Status of the $(g-2)_{\mu}$ puzzle

Gilberto Colangelo

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

PLANCK 2025 - Padova, May 30, 2025

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic light-by-light contribution

Dispersive Lattice

Hadronic Vacuum Polarization contribution Dispersive

Conclusions and Outlook

Present status of $(g - 2)_{\mu}$: experiment vs SM

Before

Present status of $(g - 2)_{\mu}$: experiment vs SM

After the 2021 Fermilab result

Present status of $(g - 2)_{\mu}$: experiment vs SM

After the 2023 Fermilab result

White Paper (2020): $(g - 2)_{\mu}$, experiment vs SM

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, <i>udsc</i>)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, uds)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 059(22)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	249(48)

White Paper (2020): $(g - 2)_{\mu}$, experiment vs SM

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, $udsc) \rightarrow BMW(20)$	7075(55)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 059(22)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	249(48)

White Paper (2020): $(g - 2)_{\mu}$, experiment vs SM

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g - 2 Theory Initiative Steering Committee: GC Michel Davier (vice-chair) Aida El-Khadra (chair) Martin Hoferichter Laurent Lellouch Christoph Lehner (vice-chair) Tsutomu Mibe (J-PARC E34 experiment) Lee Roberts (Fermilab E989 experiment) Thomas Teubner Hartmut Wittig

Rest of the talk: White Paper 25, arXiv: 2505.21476

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%

unitarity and analyticity ⇒ dispersive approach
 ⇒ direct relation to experiment: σ_{tot}(e⁺e⁻ → hadrons)
 e⁺e⁻ Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
 alternative approach: lattice, now competitive

(BMW, ETMC, Fermilab, HPQCD, Mainz, MILC, RBC/UKQCD, χ QCD)

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%</p>
- Hadronic light-by-light (HLbL) is O(α³), known to ~ 20%, second largest uncertainty (now subdominant)

- earlier: model-based—uncertainties difficult to quantify
- ► recently: dispersive approach ⇒ data-driven, systematic treatment
- more recently: lattice QCD also competitive (Mainz, RBC/UKQCD, BMW)

The 2×2 matrix of Hadronic Contributions

	dispersive	lattice
HLbL	??	??
HVP	??	??

The 2×2 matrix of Hadronic Contributions

	dispersive	lattice
HLbL	??	??
HVP	??	??

HLbL contribution: Master Formula

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{48\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^{1} \sqrt{1-\tau^2} \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

 Q_i^{μ} are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta: $Q_1 \cdot Q_2 = |Q_1| |Q_2| \tau$ The integration variables $Q_1 := |Q_1|, Q_2 := |Q_2|$.

GC, Hoferichter, Procura, Stoffer (15)

T_i: known kernel functions

Improvements obtained with the dispersive approach

Contribution	PdRV(09) Glasgow cons.	N/JN(09)	J(17)	WP(20)	WP(25)
π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering	114(13) 19(19) 7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)	$91.2 \begin{array}{c} +2.9 \\ -2.4 \\ -16.4(2) \\ -9.1(1.0) \end{array}$
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)	$65.7 \ \substack{+3.1 \\ -2.6}$
scalars tensors axial vectors <i>u</i> , <i>d</i> , <i>s</i> -loops / short-distance	 15(10) 	 22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)	} 34.6(8.1)
c-loop	2.3	_	2.3(2)	3(1)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)	103.3(8.8)

significant reduction of uncertainties in the first three rows

CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid, Holz, Kubis (18,24)

more recent progress: resonances + short-distance constraints Lüdtke, Procura, Stoffer (23), Bijnens et al. (23,24), Hoferichter, Stoffer, Zillinger (25), Mager, (Cappiello), Leutgeb, Rebhan (23-25)

Improvements in the last rows

large-Q_i (short-distance) behavior fixed by QCD

@LO Melnikov, Vainshtein (04)

@NLO Bijnens, Hermansson-Truedsson, (Laub), Rodríguez-Sánchez (20-24)

