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The strategy of reduc:onism: At smaller distances 
there is a simpler, more predic:ve theory of 

longer distance phenomena100 m

10−5 m

10−10 m

10−15 m

10−20 m

Biology
Cells

Chemistry
Atoms

Nuclei

The Standard Model 
of Particle Physics

Simpler theories!

Remarkable  
emergent phenomena!

At each stage we need both theory and experiment 
to determine the shorter distance theory! 
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Nonzero SM yukawas explicitly break  flavor symmetryU(3)2

 nongeneric; e.g. eigenvalues (ye)i
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Is this structure spoiled by quantum corrections?



Important bottom-up guidance comes from symmetries!

ℒSM ⊃ (ye)i
jHLiēj

Nonzero SM yukawas explicitly break  flavor symmetryU(3)2

 nongeneric; e.g. eigenvalues (ye)i
j ye ≪ yμ ≪ yτ ≪ 1

’t Hooft: Assign a ‘spurious’ charge. This 
formally restores invariance, and QFT doesn’t 
‘know’ this charge assignment is fake

Is this structure spoiled by quantum corrections?

Simply by covariance under this spurious symmetry! δ(ye)i
j ∝ (ye)i

j
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Technical Naturalness
A unique ‘spurion’ is ‘technically natural’: All quantum corrections must be 
proportional to itself

But no hints as to how you ended up with small parameters!

Generally, hierarchies in parameters 
which are technically natural are not 
as challenging because they can be 
solved at high scales. 

δ(ye)i
j ∝ (ye)i

j

δm2
H ∝ M2

vs.

Could we get any further guidance from symmetries?



Global Symmetry of Point Operators

Noether 1918:  A continuous global symmetry gives a 

current  with , and  

 

is conserved under time translations

Jμ ∂μJμ = ⃗∇ ⋅ ⃗J − ·J0 = 0

Q(ℳspace, t) = ∫ℳspace

J0dx1dx2dx3
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Global Symmetry of Point Operators

Noether 1918:  A continuous global symmetry gives a 

current  with , and  

 

is conserved under time translations

Jμ ∂μJμ = ⃗∇ ⋅ ⃗J − ·J0 = 0

Q(ℳspace, t) = ∫ℳspace

J0dx1dx2dx3

But why is this so non-covariant?

We can do beIer with some basic ideas from topology.
Recall topology deals with proper:es that do not change under 
smooth deforma:ons: ‘global’ rather than ‘local’

Henry Segerman Topology Joke
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Symmetry detecting operators

Generalized Noether surfaces detect symmetry 

charges of point operators Q(Σ3) = ∫Σ3

Jμ ̂nμd3x

Q(Σ3) − Q(Σ′ 3) = ∫Σ3

Jμ ̂nμd3x − ∫Σ′ 3

Jμ ̂nμd3x = ∫Σ4

∂μJμd4x = 0

Symmetry  Topological surface operator!∼
Gaiotto, Kapustin, Seiberg, Willett ‘14

Time translation upgraded to topological invariance
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What about topological operators on -dimensional surfaces?d < 3
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t = 0
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You’re familiar with a topological 2-surface operator in Maxwell theory!

t = 0
d ⃗AΣ2 Q(Σ2) = ∫Σ2

⃗E ⋅ d ⃗A

Q(Σ2) − Q(Σ′ 2) = ∫Σ3

∂μFμν ̂nνd3x = 0

= ∫Σ2

Fμν ̂nμ ̂nνd2x

Generalized Noether Charges
What about topological operators on -dimensional surfaces?d < 3

Gauss’ law is the existence of a topological 2-surface ~ global symmetry!
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What dimensional operators could ‘link with’ this 2-dim surface? 
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What should be the charged object be now? 

What dimensional operators could ‘link with’ this 2-dim surface? 

Link (Σp, Σd−p−1) ∈ ℤ

Digression because d=3 space is easier for us primates

, p = 0 d − p − 1 = 2 , p = 1 d − p − 1 = 1



What dimensional operators could ‘link with’ this 2-dim surface? 

 point links a closed 3-surface 
 line links a closed 2-surface

p = 0
p = 1
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What dimensional operators could ‘link with’ this 2-dim surface? 

 point links a closed 3-surface 
 line links a closed 2-surface

p = 0
p = 1

What should be the charged object be now? 

It’s a Wilson line!


