Then, since the couplings for the higher modes are expected to be O(Y ), the resulting neutrino mass
can be orders of magnitude larger than the value inferred from oscillation experiments, unless Y ⌧ 1
and/or the gear masses are very large, in the same spirit as in the standard seesaw mechanism. A related
analysis was also presented in [29].

3 Lepton Flavor Violation

The clockwork mechanism suppresses the Yukawa couplings for the zero mode, hence explaining the
smallness of neutrino masses. However the Yukawa couplings for the higher modes are in general
unsuppressed and can lead to observable e↵ects at low energies. In particular, the lepton flavor violation
generically present in the Yukawa couplings of the higher modes contributes, through quantum e↵ects
induced by clockwork fermions, to generate rare leptonic decays (such as li ! lj�) or µ-e conversion
in nuclei, with rates that could be at the reach of current or future experiments if the gear masses are
su�ciently low.

We calculate the rate for li ! lj� following [48–50]. For N clockwork generations, we obtain:

B (µ ! e�) '
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,

where ↵em is the fine structure constant, n↵ is the number of gears in the ↵-th generation, M↵
k is the

mass of the k-th mode in the ↵-th generation (k = 1, ..., n↵), and x
↵
k ⌘ M

↵
k
2
/M

2
W . The loop function

F (x) is defined as

F (x) ⌘
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6(1� x)4
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� 49x3 + 4x4
� 18x3 log x) , (36)
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Figure 3: Majorana masses (left panel) and Yukawa couplings (right panel) of the singlet fermions of the
clockwork sector, normalized respectively to m and Y , for the specific case n = 10, q = 2 and eq = 0.1 (dark
blue) or eq = 10 (light blue).

former case corresponds to a mild breaking of the U(1)CW symmetry and the latter to a strong breaking.
For eq = 0.1 one notices that the mode k and the mode n + k have very similar masses and suggest a
pseudo-Dirac structure, which results from the mild U(1)CW breaking; in the limit eq ! 0, they would
form an exact Dirac pair and have identical masses. For eq = 10, however, the masses of all the modes are
markedly di↵erent.

On the other hand, the Yukawa couplings of the singlet fermions to the left-handed leptons, shown in
the right panel, do not depend on the value of eq, as demonstrated in subsection 2.1. The phenomenology
of the scenario eq ⌧ q, 1 is then very similar to the one already discussed in subsection 2.1, while the
phenomenology of the scenario eq � q, 1 can be rather distinct from the one in the (pseudo-)Dirac case.
Indeed, in this scenario one obtains a mass for the active neutrino through the seesaw mechanism given
by:

m⌫ ⇡

X

k

Y
2
k v

2

Mk
. (35)

Then, since the couplings for the higher modes are expected to be O(Y ), the resulting neutrino mass
can be orders of magnitude larger than the value inferred from oscillation experiments, unless Y ⌧ 1
and/or the gear masses are very large, in the same spirit as in the standard seesaw mechanism. A related
analysis was also presented in [29].

3 Lepton Flavor Violation

The clockwork mechanism suppresses the Yukawa couplings for the zero mode, hence explaining the
smallness of neutrino masses. However the Yukawa couplings for the higher modes are in general
unsuppressed and can lead to observable e↵ects at low energies. In particular, the lepton flavor violation
generically present in the Yukawa couplings of the higher modes contributes, through quantum e↵ects
induced by clockwork fermions, to generate rare leptonic decays (such as li ! lj�) or µ-e conversion
in nuclei, with rates that could be at the reach of current or future experiments if the gear masses are
su�ciently low.