- smooth transition from hadronic to QCD OPE description is nontrivial Melnikov, Vainshtein (04), GC, Hagelstein, Hoferichter, Laub, Stoffer (20-21)
- axial-vectors (as well as tensors) play an important role and their dispersive treatment is subtle Hoferichter, Stoffer, Zillinger (24)
- hQCD has provided a useful guidance

Mager, (Cappiello), Leutgeb, Rebhan (23-25)

Regge models and DSE/BSE useful check too

Masjuan, Roig, Sanchez-Puertas (22), Eichmann, Fischer, Weil, Williams (19-20)

Improvements in the last rows

Hoferichter, Stoffer, Zillinger (24)

Improvements in the last rows

$Q_0 = 1.5 \text{ GeV}$

Region		Dispersive	hQCD	Regge	DSE/BSE
$Q_i > Q_0$		$6.2^{+0.2}_{-0.3}$	6.3(7)	4.8(1)	2.3(1.5)
Mixed	A, S, T OPE Effective pole Sum	3.8(1.5) 10.9(0.8) 1.2 15.9(1.7)	13.5(2.4)	12.8(5)	10.1(3.0)
$Q_i < Q_0$	$\begin{array}{l} A = f_1, f_1', a_1 \\ S = f_0(1370), a_0(1450) \\ T = f_2, a_2 \\ \text{Other} \\ \text{Sum} \end{array}$	12.2(4.3) -0.7(4) -2.5(8) 2.0 11.0(4.4)	13.1(1.5) 2.9(4) 8.0(9) 24.0(2.8)	10.9(1.0) 3.2(6) 14.1(1.2)	8.6(2.6) -0.8(3) 2.8(6) 10.6(2.7)
Sum		33.2(4.7)	43.8(5.9)	31.7(1.6)	23.0(7.4)

Dispersive: Hoferichter, Stoffer, Zillinger (25), hQCD: Mager, (Cappiello), Leutgeb, Rebhan (25),

Regge: Masjuan, Roig, Sanchez-Puertas (22), DSE/BSE: Eichmann, Fischer, Weil, Williams (19,20)

Improvements obtained with the dispersive approach

Contribution	PdRV(09) Glasgow cons.	N/JN(09)	J(17)	WP(20)	WP(25)
π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering	114(13) 19(19) 7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)	$91.2 \begin{array}{c} +2.9 \\ -2.4 \\ -16.4(2) \\ -9.1(1.0) \end{array}$
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)	$65.7 \ \substack{+3.1 \\ -2.6}$
scalars tensors axial vectors <i>u, d, s</i> -loops / short-distance	 15(10) 	 22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)	} 34.6(8.1)
<i>c</i> -loop	2.3	-	2.3(2)	3(1)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)	103.3(8.8)

The 2×2 matrix of Hadronic Contributions

	dispersive	lattice
HLbL	\checkmark	??
HVP	??	??

Master formula for HLbL lattice calculations

$$a^{\text{HLbL}}_{\mu} = \frac{me^{6}}{3} \int d^{4}x \ d^{4}y \ \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(p,x,y) \ i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y),$$
$$i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y) = -\int d^{4}z \ z_{\rho} \left\langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0) \right\rangle_{\text{QCD}}.$$

with $\mathcal{L}_{\dots}(p, x, y)$ the analytically calculable QED kernel:

$$\mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(p,x,y) = \frac{1}{16m^2} \int d^4u d^4v d^4w G(w-x) G(u-y) G(v) e^{-i\rho \cdot (w-v)} \\ \times \operatorname{Tr} \{ [\gamma_{\rho}, \gamma_{\sigma}] (-i\not p + m) \gamma_{\mu} S(w-u) \gamma_{\nu} S(u-v) \gamma_{\lambda} (-i\not p + m) \}$$

HLbL Lattice results

Collab.	$10^{11}a_{\mu}^{\mathrm{HLbL},\ell}$	$10^{11}a_\mu^{\mathrm{HLbL},s}$	$10^{11}a_{\mu}^{\mathrm{HLbL},c}$
Mainz/CLS	107.4(11.3)(9.2)(6.0)	-0.6(2.0)	2.8(5)
RBC/UKQCD	122.0(10.1)(9.5)	-0.0(2.2)(0.3)	_
BMW	122.6(11.6)	-1.7(8)(3)	2.73(27)

HLbL Lattice results

Figure 63: Illustration of the connected and (2+2) disconnected Wick-contraction diagrams for the quarks. The latter are not SU(3)_F suppressed and turn out to be the dominant class of disconnected diagrams. Figure from Ref. [61].