Wq(γ) = eiq ∫γ A

t = 0

Σ2

Wq(γ) = eiq ∫γ A

(worldline  of charge  
object in limit )

γ q
m → ∞

Link (Σp, Σd−p−1) ∈ ℤ



Core conceptual point of generalized symmetries

Symmetries can be understood as the existence of 
some surface operators that are topologically invariant.

 topological surfaces∃
Noether 
charge

Gauss’ law

New notions of symmetry you can’t 
understand from the Lagrangian

Discrete 
symmetries

AB effect

Some basic intros: Gomes ’23, Brennan & Hong ’23, Iqbal ’24, my papers 
More formal: Schäfer-Nameki ’23, Bhardwaj et al. ’23, Simons Lectures ’24 



Generalized Symmetry Breaking

Extended operator symmetry breaking is qualitatively 
different from local operator symmetry breaking!

Local operator symmetry

Explicit breaking from 
charged local operators in  
E.g. 

ℒ
ℒ ⊃ cij(H̃Li)(H̃Lj)

Σ2

ψ(x)

ψ(y)
Wq(γ; x, y)

Extended operator symmetry

Explicit breaking when 
new dynamical degrees 
of freedom in UV



Generalized Symmetry Breaking

Extended operator symmetry breaking is qualitatively 
different from local operator symmetry breaking!

Local operator symmetry

Explicit breaking from 
charged local operators in  
E.g. 

ℒ
ℒ ⊃ cij(H̃Li)(H̃Lj)

Σ2

ψ(x)

ψ(y)
Wq(γ; x, y)

Extended operator symmetry

Explicit breaking when 
new dynamical degrees 
of freedom in UV

V(r) = −q2

4πr (1 + q2

16π3/2
e−2mer

(mer)3/2 + …), r ≫ me

Gauss’ law breaks 
with dynamical 
electron!

See Córdova, Ohmori, Rudelius ‘22

Uehling, ‘35
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Magnetic charges

Recall Maxwell’s equations ∇ ⋅ E = 4πρ ∇ ⋅ B = 0
Low-energy theory of electromagnetism is asymmetric

Tq̃(γ) = eiq̃ ∫γ Ã

Any theory of unification provides 
heavy magnetic monopoles!

Dual magnetic line symmetry

Magnetic symmetry is only broken 
in an ultraviolet theory where 
degrees of freedom are rearranged!

Dirac ’31; ’t Hooft ’74; Polyakov ‘74

Σ2



Non-invertible Naturalness 
This is a symmetry structure which acts on 
both local operators and magnetic worldlines.

T(γ)
γ

⋅ ψ(x)

Σ3
D2π

N (Σ3)
= ⋅ ψ(x)e2πiq/N

T(γ)W(γ)1/N

Córdova, Ohmori ’22 
Choi, Lam, Shao ’22  
Shao TASI 2023 notes
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Non-invertible Naturalness 

So it both controls the form of the Lagrangian and breaks when magnetic 
monopoles appear! Operators protected by this symmetry must be generated!

This is a symmetry structure which acts on 
both local operators and magnetic worldlines.

T(γ)
γ

⋅ ψ(x)

Σ3
D2π

N (Σ3)
= ⋅ ψ(x)e2πiq/N

T(γ)W(γ)1/N

Find a spurion for a  
non-invertible symmetry  
of your IR theory

Coupling can be generated by 
nonperturbative gauge theory effects in a UV 
theory with the right magnetic monopoles.
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Non-invertible Naturalness 

So it both controls the form of the Lagrangian and breaks when magnetic 
monopoles appear! Operators protected by this symmetry must be generated!

This is a symmetry structure which acts on 
both local operators and magnetic worldlines.

T(γ)
γ

⋅ ψ(x)

Σ3
D2π

N (Σ3)
= ⋅ ψ(x)e2πiq/N

T(γ)W(γ)1/N

Symmetry guidance past technical naturalness!

Find a spurion for a  
non-invertible symmetry  
of your IR theory

Coupling can be generated by 
nonperturbative gauge theory effects in a UV 
theory with the right magnetic monopoles.

⇒

Córdova, Ohmori ’22 
Choi, Lam, Shao ’22  
Shao TASI 2023 notes



Non-invertible symmetry in lepton flavor gauge theory
2211.07639/PRX Clay Córdova, Sungwoo Hong, SK, Kantaro Ohmori

Gauged  gives 
non-invertible symmetry 
protecting neutrino masses!

