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The lower limit b,,;, can be obtained if we suppose, by a quantum treatment and a nd COS m 0 I Ogy ¢ Ty,

the application of the uncertainty principle, that the maximum energy transfer is
Apmax = 2mev (because as we discussed earlier, the maximum velocity transferred
to the electron is 2v) from ApAx 2 7i (Heisenberg principle) we have Ax 2 71/2m,v.
‘We can then write

Pm

=—. (2.123)
3M;

and z the redshift being defined by Eq. (2.23). Evolution is therefore similar in every

way to a de Sitter type Universe. but with a constant density of matter. It is therefore
not possible to distinguish these two models by the flow of a source Lg at r = Rgx.
which will be redshifted in the same way in both cases
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On the other hand. the number of sources is completely different. since in the case

of the steady state. the density remaining constant. the number of sources decreases
in the past (for a smaller volume, fewer sources) whereas for Big Bang type models.

420 B Particle Physics

The two parts of the Lagrangian one needs to compute the scalar annihilation of
Dark Matter SS — h — f f are (see B.235)°

. Mw
Luss = ’IIHST;(]'ISS — CHss

and Lyps=- hff —Cuff i (B.145)

which gives -

2 (s/2 - 21;13',) : A ¢ -
L B (B.146)
(s=Mp)*+Ty My

T'y being the width of the Higgs boson (including its own decay into SS, see next

650+ pages, from inflation to dark matter detection.
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P41 A i o o Dot o All what 1s needed to compute cross-sections, relic abundance,
and retrace the history of a Dark Universe.
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Gravitational wave spectrum
“1n the presence of inflaton
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Benchmark point :
Mpy=1¢g, =107, w;=0.5 (k =6)
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| | PBHs density
Primordial GW fluctuations

Benchmark point :
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Primordial GW  fiyctuations scattering
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PBHs decay
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Gravitational production 1n a nutshell
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Gravitational production in a nutshell

Gravitational
waves
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Density Inflaton

Primordial GW fjyctuations scattering PBH decay

Benchmark point :
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Primordial GW : a primer

In the case of a scalar field, y =

" dk

Ly (D)e _ikxag +r.(t) e*a,]

J

a(2r)?

within the gravitational background, the equation of motion for y,(7)
(7 being the conformal time) 1s

1/

da
Xi (kz—z))(k= O —
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Primordial GW : a primer

4’k it 4 -
In the case of a scalar field, y = Ly, (e " a'+y(r)'e™a,]
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within the gravitational background, the equation of motion for y,(7)
(7 being the conformal time) 1s
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H2 k3 dk H 2
- 2 2 2 13 2

dp V2| 6y H\~’
We then obtain £ o7 = k2( )

ThE . nk 2

The treatment for the graviton is the same, considering it as ~ two massless
degrees of freedom. We then obtain
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PGW are modes which exited the horizon during inflation :

e —ikt
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Primordial GW with PBH and ¢
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Primordial GW with PBH and ¢
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Primordial GW with PBH and ¢

PBH domination

AN >

Inflaton domination
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End of reheating, End of inflation
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PBH domination Having access to PGW spectrum 1s literally
e > reading line by line the pre-BBN history
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PBH domination Having access to PGW spectrum 1s literally
" > reading line by line the pre-BBN history

Inflaton domination

End of reheating, End of inflation
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GW from inflaton scattering
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Aparte : the Boltzmann-Bogoliubov fight
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The Bogoliubov approach
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The Bogoliubov approach

: ---=-- Analytic (k>>Keng)

: -----= Analytic (k<<kegng, my=0)




The Bogoliubov approach

: - Analytic (k>>kend)

: -=-=-= Analytic (k<<keng, my=0)




The Boltzmann approach

Boltzmann would have calculated the number density, solving the equation
dn
X

+ 3H(?) n, = R(?)
with
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Boltzmann would olving the equation




The Boltzmann approach
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Equivalence for modes inside the horizon
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Primordial Black Holes as source of GW

Mathieu
Gross




PBH 1n a nutshell

A Black hole can be formed 1n regions
where there 1s an over density
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—1 —1 -1 -1

The mass in the horizoni1s : Mgy ~ ?(CH p = 8atM;
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PBHs are unstable : Hawking radiation

M3 1
Mpy Mgy




t { t
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PBHs are unstable : Hawking radiation




GW generated by PBH
1) from direct decay
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GW generated by PBH
1) from direct decay
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1) from direct decay
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GW generated by PBH

Nowadays 1) from direct decay

Taking into account grey-body factor, finite lifetime,
exact evolution of Mp(%), using BlackHawk software
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GW generated by PBH
2) from density fluctuations

OPBH
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2) from density fluctuations
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OPBH GW generated by PBH
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2 steps :
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OPBH GW generated by PBH

PBH

2 steps :

1) Poisson equation transfers density tluctuations
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1) Poisson equation transfers density fluctuations PsH into

PBH
potential (scalar) ®-fluctuations (1socurvature — curvature) :
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1) Poisson equation transfers density fluctuations PsH into
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1) Poisson equation transfers density fluctuations PsH into

PBH
potential (scalar) ®-fluctuations (1socurvature — curvature) :

qu) _ 5IOBH

, OPpH = PBH — PBH
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Horizon at evaporation
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For other PBH masses?
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Memory burdening (P)BH