HLbL Lattice results

	$[10^{-11}]$	RBC/UKQCD QED _L [58]	
	$a_{\mu}^{ ext{HLbL},(4\ell)} a_{\mu}^{ ext{HLbL},(2\ell+2\ell)}$	241.6(23.0) _{stat} (51.1) _{syst} [56.0] -160.9(21.4) _{stat} (39.9) _{syst} [45.3]	
	$a_{\mu}^{ ext{HLbL},\ell}$	82.3(30.7) _{stat} (17.7) _{syst} [35.4]	
[10-11]		PRO/UWOOD ((1)	
	Mainz/CLS [59]	RBC/UKQCD [61]	BMW [62]
$a_{\mu}^{\text{HLbL},(4\ell)}$	see text	257.0(13.3) _{stat} (19.9) _{syst} [23.9]	BMW [62] 220.1(13.0) _{stat} (3.8) _{syst}
$\frac{a_{\mu}^{\text{HLbL},(4\ell)}}{a_{\mu}^{\text{HLbL},(2\ell+2\ell)}}$	see text see text	RBC/UKQCD [61] 257.0(13.3) _{stat} (19.9) _{syst} [23.9] -135.0(13.6) _{stat} (12.1) _{syst} [18.2]	BMW [62] 220.1(13.0) _{stat} (3.8) _{syst} -101.1(12.4) _{stat} (3.2) _{syst}
$\frac{a_{\mu}^{\text{HLbL},(4\ell)}}{a_{\mu}^{\text{HLbL},(2\ell+2\ell)}}$	Mainz/CLS [59] see text see text	RBC/UKQCD [61] 257.0(13.3) _{stat} (19.9) _{syst} [23.9] -135.0(13.6) _{stat} (12.1) _{syst} [18.2] 54.0(9.4) _{stat} (5.3) _{syst} [10.8]	BMW [62] 220.1(13.0) _{stat} (3.8) _{syst} -101.1(12.4) _{stat} (3.2) _{syst} see text

Table 31: Results for the light-quark contributions in various linear combinations, as well as the total $a_{\mu}^{\text{HLbL},\ell}$.

HLbL: comparison dispersive/lattice

The 2×2 matrix of Hadronic Contributions

	dispersive	lattice
HLbL	\checkmark	\checkmark
HVP	??	??

dispersive

HVP contribution: Master Formula

Ş

Unitarity relation: simple, same for all intermediate states

 $\mathrm{Im}\bar{\Pi}(q^2) \propto \sigma(e^+e^- \to \mathrm{hadrons}) = \sigma(e^+e^- \to \mu^+\mu^-)R(q^2)$

Analyticity $\left[\bar{\Pi}(q^2) = \frac{q^2}{\pi} \int ds \frac{\mathrm{Im}\bar{\Pi}(s)}{s(s-q^2)}\right] \Rightarrow$ Master formula for HVP

$$\Rightarrow a_{\mu}^{\text{hvp}} = \frac{\alpha^2}{3\pi^2} \int_{s_{th}}^{\infty} \frac{ds}{s} K(s) R(s)$$

K(s) known, depends on m_{μ} and $K(s) \sim \frac{1}{s}$ for large s

dispersive

HVP contribution: Master Formula

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(3.38)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(1.45)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.30)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.55)	18.15(74)	-0.12
$\mathcal{K}^+\mathcal{K}^-$	23.08(0.44)	23.00(22)	0.08
$K_S K_L$	12.82(0.24)	13.04(19)	-0.22
$\pi^{0}\gamma$	4.41(0.10)	4.58(10)	-0.17
Sum of the above	626.08(3.90)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without <i>cc</i>)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	694.0(4.0)	692.8(2.4)	1.2