U(1)Lμ−Lτ

Instantons produce 
Majorana neutrinos

ℒ ∼
yμyτ

vΦ
e

− 8π2
g2

H (H̃L)(H̃L)U(1)Lμ−Lτ
⊂ SU(2) × U(1)



Non-invertible symmetry in lepton flavor gauge theory
2211.07639/PRX Clay Córdova, Sungwoo Hong, SK, Kantaro Ohmori

Gauged  gives 
non-invertible symmetry 
protecting neutrino masses!

U(1)Lμ−Lτ

Instantons produce 
Majorana neutrinos

ℒ ∼
yμyτ

vΦ
e

− 8π2
g2

H (H̃L)(H̃L)U(1)Lμ−Lτ
⊂ SU(2) × U(1)

Instantons produce 
Dirac neutrinos

ℒ ∼ yτe
− 8π2

g2
H H̃Lν̄

3ν̄ + U(1)Lμ−Lτ ⊂ SU(3)



Non-invertible PQ Symmetry in quark flavor gauge theory

Since , can gauge 
 

and get non-invertible 
symmetry! 
Breaking in e.g.  
quark color-flavor 
unification.

Nc = Ng

(SU(3)C × U(1)B1+B2−2B3)/ℤ3

SU(9)

Massless quark solution 
from yb ∼ yte−8π2/g2

9

SM matter

2402.12453/PRX Córdova, Hong, SK
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(see talk from Antonio on Tuesday)



Non-invertible PQ Symmetry in quark flavor gauge theory

Since , can gauge 
 

and get non-invertible 
symmetry! 
Breaking in e.g.  
quark color-flavor 
unification.

Nc = Ng

(SU(3)C × U(1)B1+B2−2B3)/ℤ3

SU(9)

Massless quark solution 
from yb ∼ yte−8π2/g2

9

SM matter

2402.12453/PRX Córdova, Hong, SK

2HDM Alignment with 
Visible Axion
m2

12 ∼ ytybv2
9e−8π2/g2

9

SM+Hu

2412.05362/JHEP Antonio Delgado, SK 
(see talk from Antonio on Tuesday)

Solve DFSZ DW prob
δV(a) ∼ fav3

9e−8π2/g2
9 cos a

SM +Hu + ϕ

25XX Gongjun Choi, Hong, SK



Model building applications of  
non-invertible chiral symmetry
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Seth’s conclusions

There are new symmetries to understand in our theories of particle physics! 
Of course we should expect this gives us new insights.

BSM Non-invertible Naturalness: 
Neutrino Mass: 2211.07639 with Clay 

Córdova, Sungwoo Hong, Kantaro Ohmori 
Strong CP à la Massless Quark:  

2402.12453 with Clay & Sungwoo 
Strong CP à la PQWW Visible Axion: 

2412.05362 with Antonio Delgado 
Strong CP à la DFSZ Invisible Axion:  
25XX with Sungwoo & Gongjun Choi 

We’ve shown this concretely by using these symmetries to discover new 
theories of unification which can resolve SM naturalness issues.

Generalized Symmetries in Standard Model: 
Discrete point symmetry: 2204.01741  

Line symmetry possibilities & collider pheno: 
2406.17850, 25XX with Adam Martin  

Flavor-hypercharge point-line intertwining:  
2212.13193 with Clay Córdova 

Surface symmetry cosmo pheno: 2204.01750 
Surface symmetry possibilities: 25XX with  

Sungwoo Hong & Daniel Brennan 



Motivating non-invertible symmetries: 
The mystery of the missing instantons 

Recall a classical zero-form global symmetry  can be 
anomalous in quantum theory with  gauge group 

        

U(1)X
G

∂μJμ
X = 0 ⟶ ∂μJμ

X = 𝒜X

8π2 FμνF̃μν

Old lesson:  is anomalous but -matrix preserves  anywayX S X

E.g. famously  and there are no Abelian instantons in , so π3 (U(1)) = 1 ≠4 ∫≠4
FF̃ = 0

But what about when they don’t? 

Instanton configurations have  so ‘activate’ the anomaly∫ℳ
FF̃ ℝ 0



EFT philosophy: If there is ever a zero, there should be a symmetry!

A hint:  can be violated 
around magnetic monopoles 

X

c.f. Callan-Rubakov

Dirac ’31 
Callan, Rubakov ‘80s 

Ongoing…

Somehow despite  being anomalous there must remain a 
subtle sort of symmetry that demands the -matrix preserves 

X
S X

Fig. 1: A confused 
effective field 
theorist



There’s a subtler notion of symmetry!
Choi, Lam, Shao 

2205.05086   
Córdova, Ohmori 

2205.06243 

Fig. 2: Another 
victory for 
naturalness

Can construct a topological, gauge invariant operator by including 
a Chern-Simons theory which talks to the bulk magnetic current. 

