Precision and intensity probes of new physics

Planck 2025, Padova, May 30, 2025

Yotam Soreq

naturally predicted in many extensions of the standard model

- associated with solutions to fundamental problems: strong CP, dark matter, hierarchy problems

naturally predicted in many extensions of the standard model

Peccei, Quinn 77; Weinberg 78; Wilczek 78 Preskill, Wise 83; Abbott, Sikivie 83; Dine, Fleischer 83 Graham, Kaplan, Rajendran 15 + many many more

• limiting cases of the theory (flavor diagonal):

- limiting cases of the theory (flavor diagonal):
 - Higgs mixing (CP even)

- limiting cases of the theory (flavor diagonal):
 - Higgs mixing (CP even)

 - general flavor aligned (CP even)

Patt, Wilczek hep-ph/0605188

pNGB: axion or axion-like particles (CP odd) or dilation (CP even)

- limiting cases of the theory (flavor diagonal):
 - Higgs mixing (CP even)

 - general flavor aligned (CP even)

this talk: spectroscopy vs Kaon decay future probes

Patt, Wilczek hep-ph/0605188

pNGB: axion or axion-like particles (CP odd) or dilation (CP even)

2022 Spectroscopy data

excess in spectroscopy data

excess in spectroscopy data

1. How robust is the Kaon bound? i.e. how to avoid it?

Delaunay, Karr, Kitahara, Koelemeij, YS, Zupan, PRL 23

2022 Spectroscopy data

excess in spectroscopy data

1. How robust is the Kaon bound? i.e. how to avoid it? 2. How can we go beyond it?

Delaunay, Karr, Kitahara, Koelemeij, YS, Zupan, PRL 23

Can we avoid Kaon decay bounds?

 $\mathscr{L}_{\text{int}}^{\phi} \supset \frac{\phi}{f} \left(\frac{9\alpha_s}{8\pi} K_{\Theta} G^a_{\mu\nu} G^{a\mu\nu} - 2\kappa_W \mathscr{L}_{4q}^{\Delta S=1} + \kappa_{sd} m_s \bar{d}_L s_R + \kappa_{ds} m_d \bar{d}_R s_L - \sum_{\phi} \kappa_{\psi} m_{\psi} \bar{\psi} \psi \right)$

Can we avoid Kaon decay bounds?

$$\int_{q}^{S=1} + \kappa_{sd} m_s \bar{d}_L s_R + \kappa_{ds} m_d \bar{d}_R s_L - \sum_{\phi} \kappa_{\psi} m_{\psi} \bar{\psi} \psi \right)$$

Can we avoid Kaon decay bounds?

$$\int_{q}^{S=1} + \kappa_{sd} m_s \bar{d}_L s_R + \kappa_{ds} m_d \bar{d}_R s_L - \sum_{\phi} \kappa_{\psi} m_{\psi} \bar{\psi} \psi$$

Can we avoid Kaon decay bounds?

$$\int_{q}^{S=1} + \kappa_{sd} m_s \bar{d}_L s_R + \kappa_{ds} m_d \bar{d}_R s_L - \sum_{\phi} \kappa_{\psi} m_{\psi} \bar{\psi} \psi$$

Can we avoid Kaon decay bounds?

$$\int_{Q}^{S=1} + \kappa_{sd} m_s \bar{d}_L s_R + \kappa_{ds} m_d \bar{d}_R s_L - \sum_{\phi} \kappa_{\psi} m_{\psi} \bar{\psi} \psi$$

Can we avoid Kaon decay bounds?

Probing new hadronic forces with heavy exotic atoms

main challenge - the SM prediction (hadronic interactions)

circular states ($n \gg 1$, l = n - 1) insensitive to local hadronic interactions \Rightarrow can be predicted (up to nuclear polarizability) Paul et al PRL 21

main challenge - the SM prediction (hadronic interactions)

Zatorski, Patkos, Pachucki PRA 22

- circular states ($n \gg 1$, l = n 1) insensitive to local hadronic interactions \Rightarrow can be predicted (up to nuclear polarizability) Paul et al PRL 21
 - new physics sensitivity

 $g_N \times g_e$, $m_\phi \lesssim 4 \,\mathrm{keV}$

main challenge - the SM prediction (hadronic interactions)