We calculate the rate for li ! lj� following [48–50]. For N clockwork generations, we obtain:
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where ↵em is the fine structure constant, n↵ is the number of gears in the ↵-th generation, M↵
k is the

mass of the k-th mode in the ↵-th generation (k = 1, ..., n↵), and x
↵
k ⌘ M

↵
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2
/M

2
W . The loop function

F (x) is defined as
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1
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Figure 4: Predicted value of Br(µ ! e�) for points of the parameter space reproducing the observed neutrino
oscillation parameters, as a function of the mass of the first clockwork gear. The black solid line shows the
current upper limit from the MEG experiment.

and has limits F (0) = 5/3 and F (1) = 2/3.
The current upper bound Br(µ ! e�)  4.2⇥ 10�13 from the MEG experiment [51] poses stringent

constraints on the mass scale of the clockwork. In Fig.4 we show the branching ratio expected for points
reproducing the measured neutrino parameters, assuming two clockwork generations, as obtained in
the scan presented in section 2.1, as a function of the mass of the first clockwork gear. It follows from
the figure that the clockwork gears must be larger than ⇠ 40 TeV in order to evade the experimental
constraints, unless very fine cancellations among all contributions to this process exist. For a larger
number of clockwork generations we expect even stronger lower limits on the lightest gear mass, due to
the larger number of particles in the loop.

4 Summary

The origin of small neutrino masses remains a mystery to this day. The recently proposed clockwork
mechanism provides new insights into this puzzle, as it naturally generates small parameters in the
e↵ective Lagrangian. In the present work, we have scrutinized the mechanism of neutrino mass generation
within the clockwork framework. We have generalized the clockwork formalism to include, in addition to
Dirac masses and nearest neighbor interactions, also Majorana mass terms in the clockwork sector; and
we have derived analytical expressions for the masses and couplings of the new singlet fermions for the
specific case where the Dirac masses, Majorana masses and nearest neighbor interactions are universal
among all clockwork “gears”.

We have investigated in detail the impact of the Majorana masses in the clockwork sector in the
generation of small neutrino masses. When the Majorana masses vanish, the zero mode of the clockwork
sector is strictly massless and forms a Dirac pair with the active neutrino. In this framework, small Dirac
neutrino masses can be generated for a su�ciently large number of gears, depending on the hierarchy
between the mass scales in the clockwork sector. On the other hand, when the Majorana masses are
non-vanishing, the zero mode is no longer massless. However, the corresponding Yukawa coupling still
has the clockwork structure. In this case, small neutrino masses are the result of the interplay between
the standard seesaw mechanism and the “clockworked” Yukawa couplings, and typically require very
large Majorana masses in order to reproduce the small neutrino mass scale inferred from oscillation
experiments.

The Standard Model leptons couple to the fermions of the clockwork sector with a site dependent
strength, giving rise to (possibly lepton flavour violating) charged current, neutral current and Higgs
boson interactions. We have investigated the constraints on this framework from the non-observation of
the rare leptonic decay µ ! e�. Our results indicate that the lightest particle of the clockwork sector
must have a mass & 40 TeV, if the Yukawa couplings of the fundamental theory are O(1).

9

Present limit of around 40 TeV !! 
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Fig. 6 - These Feynman diagrams show the 1-loop contribution of fermions in Higgs mass radiative

corrections. The Left diagram shows it for the same fermions in the loop with yii coupling and the

right diagram shows it for di↵erent fermions in the loop with yij coupling strength.

The amplitude for 1-loop with fermions of di↵erent masses is given by
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Nf is the number of flavours. In the limit when both fermions in the loop are the same, mi = mj =

m and yij = yii. Using dimensional regularization, we get the familiar result
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Thus, we can write the following expression for the amplitude:
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Using the MS scheme we obtain the radiative mass correction to Higgs as:
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Now, consider the scenario with two di↵erent fermions coupled to Higgs, mi 6= mj and coupling with

Higgs is yij . The amplitude is
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Higgs corrections !! 
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A lot of things still left to be explored. 
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Figure 7. Production of heavy clockwork modes Nk at hadron (left) and lepton (right) colliders.