T(γ)
γ

⋅ ψ(x)

Σ3
D2π

N (Σ3) = ∫ Dc ei ∫Σ3
2π
N Jμ ̂nμ+ 1

2π αμνϵcμ∂νAϵ+ N
4π αμνϵcμ∂νcϵ

= ⋅ ψ(x)e2πiq/N

T(γ)W(γ)1/N

Can’t do , not conserved


Can’t do , not gauge invariant

Uσ[Σ3] = eiσQ[Σ3] = eiσ ∫Σ3
Jμ

X ̂nμd3x

̂Jμ
X = Jμ

X − 𝒜
4π2 αμνρϵAν∂ρAϵ



Quality control
All solutions rely on good quality Peccei-Quinn symmetries, but only the 
invisible axion has a quality ‘problem’

Massless quark admits PQ-violating  but as long as   

you’re guaranteed . Quark flavor physics is not too far away!

ℒ ⊃ cΣH̃QΣd̄/MPl ⟨Σ⟩/Mpl ≲ θ̄
Im(y) ≲ θ̄ Re(y)

Heavy visible axion admits PQ-violating  but does not 
perturb minimum as long as 

ℒ ⊃ cH(HuHd) |Ξ |4 /M2
Pl

v4
9 ≲ θ̄v2

EWM2
pl → v9 ≲ 10−11Mpl

Invisible axion admits PQ-violating  and has the normal quality 

problem 

ℒ ⊃ cnϕn/Mn−4
Pl

f 4
a (fa/Mpl)

n−4
≲ θ̄Λ4

QCD



Dirac masses: 
 
 

ℒ ∼ yτHLē

Classical  symmetry 
protects the Dirac neutrino 
mass 

U(1)N

H̃LN

Write down charged lepton mass

Now turn on 
quantum mechanics

ℒ ∼ y⋆
τ e

− 8π2
g2
H H̃LN



Color-flavor unification!
This all points to a beautiful  unified theory in which the colors 
and flavors of the quarks are placed together into the fundamental

SU(9)

Again start with good  and no strong CP violation, thenU(1)PQ

ℒ0 = ytH̃Qū + h.c. + iθ9
32π2 FF̃

SU(9)

Q

d̄
ū

Q
H

ℒ(Λ) ∼ ytHQū + y⋆
t eiθ9e− 2π

σ9(Λ) HQd̄ +  h.c. + iθ9
32π2 FF̃



Generating CKM very briefly
Idea: Communicating flavor-breaking  
through gauged flavor symmetry lets you 
generate hermitian yukawas 

 automatically real

⟨Σa
b⟩

M = det(yuyd)

𝐸
SU(9)

Λ9

Λ3

(SU(3)C × SU(3)H)/ℤ3

SU(3)C

Vℤ4
(Σ) = η1Tr (Σ4) + η2Tr (Σ2)2 +  h.c.

(yu)a
b ∼ yt (𝕀a

b + σ9
(4π)

η†
1(Σ†4)a

b + η†
2Tr(Σ†2)(Σ†2)a

b

Λ4
9

+ σ9
(4π)

η1(Σ4)a
b + η2Tr(Σ2)(Σ2)a

b

Λ4
9

+ …)



Generating CKM
Yukawas stay hermitian yet  breaks CP 
explicitly and/or spontaneously so can generate 

V(Σ)
𝐸

SU(9)
Λ9

Λ3

(SU(3)C × SU(3)H)/ℤ3

SU(3)C

δCKM ∝ arg det ([y†
uyu, y†

d yd]) ℝ 0

Another wrinkle: Must treat  differently so they 
don’t commute in flavor space.

ū, d̄



Peccei-Quinn Weinberg Wilczek
From the 1HDM to the 2HDM we now have an extra 
pseudoscalar which can be the axion a

ℒ ⊃ (yu)i
jHuQiūj + (yd)i

jHdQid̄j

,  breaks  


Confinement generates a potential 

𝒜PQ = Ng ∫ GG̃
32π2 ≡ 𝒩C ∈ ℤ U(1)PQ → ℤ3

V(a) ∼ Λ4
QCD cos(3a/vEW)

But  pseudoscalar with large couplings quickly ruled outma ∼ 100 keV

→ i
𝒜PQ

32π2 (a + θ̄)GG̃



Hu Hd

Once more with flavor

ℒ ⊃ ytHuQū + ybHdQd̄

Here  and now 
 satisfying 

ΔQPQ = Ng𝒩C + Nc𝒩H
𝒩C, 𝒩H ∈ ℤ/3 𝒩C = 𝒩H (mod 1)