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(3.38)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(1.45)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.30)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.55)	18.15(74)	-0.12
$\mathcal{K}^+\mathcal{K}^-$	23.08(0.44)	23.00(22)	0.08
$K_S K_L$	12.82(0.24)	13.04(19)	-0.22
$\pi^{0}\gamma$	4.41(0.10)	4.58(10)	-0.17
Sum of the above	626.08(3.90)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without <i>cc</i>)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	694.0(4.0)	692.8(2.4)	1.2

For the dominant $\pi\pi$ channel more theory input can be used

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(3.38)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(1.45)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.30)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.55)	18.15(74)	-0.12
K^+K^-	23.08(0.44)	23.00(22)	0.08
$K_{S}K_{L}$	12.82(0.24)	13.04(19)	-0.22
$\pi^{0}\gamma$	4.41(0.10)	4.58(10)	-0.17
Sum of the above	626.08(3.90)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without <i>cc</i>)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	694.0(4.0)	692.8(2.4)	1.2

For the 3π and *KK* channels also

Hoferichter, Hoid, Kubis, Stamen, Hariharan, Stoffer

Omnès representation including isospin breaking

$${\sf F}_V({m s}) = \Omega_{\pi\pi}({m s}) \cdot {m G}_\omega({m s}) \cdot \Omega_{
m in}({m s})$$

Fit results

GC, Hoferichter, Stoffer (18)

Fit result for the VFF $|F_{\pi}^{V}(s)|^{2}$

Fit results

GC, Hoferichter, Stoffer (18)

Fit results

Result for $a_{\mu}^{\pi\pi}|_{<1 \text{ GeV}}$ from the VFF fits to single experiments and combinations

Combination method and final result

Complete analyses DHMZ19 and KNT19, as well as CHS19 (2π) and HHK19 (3π) , have been so combined:

HHK=Hoferichter, Hoid, Kubis

- central values are obtained by simple averages (for each channel and mass range)
- the largest experimental and systematic uncertainty of DHMZ and KNT is taken
- ► 1/2 difference DHMZ-KNT (or BABAR-KLOE in the 2π channel, if larger) is added to the uncertainty

Final result:

$$a_{\mu}^{ ext{HVP, LO}} = 693.1(2.8)_{ ext{exp}}(2.8)_{ ext{sys}}(0.7)_{ ext{DV+QCD}} imes 10^{-10} = 693.1(4.0) imes 10^{-10}$$

dispersive

CMD-3 measurement of $e^+e^- \rightarrow \pi^+\pi^-$

F. Ignatov et al., CMD-3, arXiv: 2302.08834

The comparison of pion form factor measured in this work with the most recent ISR experiments (BABAR [21], KLOE [18, 19], BES [22]) is shown in Fig. 34. The comparison with the most precise previous energy scan experiments (CMD-2 [12, 13, 14, 15], SND [16] at the VEPP-2M and SND [23] at the VEPP-2000) is shown in Fig. 35. [The new result

generally shows larger pion form factor in the whole energy range under discussion. The most significant difference to other energy scan measurements, including previous CMD-2 measurement, is observed at the left side of ρ -meson ($\sqrt{s} = 0.6 - 0.75$ GeV), where it reach up to 5%, well beyond the combined systematic and statistical errors of the new and previous results. The source of this difference is unknown at the moment.

dispersive

Comparison between CMD-3 and other experiments

Leplumey and Stoffer, arXiv:2501.09643

Comparison between CMD-3 and other experiments

Leplumey and Stoffer, arXiv:2501.09643

Discrepancy w/ CMD-3	$\left. {{{\it a}_{\mu }^{\pi \pi }}} ight _{\le 1~{ m GeV}}$		
	unconstrained	constrained	
SND06	2.0 σ	1.8 σ	
CMD-2	3.3σ	3.7σ	
BaBar	2.9 σ	2.8 σ	
KLOE"	7.4σ	8.9σ	
BESIII	4.2 σ	4.5σ	
SND20	3.0 σ	3.2 σ	
Combination	4.4 σ [7.3 σ]	4.4 σ [8.1 σ]	

Uncertainties in brackets exclude KLOE-BaBar systematic eff.