BP
pp → 3!+ E/T e+e− → !νjj

14TeV 100TeV 250GeV 500GeV 3TeV

U100 0.66 4.2 7.4 12.8 3.9

G100 1.40 8.6 4.3 7.4 1.34

U400 3.0 ×10−3 0.032 — 0.81 7.6

G300 0.014 0.12 — 5.8 6.1

U750 2.6 ×10−4 5.0 ×10−3 — — 5.9

G750 5.0 ×10−4 8.0 ×10−3 — — 7.9

U1000 5.0 ×10−5 1.7 ×10−3 — — 2.3

Table 3. Cross sections of CW neutrino signatures at hadron and lepton colliders, before selection
cuts (in fb). Acceptance cuts have been applied at the parton level: ∆R ≥ 0.4 for all visible object
pairs; pT (!) ≥ 10(20)GeV for hadron (lepton) colliders; pT (j) ≥ 20GeV; |ηj | < 5; |η!| < 2.5.

pansion, and branching ratios are small.) For our study, we focus on the charged-current

decay N → !W . The uniform and generalized (LCW1) clockwork models were imple-

mented in FeynRules [15, 16]. The signal and relevant backgrounds were simulated using

MadGraph@aMC [17, 18]. The parton-level events are passed to Pythia8 [19] for hadroniza-

tion and then to Delphes3 [20] to incorporate detector effects and jet reconstruction.

For hadron colliders, the signatures of CW neutrino production are 3!+E/T and 2!+2j,

corresponding to leptonic and hadronic W decays respectively. (Here ! = e or µ; we do

not include taus in the analysis.) The trilepton signature has a slightly smaller rate but

significantly lower backgrounds. Signal cross sections in this channel, before selection cuts,

are listed in table 3. These are total cross sections, summed over CW neutrino flavor and

mode number k. Note that the structure of CW neutrino couplings ensures that two of

the leptons form a same-flavor, opposite-charge (SFOC) pair, while the third lepton (from

W decay) may be the same or opposite flavor. The main irreducible background to this

search is pp → WZ. LHC experiments have published searches in the 3! + E/T channel

based on 35 fb−1 integrated luminosity at
√
s = 13TeV. Benchmark points U100 and

G100 predict a few tens of signal events in this sample, before selection cuts. For all other

benchmark points, cross sections are too small to get an appreciable number of events.

CMS collaboration’s search for sterile neutrino [21] was optimized for a signature similar

to our CW neutrino, and is expected to have the best sensitivity. We have recast this

– 15 –

LFV at colliders 
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Conclusions  

We presented localisation in models which  
are “finite”  not equavilent to extra dimensions and  

they provide interesting phenomena. 
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Theoretically it means that the Standard Model has to be extended 

New Particles and/or Additional Symmetry 
or both  

Closely related to the question 

whether neutrinos are Majorana or Dirac 

Effective Theory : Weinberg, 1977
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Figure 2: Minimally opening up the Weinberg operator at tree-level using either exotic massive

fermions or scalars. (a) Type-I seesaw model. The massive exotic particle integrated out to

produce an effective Weinberg operator at low energy is a SM gauge-singlet Majorana fermion, the

right-handed neutrino νR. (b) Type-II seesaw model. The massive exotic is a (1, 3, 1) scalar ∆

coupling to LL and H†H†. It gains a small induced VEV from the latter coupling. (c) Type-III

seesaw model. The massive exotic is a (1, 3, 0) fermion Σ whose middle component mixes with the

left-handed neutrino.

2.2.1 Tree-level seesaw mechanisms

The three familiar seesaw models may be derived in a unified way by opening up the Weinberg

operator O1 at tree level in the simplest possible way, using as the heavy exotics only scalars or

fermions. The available renormalizable interactions are then just of Yukawa and scalar-scalar type.