Now we have a gauge group (SU(3)C × SU(3)H)/ℤ3

 non-invertible!U(1)PQ → ℤ3

Again the  color-flavor theory breaks the  now generating 
 with 

SU(9) ℤ(1)
3,mag

V ⊃ m2
12HuHd m2

12 ∝ ytybv2
9e−2π/σH(v9)



Dine-Fischler-Srednicki Zhitnitsky
Make the axion ‘invisible’ by adding a complex scalar singlet ϕ

ℒ ⊃ (yu)i
jHuQiūj + (yd)i

jHdQid̄j + λHuHdϕ

Same anomaly story  but now axion lives dominantly 
in . Axion background value spontaneously breaks this . 

U(1)PQ → ℤ3
ϕ ℤ3

Great, but faces the domain wall problem.

With flavor again this becomes non-invertible, and now tiny 
breaking destabilizes domain walls. 
δV(a) ∼ λytybv3

9 fae−2π/σ(v9) cos(a)



SO(10) SU(4) × Sp(6)L × Sp(6)R

E-series
SU(12) × SU(2)L × SU(2)R

Electroweak Flavor Color Flavor

Gauge coupling 
unification

Irrep. unification

Yes No No

No, Ng Yes Yes

e.g.



SU(4) × Sp(6)L × Sp(6)R

E-series x horizontal 
SU(12) × SU(2)L × SU(2)R

Electroweak Flavor Color Flavor

Gauge coupling 
unification

Irrep. unification

Proton decay

Gauged flavor

Nearby flavor 
physics

Pheno beaten to 
death

e.g. SO(10)V × SU(3)H

No No No

Yes Yes Yes

Perturbative
Not perturbatively

Yes non-perturbatively

Davighi & 
Tooby-Smith

SK

Not necessarily Davighi, Greljo, 
Thomsen

Yes No No

Same for Q & L Same for Q & L Separate for Q & L

Probably not? Could be Probably not quarks? 
But maybe leptons

Davighi & 
Tooby-Smith

Preserve  subgroup combining 
(B-L) and lepton flavor 

Z9



Naturalness  Robustness≈
Structures which rely on some integer invariants of the SM particles 
are among the most robust.

SU(3)C

SU(3)C

U(1)PQ

SU(2)L

SU(2)L

U(1)B+L

Existence of Peccei-Quinn-based 
explanations for strong CP ⇒

⇒ Existence of electroweak 
baryogenesis models

But  preserved! 

See my note on proton stability 
2204.01741/Universe 

ℤB+L
2Ng

β(1)
3 = 1

3 (4Ng − 11Nc) < 0 ⇒ Explanation for mp ≪ Mpl
β(1)

2 = 1
3 (4Ng + 1

2 − 22)
β(1)

2 = 1
3 ( 20

3 Ng + 1
2 ) ⇒ Vertical unification possible

 allows symmetry-based 
solution to lithium problem 

2204.01750/PRL 

Ng = 3 +Ng ≥ 3



There’s more there to understand!

⇒
SU(3)F

SU(3)F

U(1)Y Flavor symmetries intertwined with 
hypercharge  in 2-group  
2212.13193/Annalen Phys. w/C. Córdova

U(1)(1)
m

U(1)Lμ−Lτ

U(1)Lμ−Lτ

U(1)Le−Lμ ⇒ Automatically exponentially 
suppressed neutrino masses

U(1)B1+B2−2B3 U(1)PQ ⇒U(1)B1+B2−2B3
SU(3)C

SU(3)C

U(1)PQ

(
)+ /ℤNc=Ng

Revive the simplest PQ-based 
solutions to strong CP

SM ∈ Rep ((SU(3)C × SU(2)L × U(1)Y)/ℤ1,2,3,6)⇒ One-form symmetry probed by searching for  
fractionally charged species 
2406.17850/SciPost Phys. w/A. Martin

e/6



Seth’s conclusions

At least any place nonperturbative effects might 
be phenomenologically relevant, I expect 
paradigm of generalized global symmetries will 
offer better understanding.

As particle physicists we are not yet done 
learning about the role of symmetries!

Fig. 3: A primate pleased they 
newly uncovered some 
simple, reductionist          
BSM models 

The simple data of various integer invariants 
associated to the SM fermions has already lead us 
to new unified theories to solve SM naturalness 
issues based on the rigid data of the SM.