Zatorski, Patkos, Pachucki PRA 22

 $g_N \times g_H, m_\phi \lesssim 10 \,\mathrm{MeV}$

Exotic atoms for BSM

$E_n^{\rm SM}$ $E_n^{\text{th}} = \overline{E_n^{\text{SM-NPol}} + E_n^{\text{NPol}} + E_n^X}$

Paul et al PRL 21 Zatorski, Patkos, Pachucki PRA 22 $\mathcal{O}(<10^{-6})$

Exotic atoms for BSM

$E_n^{\rm SM}$ $E_n^{\text{th}} = E_n^{\text{SM-NPol}} + E_n^{\text{NPol}} + E_n^X$

Paul et al PRL 21 Zatorski, Patkos, Pachucki PRA 22 $O(<10^{-6})$

 $E_n^{\rm SM}$ $E_n^{\text{th}} = E_n^{\text{SM-NPol}} + E_n^{\text{NPol}} + E_n^X$ $O(10^{-5})$

> $\propto \alpha_E^{\text{tot}} \langle r^{-4} \rangle$ can be extracted from data by using 2 transitions (2T)

Exotic atoms for BSM

Zatorski, Patkos, Pachucki PRA 22 $\mathcal{O}(<10^{-6})$

by using 2 transitions (2T)

Exotic atoms for BSM

Exotic atoms for BSM

Exotic atoms for BSM

Exotic atoms for BSM

Exotic atoms for BSM

uds-model

no kaon bounds, but spectroscopy signature

Liu, Ohayon, Shtaif, YS, 2502.03537

Exotic atoms for BSM

no kaon bounds, but spectroscopy signature

Liu, Ohayon, Shtaif, YS, 2502.03537

$\phi(g_{\rm S}^{\psi}\bar{\psi}\psi+ig_{\rm P}^{\psi}\bar{\psi}\gamma_5\psi)$

$\phi(g_{S}^{\psi}\bar{\psi}\psi + ig_{P}^{\psi}\bar{\psi}\gamma_{5}\psi)$

 $V_{\rm SP} \propto g_{\rm S}^{\psi_1} g_{\rm P}^{\psi_2} \frac{\vec{\sigma}^{\psi_1} \cdot \hat{r}}{2m_N} \left(\frac{1}{r} + m_{\phi}\right) \frac{e^{-m_{\phi}r}}{r}$

electric dipole moment (EDM) \Rightarrow CP violation in low energy systems

$\phi(g_{S}^{\psi}\bar{\psi}\psi + ig_{P}^{\psi}\bar{\psi}\gamma_{5}\psi)$

electric dipole moment (EDM) \Rightarrow CP violation in low energy systems

What we can learn from the electron EDM about CPV long range hadronic interactions?

 $V_{\rm SP} \propto g_{\rm S}^{\psi_1} g_{\rm P}^{\psi_2} \frac{\vec{\sigma}^{\psi_1} \cdot \hat{r}}{2m_{\rm M}} \left(\frac{1}{r} + m_{\phi}\right) \frac{e^{-m_{\phi}r}}{r}$

typical use for the electron electric dipole moment, d_e

CP violation in diatomic molecules

 $|\Omega, m_F\rangle$ - the quantum states - projection of electronic angular momentum on \hat{r} $\mathbf{\Omega}$ m_F - projection of total angular momentum on \hat{r}

CP violation in diatomic molecules

 $E_{\Omega,m_F} = E_0 + E_S + E_Z + E_{CPV}$

 $|\Omega, m_F\rangle$ - the quantum states - projection of electronic angular momentum on \hat{r} $\mathbf{\Omega}$ m_F - projection of total angular momentum on \hat{r}

CP violation in diatomic molecules

 $E_{\Omega,m_F} = E_0 + E_S + E_Z + E_{CPV}$

 Ωm_F

 $|\Omega, m_F\rangle$ - the quantum states - projection of electronic angular momentum on \hat{r} $\mathbf{\Omega}$ m_F - projection of total angular momentum on \hat{r}

CP violation in diatomic molecules

 $E_{\Omega,m_F} = E_0 + E_S + E_Z + E_{CPV}$

 $|\Omega, m_F\rangle$ - the quantum states - projection of electronic angular momentum on \hat{r} m_F - projection of total angular momentum on \hat{r}