Combination: NA7 + all data sets other than SND20 and CMD-3

dispersive

Comparison between CMD-3 and other experiments

Comparison according to DHLMZ

Davier, Hoecker, Lutz, Malaescu, Zhang (23)

Comparison between different e^+e^- experiments

Puzzle not just data-driven vs lattice

Di Luzio, Masiero, Paradisi, Passera (22)

Updates on IB corrections from $(g - 2)_7$ @KEK 2024

KLOE and BESIII have rebutted claims that higher-order radiative corrections might have solved the puzzle

talks by A. Denig and G. Venanzoni @KEK24

- claim that initial/final radiation interference on the box diagram might impact significantly radiative-return experiments is under scrutiny
 F. Ignatov @STRONG2020 Zürich (23)
- reconsideration of τ decays as input for HVP in WP25

TI Virtual workshops on Nov. 8 and Dec. 9

• analysis of IB for τ decays on the lattice is ongoing

talk by M. Bruno @KEK24

• dispersive analysis of IB for τ decays is ongoing

talk by M. Cottini @KEK24

Comparison between e^+e^- and τ -based HVP

The 2×2 matrix of Hadronic Contributions

	dispersive	lattice
HLbL	\checkmark	\checkmark
HVP	?!?!?!	ightarrow talk by L. Lellouch

The 2×2 matrix of Hadronic Contributions

	dispersive	lattice
HLbL	\checkmark	\checkmark
HVP	?!?!?!	\checkmark

More details in WP25: arXiv:2505.21476

Summary plot WP25

dispersive

Summary table WP25

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-, au)	no estimates provided
HVP NLO (e^+e^-)	-99.6(1.3)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice)	7132(61)
HLbL (phenomenology)	103.3(8.8)
HLbL NLO (phenomenology)	2.6(6)
HLbL (lattice)	122.5(9.0)
HLbL (phenomenology + lattice)	112.6(9.6)
QED	116 584 718.8(2)
EW	154.4(4)
HVP LO (lattice) + HVP N(N)LO (e^+e^-)	7045(61)
HLbL (phenomenology + lattice + NLO)	115.5(9.9)
Total SM Value	116 592 033(62)
Experiment	116 592 059(22)
Difference: $\Delta a_{\mu}:=a_{\mu}^{exp}-a_{\mu}^{SM}$	26(66)

dispersive

Summary Table WP20

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116 584 718.931(104)
EW	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 059(22)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	249(48)

Conclusions

- ► Dispersive evaluation of HLbL contribution: WP20 20% → WP25 ~ 10% accuracy. Lattice calculations [Mainz/CLS(21), RBC/UKQCD(23), BMW24] agree with it
- WP20: 0.6% error of data-driven HVP contribution dominated the theory uncertainty

Main contribution: $\pi\pi$ (<1 GeV) based on [CMD-2, SND, BaBar, KLOE, BES-III] Puzzle: results by CMD-3 (23) significantly higher!

 Lattice calculations of HVP provide a consistent picture: agree with each other and with cmD-3 for all possible sub-quantities and the total: aSM_μ(WP25) relies on Lattice HVP

$$a_{\mu}^{\rm SM} - a_{\mu}^{\rm exp} = 26(66) \cdot 10^{-11}$$

Outlook

- The Fermilab experiment aims to reduce the BNL uncertainty by a factor four ⇒ final result will be announced next week
- Improvements on the SM theory/data side:
 - Situation for HVP data-driven urgently needs to be clarified:
 - New CMD-3 result—after thorough scrutiny—is a puzzle
 - Forthcoming measur./analyses: BaBar, Belle II, BESIII, KLOE, SND
 - Model-independent evaluation of RadCorr underway
 - MuonE will provide an alternative way to measure HVP
 - HVP lattice: very good agreement at present; more complete calculations are coming [Fermilab-MILC-HPQCD, ETMC]; some contributions (LD, IB, disc) need to be improved
 - HLbL: goal of ~ 10% uncertainty (data-driven and lattice) has been achieved. Further improvements underway

Future: Muon g - 2/EDM experiment @ J-PARC

Credit: J-PARC