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Breakthrough beyond the state of

the art (in a nutshell)

NEW!: SCALAR DM
[F.D' Eramo, TS: arXiv:2502.19491]
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Derivative basis interaction

We start from the dimension 5 EFT (SM + S, ¢) in the derivative
basis (¢ — ¢ + const)

Vinix(S, H) negligible [G.Arcadi et al.: 2403.15860] .. .
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We start from the dimension 5 EFT (SM + S, ¢) in the derivative
basis (¢ — ¢ + const)

Vinix(S, H) negligible [G.Arcadi et al.: 2403.15860] .. .
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(-dependent rotations remove derivative couplings
[Georgi, Kaplan, Randall: Phys. Lett. B, 169:73-78, 1986]

S — exp

o
IC‘SZ;‘]S H—>exp[/CH2f1H w%expllcw ]@/)

and ©-SM interactions are redefined [M. Bauer et al.: 2012.12272]

NO 2 1
L0 = 8fCVaVVWV +C¢¢LH¢R+O<f2>,

while Ls,,. . .it's gone s !
But wait, where did the ALP-DM interaction go!?



Dark Matter Potential

The stabilizing symmetry acting on the DM is crucial! @

VE(S) = m2sts + (A S3 4+ A*S13) 4 5(5*5)2



Dark Matter Potential

The stabilizing symmetry acting on the DM is crucial! @
1

VE(S) = m2STS + —(AS® + A*ST3) 4 %(5*5)2

A <34y/Asms [G. Belanger et al.. 1211.1014]




Dark Matter Potential

DI PADOVA

The stabilizing symmetry acting on the DM is crucial! @
1

VE(S) = m2STS + —(AS® + A*ST3) 4 %(5*5)2

A <34y/Asms [G. Belanger et al.. 1211.1014]




ALP-Portal
to Scalar DM




UNIVERSITA

Dark Matter Freeze-Out Sl 2 st

DI PADOVA

Standard DM annihilations are absent. ..
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Relic density I: NO Basis
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Relic density II: 0 Basis

Unravel the three-dimensional parameters space (ms, A, f,)
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- Q, = 0 after BBN
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General requirements

o Short lifetime 7, < 1sec
- Escape BBN constraints [M. Kawasaki et al.: 1709.01211]
- Escape CMB constraints [C. Balézs et al.: 2205.13549]

- Q, = 0 after BBN

e Thermal equilibrium at DM Freeze-Out
- Tps = T'y
- Sizeable ALP-SM couplings
- C; hierarchy?
__%(T) >1
H(T)s(T) |71,
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ALP coupling to fermions i D vt
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[A. Czarnecki et al.: 1110.2171]

[M. Bauer et al.: 1708.00443] Warning: QCD and threshold
[J. L. Feng et al.: 9709411] effects in action

[A. Crivellin et al.: 1402.1173]
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What to Expect
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Freeze-Out \ Indirect Direct Collider
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[E. Del Nobile et al.: 1307.5955]
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Semi-Annihilation

S
\#‘\\ s S* In progress ... [F.D'Eramo, S.Manconi, TS]
5 \\*\\ max dNX XSO
SR Ny ,
P2 dXs 3C min ngo X _ 62
A
4 plP) Ex
Xp =
T3 ms ms
SM

® © — SM SM shapes the spectrum

® Softer and broadened spectra for €, < 1

® Channel closes for ex — 1
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Indirect Detection I: Box-Shaped
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Peculiar shape!