CP violation in diatomic molecules

 $\langle \Omega, m_F \rangle$ - the quantum states - projection of electronic angular momentum on \hat{r} m_F - projection of total angular momentum on \hat{r}

CP violation in diatomic molecules

$$V_{\rm SP} \propto g_{\rm S}^{\psi_1} g_{\rm P}^{\psi_2} \frac{\vec{\sigma}^{\psi_1} \cdot \hat{r}}{2m_N} \left(\frac{1}{r} + m_{\phi}\right) \frac{e^{-m_{\phi}r}}{r}$$

CP violation in diatomic molecules

CP violation in diatomic molecules

Molecules are the best terrestrial probe of long range hadronic CPV force

Future probes of scalars and axions at the intensity frontier Optical Dump and EIC

high-intensity laser pulse/

electron beam

0

optical dump

LOI 1909.00860 ,CDR 2102.02032

An optical dump

 $E_e \approx 16.5 \,\text{GeV}, \,\omega_{\text{L}} \approx 1.5 \,\text{eV} \sim 1/(0.4 \,\text{fs}), \, t_{\text{L}} \sim \mathcal{O}(10 - 100) \,\text{fs}$

LOI 1909.00860 ,CDR 2102.02032

An optical dump

Schwinger like pair production the main physics goal

 $E_e \approx 16.5 \,\text{GeV}, \,\omega_{\text{L}} \approx 1.5 \,\text{eV} \sim 1/(0.4 \,\text{fs}), \, t_{\text{L}} \sim \mathcal{O}(10 - 100) \,\text{fs}$

LOI 1909.00860 ,CDR 2102.02032

An optical dump

Schwinger like pair production the main physics goal in ordinary material $\tau_{\gamma} \sim \tau_{ee}$

high-intensity laser pulse/

electron beam

optical dump

LOI 1909.00860 ,CDR 2102.02032

An optical dump

photon emission, frequent process several outgoing photons per electron $\rightarrow \gamma$

high intensity and high energy collimated photon source $10^{10} \gamma/\text{sec}, E_{\gamma} \sim \mathcal{O}(m_p)$

LOI 1909.00860 ,CDR 2102.02032

An optical dump

photon emission, frequent process several outgoing photons per electron

optical dump

adopted by the LUXE collaboration

 $\frac{g_a}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

adopted by the LUXE collaboration

Axions at an optical dump

adopted by the LUXE collaboration

very low background rate

Axions at an optical dump

16

 $\frac{g_a}{\Delta} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

GlueX: Aloni, Fanelli, YS, Williams, PRL 2019

adopted by the LUXE collaboration

very low background rate

- la la com	in .	in the start
		4.1
		2 1
		8 v
		- 10 S
		5
		- 46
		- T
		35
		\$ 5
	alo a	2 2 4 K (
		V

How can we go further?

Balkin, Hen, Li, Liu, Ma, YS, Williams JHEP 24

Pb

Balkin, Hen, Li, Liu, Ma, YS, Williams JHEP 24

coherent production of new particles up to $m_a \sim 20 \,\text{GeV}$

axion is produced and promptly decays to photons

Balkin, Hen, Li, Liu, Ma, YS, Williams JHEP 24

Pb

coherent production of new particles up to $m_a \sim 20 \,\text{GeV}$

axion is produced and promptly decays to photons

Balkin, Hen, Li, Liu, Ma, YS, Williams JHEP 24

Pb

 $E_{\rm Pb} = 20 \, {\rm TeV}$

axion is produced, travels a finite distance and decays to photons

coherent production of new particles up to $m_a \sim 20 \,\text{GeV}$

Pb

displaced

Balkin, Hen, Li, Liu, Ma, YS, Williams JHEP 24

coherent production of new particles up to $m_a \sim 20 \,\text{GeV}$

Balkin, Hen, Li, Liu, Ma, YS, Williams JHEP 24

BSM at Fusion reactors

utilize the huge neutron flux $\Phi_n^{\text{total}} \sim 10^{15} \text{cm}^{-2} \text{sec}^{-1}$