In a system of high storage capacity,
the information stored in the system tends to backreact
to resist to the porcess of information lost
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the information stored in the system tends to backreact

to resist to thBYOC&T of m7matlon lost

/Wormatzon




Memory burdening (P)BH

In a systen\of high|storage capacity,
the inforrmgation storeX in thq system tehds to backreact

to reNgst to the parcess of info atiw
Inﬁzn




Memory burdening (P)BH

In a systen\of high|storage capacity,
the inforrmgation storeX in thq system tehds to backreact

to reNgst to the parcess of info atiw
Inﬁzn




Memory burdening (P)BH




Memory burdening (P)BH




Memory burdening (P)BH

g . N . .y K 3 4 L . ) s - B . ) y i . ) ¢ =




Memory burdening the PBH
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Graviton bremsstrahlung
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Thank you!
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THE PROPER VIBRATIONS OF THE EXPANDING UNIVERSE 903

™™ will re-assume (or approximately re-assume) the form A4e¢2™*"
— and not Ae*™" 4 Be—?™*"* — whenever R(f), after an inter-
mediate period of arbitrary variation, returns to constancy (or to
approximate constancy). I can see no reason whatsoever for f(#) to
behave rigorously in this way, and indeed I do not think it does.
There will thus be a mutual adulteration of positive and Iif‘L’lg‘.Ei\'P
frequency terms in the course of time, giving rise to what in the intr
duction I called ,,the alarming phenomena They are certainly-very
slight, though, in two cases, viz. 1) when R varies slowly 2) when it is
a linear function of time (see the following sections).

A second remark about the new concept of proper vibration is,
that it is not always invariantly determined by the form of the
universe. The separation of time from the spatial coordinates may

succeed in a number of different space-time-frames. For D e Sit-
ters universe I know three of them. Besides '

which P. O. Miiller (lc.) has redently give:

tions, there is an expanding form with infinite /

form with finite R *). A proper vibration of one {

form into a proper vibration of the other frame, {

variables is destroyed by the transformation.

For all I have found hithertoo I would conclude, that the aldrmm
phenomena (i.e. pair production and reflexion of light in space) are
not connected with the velocity of expansion, but would probably be
_caused by accelerated expansion. They may play an important part

- in the critical periods of cosmology, when expansion changes to con-
traction or vice-versa.

E. Schrodinger,
“The proper vibrations of the expanding universe,”
PHYSICA, vol. 6, no. 7-12, pp. 899-912, 1939
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™™ will re-assume (or approximately re-assume) the form A4e¢2™*"
— and not Ae*™" 4 Be—?™*"* — whenever R(f), after an inter-
mediate period of arbitrary variation, returns to constancy (or to
approximate constancy). I can see no reason whatsoever for f(#) to
behave rigorously in this way, and indeed I do not think it does.
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frequency terms in the course of time, giving rise to what in the intro-
duction I called ,,the alarming phenomena”’. They are certainly-very
slight, though, in two cases, viz. 1) when R varies slowly 2) when it is
a linear function of time (see the following sections).

A second remark about the new concept of proper vibration is,
that it is not always invariantly determined by the form of the
universe. The separation of time from the spatial coordinates may
succeed in a number of different space-time-frames. For D e S it-
ters universe I know three of them. Besides
which P. O. Miiller (lLc.) has redently give.
tions, there is an expanding form with infinite /
form with finite R *). A proper vibration of one {
form into a proper vibration of the other frame, {
variables is destroyed by the transformation.

! Pos. + neg. frequencies §
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Antiparticle
appears

For all I have found hithertoo I would conclude, that the aldrmm
phenomena (i.e. pair production and reflexion of light in space) are
not connected with the velocity of expansion, but would probably be

_caused by accelerated expansion. They may play an important part

in the critical periods of cosmology, when expansion changes to con-

traction or vice-versa. See also Schwinger effect (1951),
Unruh effect (1976)
Bunch, Davies, Ford and Parker works. ..




Early history of gravitational production

* 1939 : 1in The Proper Vibrations of the Expanding Universe, Schrodinger

propose to treat his equation 1n a de Sitter metric
The expansion of the Universe can mix positive- and negative-frequency
mode solutions of the wave equation. He calls it « mutual adulteration », and

considered it as an « alarming phenomena » of « outstanding importance »,
which can produce matter « merely by the expansion of the Universe ».

« 1965 : Parker’s thesis

¢ ... gravitational production seems inescapable if one accepts
quantum field theory and general relativity »

h 1971 Zeldov1ch + Starobmsky
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The Schwinger effect
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Reheating 1n a nutshell




Reheating 1n a nutshell

Reheating : /ri:'hitig/  noun
Process of transfer of energy from a de Sitter space to
radiation through the oscillations of a classical
homogeneous field (the inflaton)
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Reheating 1n a nutshell

¢ +3Hp = — V()

1.
Py = 5€b+ V()

dp,
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2=
Py = ECb + V(¢)
Wi 3y = 1
= Pp =72 Py
dp
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Feynman

approach

Bogoliubov approach : this corresponds to the mode which
never exited the horizon during inflation
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