10%E T R
One-Step-Semi-Annihilation
[ === One-Step-Annihilation
103k Direct Annihilation
E primary->y L]
mpm=100 GeV, m,=10 GeV e

[M. Cirelli et al.: 1012.4515]
[G. Elor et al.: 1503.01773]

[J. Mardon et al.: 0901.2926]
[J.F.Fortin et al.: 0908.2258]
[C. Boehm et al.: 1401.6458]
[F.S.Queiroz et al.: 1901.10494]
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Indirect Detection III: v-Ray -
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Imprints of symmetries on
NEW! ALP-portal to scalar DM phenomenology
[F.D’Eramo, TS: arXiv:2502.19491]
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Outlook D oot s
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1. Consider inverse mass hierarchy (allow for ¢ — SSS)
2. Freeze-In scenario

3. Include semi-annihilation in model independent ID spectra
In progress ... [F.D'Eramo, S.Manconi, TS]

4. Investigate different stabilizing symmetry footprints



Thank you!
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EFT: Derivative basis

o v, Oup 1
550%/\// f ZCVQVVWV“ + == (’H“+P‘)+O<f¢2> 7

8 2f,
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j=1

- CLEE] + CL vl



EFT: Non-Derivative basis

(No)
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NO- Wilson Coefficients

j=1
3.0/3 5 1,
Cy =Cw Z<260+2(JE>,
j=1
S0/1 . 1. 4 1.
C,B:CB_Zl(6CJQ+2CJE—30{1—3(2{1—6{9) .
J:



Counting Wilson Coefficients

We count the number of independent C to be:

CV x3 V=GW,B .

N

{Cmcc,ct}_{ Ch+Ch —Ch 2+637—C?;2+CS} .
{Ca;Cs, Cp} = { CQ+Cl ;Cg’ —C%;Cﬁ} .
{Ce; Cus Cr} { ~Ct +Cl _622-1-02’ C‘Z-z—l-Cg} _
13



Boltzmann Equation for DM

Y 1 I *S * e
d S - _ (1 7d ng > S(X) <OSS—>S LpVM¢|> |:Y52~ _ YS qu:|

dlInx 3 dinx H(x)

f::,_zg ds \E (S — 4m§) USS%S*@(S) Kl [\/E/T]
8mé TKy[ms/ T)?

2
o s 9_10<mw)2+ (m>4+O<T)
T 128 m? ms ms ms

(0SS—5%pVing) =
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:l\:px _ < 1 dlng*s) Yoo Yal(x) (1 Yo )

eq Kl[mSO/T]

VB Bo—sp = Nt —————T Inverse Decays
102—¢ © K2[m<p/T] p—B1B> Y

_ 4 eq : :
VB1By—Bsp = Mg, N3, (OB Br— B Vial) Binary scatterings

_ 4 heq
= Np3Ny <0'B3<,0%3152 Viigl)



ALP coupled to SM gauge bosons: g a—

Scatterlng rates = DI PADOVA

3 2 2
O e (O 37y log () 4 0.8104
Vscattermg 14472 < f(p > nQ( ) og m,2y( T) + 0.

ryscattering -

(6) _ 2¢(3)D¢ (Coas
w3 8,

2
) TO Fe(T)



ALP coupled to SM gauge bosons:

lifetime

2.2 3
r _ Claemmg,
P 256m3f2

lrl ose [ 2<0.01)2 1GeV 3( f )2
Ty = Loy 998 Cy Qlem my, 108 GeV
Cza2m3

Mg = 8 X 2
res 2567r3fgo2

I ¢— |l

To—gg

- 07( )(03) 1GeV3< f, )2
p—gg Ce as m., 1010 GeV
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ALP coupled to SM fermions {53 oocu Srom

Thermalization receives three main contributions:

(%) _ ,eq Kl[mAO/T]

Vnv-D = My W PR Inverse Decays

’Yl(:ﬁi)r = (nzq)2<0¢1; Vi Vel Fermion Pair Annihilation
’yéqi)mpton =2 X ”qu”?;lw V1o Vidal) Inverse Compton
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Accounting for m,, effects:

2 2 2
Tpisvols) = Coev i X
Ve Navg 712 5(s — 4m3,)(s — m2)
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2 2 2 4 -1 Y 2 ¥
X —4 tanh 1-—] - -—
[(5 mimy, + mg,) tan ( s ) s my, S }
2
oty 58 P,
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ALP lifetime [: Electron