The opening-up process is depicted in Fig. 2. The type-I and type-III seesaw models are obtained

by Yukawa coupling LH with the two possible choices of (1, 1, 0) and (1, 3, 0) fermions, both of

which can have gauge-invariant bare Majorana masses. The type-II model is the unique theory

obtained from Yukawa coupling the fermion bilinear LL ≡ LcL to a (1, 3, 1) scalar multiplet, which

in turn couples to H†H†, a cubic interaction term in the scalar potential.10 The seesaw effect is

obtained in this case by requiring a positive quadratic term for the triplet in the scalar potential,

that on its own would cause the triplet’s VEV to vanish, but which in combination with the cubic

term induces a small VEV for it.

As is clear from Fig. 2, there are two interaction vertices for all three cases, and there is only

one type of exotic per case. An interesting non-minimal tree-level seesaw model realizing option 4

is obtained by allowing four vertices instead of two, and two exotic multiplets: a (1, 4, −1/2) scalar

that couples to HHH† and a (1, 5, 0) massive fermion that Yukawa couples to the exotic scalar

quadruplet and the SM lepton doublet [82–84]. The resulting model produces the generalized

Weinberg operator O′′
1 = LLHH(H†H)2 which has mass-dimension nine. This model is a kind of

hybrid of the type-II and type-III seesaw mechanisms, because it features both a small induced

VEV for the quadruplet and a seesaw suppression from mixing with the fermion quintuplet.

10Note that the LL ∼ (1, 1, −1) option is irrelevant for tree level mechanisms because it does not produce the

required νcν bilinear.
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- Typically a large mass/small vev is required to generate the small masses 
- in seesaw like mechanisms   
- Can fit naturally in GUTs

S. F. King, 2003 

A. De Gouvea, 2016 

Davidson et.al, 2008 


Cai, et.al, 2018 

Minkowski 

Senjanovic, Mohapatra, 


GellMann, Ramond, Slansky

Yanagida, Schechter, Valle 

Lazarides, Shafi, Wetterich 

Type I Type II Type III 
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Figure 3: Feynman diagram topologies for 1-loop radiative neutrino mass generation with the

Weinberg operator O1 = LLHH. Dashed lines could be scalars or gauge bosons if allowed.

T4-x-i require a discrete Z2 symmetry in addition to demanding Majorana fermions in the loop with

lepton-number conserving couplings. This is difficult to achieve in a field theory, as lepton-number

is necessarily broken by neutrino mass. For example, in topology T4-2-i the scalar connected to

the two Higgs doublets H is necessarily an electroweak triplet and thus its direct coupling to two

lepton doublets L is unavoidable. This coupling induces a type-II seesaw tree-level contribution

to neutrino mass. Similar arguments hold for the other topologies T4-x-i.

1-loop topologies for O′
1 = LLHH(H†H). A similar analysis has been performed for 1-loop topolo-

gies that give rise to the dimension-7 generalized Weinberg operator [101]. Of the 48 possible

topologies, only the eight displayed in Fig. 4 are relevant for genuine 1-loop models. For specific

cases, not all of these eight diagrams will be realized. The three-point vertices can be Yukawa,

gauge or cubic scalar interactions, while the four-point vertices only contain scalar and gauge

bosons.

2-loop topologies for O1 = LLHH. A systematic analysis of 2-loop openings of O1 was performed

in Ref. [102]. Figure 5 displays the topologies identified in this study as able to contribute to

genuine 2-loop models. There are additional 2-loop diagrams – that were termed “class II” – that

have the form of one of the 1-loop topologies of Fig. 3 with one the vertices expanded into a 1-loop

subgraph. They remark the class II topologies may be useful for justifying why a certain vertex
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Radiative Mechanisms 

Babu Leung,  2001 

Cai et.al 2017 
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Hierarchies in the parameters of the theory ! ! 