BSM at Fusion reactors

production

utilize the huge neutron flux $\Phi_n^{\text{total}} \sim 10^{15} \text{cm}^{-2} \text{sec}^{-1}$

$$\frac{A_{Z}X}{Z} \rightarrow \frac{A+1}{Z}X + \varphi$$

$$\frac{\partial P}{\partial P} = \frac{g_{\phi p}^{2}}{e^{2}} \frac{Q^{2}}{E_{\gamma}^{2}} \frac{p_{\phi}}{E_{\gamma}}$$

New physics production

$$\frac{A_Z X}{Z} \rightarrow \frac{A+1}{Z} X + \varphi$$

$$\frac{\partial P}{\partial P} = \frac{\partial P}{\partial P} \frac{\partial Q^2}{\partial P} \frac{\partial P}{\partial P} \frac{\partial Q^2}{\partial P} \frac{\partial P}{\partial P} \frac{\partial P}{\partial P}$$

$$n + {}^{A}_{Z}X \to {}^{A}_{Z}X + n + \varphi$$

$$\frac{\sigma_{\phi}}{\sigma_{SM}} \sim \frac{Z^{2}g_{\phi p}^{2}}{16\pi^{2}E_{\phi}^{3}} \left(E_{\phi}^{2} - m_{\phi}^{2}\right)^{3}$$

Baruch, Fitzpatrick, Menzo, YS, Trifinopoulos, Zupan, 2502.12314

only proton coupling

BSM at Fusion reactors

proton + small electron couplings

* Kaon decay can be disentangled from spectroscopy.

* Kaon decay can be disentangled from spectroscopy. * Precision spectroscopy is a powerful probe of new hadronic

interactions.

* Kaon decay can be disentangled from spectroscopy. * Precision spectroscopy is a powerful probe of new hadronic interactions.

- (LUXE, EIC).

* In the next coming years new options will be open for ALPs physics

backups

$$\mathcal{M}(K^{+} \to \pi^{+}\phi) = \frac{1}{f} \left\{ \frac{1}{2} (\kappa_{W} - K_{\Theta}) \left[\gamma_{1} \left(m_{K}^{2} - m_{\phi}^{2} + m_{\pi}^{2} \right) - 2\gamma_{2} \left(m_{K}^{2} + m_{\pi}^{2} \delta_{I} \right) \right] + \frac{1}{4} \kappa_{sd}^{\phi*} \left[2m_{K}^{2} - m_{\pi}^{2} (1 - \delta_{I}) \right] + \frac{m_{\pi}^{2}}{4} \kappa_{ds}^{\phi*} (1 + \delta_{I}) - \frac{m_{\pi}^{2}}{4} \left(\kappa_{u}^{\phi} - \frac{\kappa_{s+d}^{\phi}}{2} \right) \gamma_{1} (1 - \delta_{I}) + \frac{m_{\pi}^{2} \kappa_{s-d}^{\phi}}{8(m_{K}^{2} - m_{\pi}^{2})} \left(m_{K}^{2} \left[(3 + \delta_{I}) \gamma_{1} - 4(1 + \delta_{I}) \gamma_{2} \right] - m_{\pi}^{2} \left[(1 - \delta_{I}) \gamma_{1} - 2\gamma_{2} \right] \right) \right\}$$

$$\begin{aligned} \mathcal{M}(K_L \to \pi^0 \phi) &= -\frac{1}{f} \left\{ \frac{1}{2} (\kappa_W - K_{\Theta}) \Big[\gamma_1 \Big(m_K^2 - m_{\phi}^2 + m_{\pi}^2 \Big) - 2\gamma_2 m_K^2 \Big] + \frac{1}{4} \operatorname{Re} \kappa_{sd}^{\phi} \left[2m_K^2 - m_{\pi}^2 (1 + \delta_I) + \frac{m_{\pi}^2}{4} \operatorname{Re} \kappa_{ds}^{\phi} (1 + \delta_I) + \frac{\kappa_{s-d}^{\phi} m_{\pi}^2}{4(m_K^2 - m_{\pi}^2)} (\gamma_1 - \gamma_2) \Big[2m_K^2 (1 + \tilde{\delta}_I) - m_{\pi}^2 \Big] \right\} \end{aligned}$$

$$\mathscr{M}(K_S \to \pi_{\text{int}}^0 \phi) = \frac{1}{4f} \left\{ \operatorname{Im} \kappa_{sd}^{\phi} \left[2m_K^2 - m_{\pi}^2 (1 + \delta_I) \right] + \operatorname{Im} \kappa_{sd} \left[2m_K^2 - m_{\pi}^2 (1 + \delta_I) \right] + \operatorname{Im} \kappa_{sd} \left[2m_K^2 - m_{\pi}^2 (1 + \delta_I) \right] \right\} \right\}$$