2 2 2

roo- Cemymz 1 4ms
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ALP lifetime II: Bottom
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A Possible UV Completion | {5 b Srov
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The UV theory contains extra fields and a global U, symmetry

Field ) S v, Ve
Type Complex scalar | Complex scalar | Weyl | Weyl
U, charge -3 1 &y | &y —3

_ <1 <1 3
Loy D — (y\.,qﬂwLwR + h.c.) + dor OO HTH + Mg dTd 5TS + (,-;*cbs + h.c.)
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A Possible UV Completion Il {5 b Srov

. Vo + p P
After ¢ taking a VEV CD%( 7 >exp {/VJ...

1 V. . . —
L, = 5(8us0)2—j">i {H* exp [/;ﬂ S® + ywexp {—I\Z] YV Vg + h-C}

and integrating out heavy modes

No P chv 2 g4 Y
‘Cip D) m [aGG#UG” +2YWOZBBMZ,B'U‘ i|+ ﬁ |:l€*eXp

iﬁ] S+ h.c.}
Vo

@ arises!
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Matching UV completion onto our

E F T S |)|‘; I;’i I;")'\' A

The UV theory matches onto our EFT as (Cg = 1):
fo=vo, Ce=2Y3, A=3V2k, v
Higher order potential terms are naturally suppressed:

2k,
As 1 — g4st As = M <1

Vs(S) O TR Yo

(-dependent rotations S — el?/GR) S recover O-basis Lagrangian
up to dim-6 interaction terms

2
SR = 4f2 S J0,fSTS cs=Ch=2
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ALP particles are produced in SS — S*¢ processes with

2
G _ 3 € GF) _ o [x (1.1 € _my
Eap 4m5 (1 + 3 ) Py mgy /A (1, 5 €p me

Subsequent visible ¢ — XX decay products are isotropic and
monochromatic

dNX m dNX
_ W E’—“’) /dEd p— X _ o
dE} d cos 0 ( X" X ST JEx d cos
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Indirect detection spectra II

Kinematic variables in the GF are related to those in the ALP rest
frame
E)(<GF) = (Ex + BLpx cost') .

Differential energy injection spectra in the GF are computed as

dNX ’ ’ dNX (GF)
— = Ex ————— 0 |Ex — E .
dEx /dcosﬁd X dE} d cos ¢ 5( X~ )
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Introduce dimensionless variables

and apply this change of variable to the differential spectrum

dNx , dNx
/) e S
dxs / d cosdx, dx, d cos ¢’ 8

2
M aster ) <2X5 _ Z <x<p (1 + 2") +¢ xg — €% c059/>)

Formula
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Indirect detection spectra [V

1
Upon isotropy assumption and performing the / d cos @ integral
-1

max

dNx _ 4 / o dx  dNx
dis 3 Jagn fT- g b
8xs (3+¢2) =3¢, /643 - & [(3+2) —9¢?]
(3+e) -9
8xs (3+¢2) + 3g\/64x§ ~&[(3+¢2) -9
(3+e)-9c

min __
o =

)

max __ .
X = Min {1,
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Indirect Detection spectra V: -
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Box-Shaped Gamma rays

dN N _
T; = —2O(E,— E;)O(Ef —E), Ef=(1+pL)E,/2
vy Pe
[A. Ibarra, S. L. Gehler, and M. Pato: 1205.0007]
SS> S8 p->S*yy
1.0

ms =10 GeV —m, =10 GeV
ms =100 GeV ---m,=1GeV €, — 1
— mg=1Tev %

0.8 — mg=10TeV
~ Direct decay
Dirac delta-like signal

:

o H ® Plateau
__________ B x50

o 21 1200 ® Suppression x mgs

0.0 . .
10° 10 10° 102 107" 1
E, [GeV]

0.6

dN,/dE,

0.4
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