A ( LOFTIER)  GOAL 

Generate Hierarchies of masses and other parameters 
starting with O(1) parameters of the theory 

And testable ! 
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Consider Dirac Masses 

YeffY

ψR,0 ψL,0 ψR,1 ψL,1 ψR,2 ψL,2 ψL,n−1 ψR,n

m m m m m m

q q q

1

A deeper heavier structure

With O(1) parameters, leading to


 hierarchial  parameters 
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Generating small couplings: Toy Model

consider  mixing within five new (chiral) fermions in 4D   

Has an unbroken U(1) global symmetry (with all the phases equal)  

nearest neighbour  masses

<latexit sha1_base64="m1pI4vANa+zuLRnfRYR0saXjGdk=">AAACLHicbVDLSsNAFJ3UV62vqks3g0VoNyVRUTeC2I0LF1WMLTQxTKYTHTp5MHMjlpAPcuOvCOLCIm79DqdpF74ODJx7zr3MvcdPBFdgmiOjNDM7N79QXqwsLa+srlXXN65VnErKbBqLWHZ9opjgEbOBg2DdRDIS+oJ1/EFr7HfumVQ8jq5gmDA3JLcRDzgloCWv2rLruw3vHDvAQ6awXd9reJe6irHT5l7Gj638Jsu1bjV0lRfOpHCAPUDW6uS5V62ZTbMA/kusKamhKdpe9cXpxzQNWQRUEKV6lpmAmxEJnAqWV5xUsYTQAbllPU0joldzs+LYHO9opY+DWOoXAS7U7xMZCZUahr7uDAncqd/eWPzP66UQHLkZj5IUWEQnHwWpwPricXK4zyWjIIaaECq53hXTOyIJBZ1vRYdg/T75L7nebVoHzf2L/drJ6TSOMtpC26iOLHSITtAZaiMbUfSIntEbGhlPxqvxbnxMWkvGdGYT/YDx+QVECKVM</latexit>

U(2)L ⇥ U(3)R ! ⇧i=1U(1)i ! U(1)CW

Right

Left 

1 2 3
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eigenvalues 

one massless chiral fermion 

and two Dirac fermions 

The zero eigenvalue field has a suppressed component of the third field,  
it is getting localised on the 1st site. 
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Diagonalising identifying zero mode with 

The coupling of the zero mode is suppressed by a power factor 
interactions 


with new Dirac fermions

need not be suppressed. 


It is an order of magnitude 

<latexit sha1_base64="5U2QatpHf6oPHTg2Eq8mhC2P7jY=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBahbkoiRV0W3bizgn1IE8pkOm2HTiZhZiKUUPBX3LhQxK3f4c6/cdJmoa0HBg7n3Ms9c4KYM6Ud59taWl5ZXVsvbBQ3t7Z3du29/aaKEklog0Q8ku0AK8qZoA3NNKftWFIcBpy2gtF15rceqVQsEvd6HFM/xAPB+oxgbaSuffiAPMVC5IVYDwnm6e2k7J527ZJTcaZAi8TNSQly1Lv2l9eLSBJSoQnHSnVcJ9Z+iqVmhNNJ0UsUjTEZ4QHtGCpwSJWfTuNP0IlReqgfSfOERlP190aKQ6XGYWAms5Rq3svE/7xOovuXfspEnGgqyOxQP+FIRyjrAvWYpETzsSGYSGayIjLEEhNtGiuaEtz5Ly+S5lnFPa9U76ql2lVeRwGO4BjK4MIF1OAG6tAAAik8wyu8WU/Wi/VufcxGl6x85wD+wPr8AdJvlMM=</latexit>

Y ⇠ O(1)

They are in fact O(1) 
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Choi and Im, JHEP 2016


Kaplan and Rattazzi, 2016

Introduced to solve transplanckian excitations required by the

inflaton field in Relaxion models (axion fields) 

Fermion fields and spin 1,2  fields in a clockwork   
Giudice and McCoullough,2016

noted the application to neutrino masses

Starting from O(1) couplings, clockwork is a mechanism which 

generates exponentially small couplings naturally in the theory.


(This is for the symmetry protected zero mode )  

It provides a natural framework to understand 

Dirac Neutrinos which require


tiny couplings. 