 $\mathcal{M}(K^+ \to \pi^+ \phi) + \mathcal{M}(K_I)$

Kaon decays: $K \rightarrow \pi \phi$

 $\kappa^{\phi}_{ds}m^2_{\pi}(1+\delta_I)$

$$_L \to \pi^0 \phi) + i \mathscr{M}(K_S \to \pi^0 \phi) = 0$$

uds-model

Delaunay, Kitahara, YS, Zupan, 2501.16477

B-number + invisible

Liu, Ohayon, Shtaif, YS, 2502.03537

Pviolation in chiral molecules

$E_L \neq E_R \Rightarrow$ parity violation

within the SM tiny effect (weak interaction)

Baruch, Changala, Shagam, YS, PRR 24

PRR 24

Pviolation in chiral molecules comparing the hyperfine structure of L and R

	state 1		state 2	
$E_{1\rightarrow 2}$ [GHz]	$\langle N, K_a, K_c, J, F_1, F_2, F_3, F $	$\langle \sigma_i imes \sigma_j angle \cdot \hat{r}_{ m eq}^{ij}$	$ig N, K_a, K_c, J, F_1, F_2, F_3, F angle$	$\langle \sigma_i imes \sigma_j angle \cdot \hat{r}_i$
3.34	$\left<1, 1, 0, rac{3}{2}, 1, 1, rac{5}{2}, 0 ight.$	0.49	$ 1,0,1,\frac{1}{2},1,2,\frac{7}{2},1 angle$	0.12
3.99	$\left {\left. {\left. {\left\langle {2,2,0,rac{5}{2},3,3,rac{5}{2},0} ight } ight.} ight. ight.$	0.23	$\left {\left {1,0,1,rac{3}{2},1,2,rac{3}{2},1} ight angle } ight angle ight $	0

Baruch, Changala, Shagam, YS, PRR 24

Axions at muon-ion collider (MuSIC) How can we go more further (next decades)?

muon-ion collider

Axions at muon-ion collider (MuSIC)

coherent production of new particles up to $m_a \sim 200 \,\mathrm{GeV}$

 $E_{\mu} \approx 1 \,\mathrm{TeV}, E_{\mathrm{Au}} \approx 20 \,\mathrm{TeV}$

Davoudiasl, Liu, Marcarelli, YS, Trifinopoilos 2412.13289

${}^{2}_{1}\text{D} + {}^{3}_{1}\text{T} \rightarrow {}^{4}_{2}\text{He} + n + 17.6 \text{ MeV}$

utilize the huge neutron flux $\Phi_n^{\text{total}} \sim 10^{15} \text{cm}^{-2} \text{sec}^{-1}$

BSM at Fusion reactors

energy excess to new particle $^{2}_{1}\text{D} + ^{3}_{1}\text{T} \rightarrow ^{4}_{2}\text{He} + n + \varphi$

Baruch, Fitzpatrick, Menzo, YS, Trifinopoulos, Zupan, 2502.12314

28

n on the blanket target *n* from the fusion

operation time

New physics chain

detection via D disassociation SNO like

 $E_{\omega} > 2.2 \,\mathrm{MeV}$

number of detected events: $N_{\varphi} = TN_D \int dE_n dE_{\varphi} \frac{d\Phi_{\varphi}}{dE_n} \sigma_{\varphi D \to np} \propto g_{\varphi p}^4$ # of deuterium targets detection cross section

Baruch, Fitzpatrick, Menzo, YS, Trifinopoulos, Zupan, 2502.12314

New physics production

utilize the huge neutron flux + blanket as a target

 $Z^{\boldsymbol{\Lambda}}$

 ${}^{A}_{Z}X$

Coherent scattering

6Li

n

