The Timeless Primordial Universe & Its Combinatorial Origin

Paolo Benincasa

Instituto Galego de Física de Altas Enerxías 27 May 2025 - Planck 2025

The Timeless Priomordial Universe

The Timeless Priomordial Universe

The Timeless Primordial Universe

Can we put constraints on which state can propagate during inflation in a completely model independent way?

• What is the imprint of the inflationary physics in the analytic structure of the relevant observables?

3 What are the rules governing physical processes at energies as large as $H|_{infl} \sim 10^{14} \, GeV?$

What does it even mean?

A theory is defined by..

What does it even mean?

A theory is defined by.. a Lagrangian

What does it even mean?

Computables Enjoy *sufficiently* physical features (e.g.: physical dofs, gauge inv.,...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What does it even mean?

Computables Enjoy *sufficiently* physical features (e.g.: physical dofs, gauge inv.,...)

2 Basic guiding principles that *any reasonable theory* ought to satisfy

What does it even mean?

Computables Enjoy *sufficiently* physical features (e.g.: physical dofs, gauge inv.,...)

2 Basic guiding principles that *any reasonable theory* ought to satisfy

 $\label{eq:Constraints} \ensuremath{\mathbb{E}} \ensuremath{\mathsf{Constraints}} \ensuremath{\mathbb{E}} \ensuremath{\mathsf{Constraints}} \ensuremath{\mathsf{simultaneous}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{these}} \ensuremath{\mathsf{principles}} \ensuremath{\mathsf{simultaneous}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{these}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{these}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{constraints}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{these}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{constraints}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{validity}} \ensuremath{\mathsf{of}} \ensuremath{\mathsf{of}}$

Guiding Principles

Cluster decomposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Guiding Principles

Cluster decomposition

イロト 不得 トイヨト イヨト

Guiding Principles

Cluster decomposition

(a)

Guiding Principles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Guiding Principles

Cluster decomposition

Theorems

Spin 1 Self-interaction just for different species

Spin 2 Graviton uniqueness $\mathcal{N} = 1$ Sugra Spin >2 No self-interactions No interactions with $s \leq 2$ No elementary massive particles

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Guiding Principles

Cluster decomposition

Spin 1: Charge conservation

Spin 2: Equivalence principle

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Poincaré invariance

Unitarity

Poincaré invariant operator: \hat{O} $\langle 3, 4|\hat{O}|1, 2\rangle := \delta (p_1 + p_2 - p_3 - p_4)$ Unitary S-matrix: $\hat{S} \mid \hat{S}\hat{S}^{\dagger} = \hat{\mathbb{I}} = \hat{S}^{\dagger}\hat{S}$ $\hat{S} := e^{i\lambda\hat{O}}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Poincaré invariant operator:
$$\hat{O}$$

 $\langle 3, 4|\hat{O}|1, 2\rangle := \delta (p_1 + p_2 - p_3 - p_4)$
Unitary S-matrix: $\hat{S} \mid \hat{S}\hat{S}^{\dagger} = \hat{\mathbb{I}} = \hat{S}^{\dagger}\hat{S}$
 $\hat{S} := e^{i\lambda\hat{O}}$
 $\langle 3, 4|\hat{S}|1, 2\rangle = \delta (p_1 + p_2 - p_3 - p_4) \left\{ 1 + i\lambda + \lambda^2 \vartheta(s - 4m^2) + \ldots \right\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Poincaré invariant operator: \hat{O} $\langle 3, 4|\hat{O}|1, 2\rangle := \delta (p_1 + p_2 - p_3 - p_4)$ $\langle 3, 4|\hat{S}|1, 2\rangle = \delta (p_1 + p_2 - p_3 - p_4) \left\{ 1 + i\lambda + \lambda^2 \vartheta (s - 4m^2) + \ldots \right\}$ $1 - \frac{3}{2} - \frac{3}{4}$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Poincaré invariant operator: $\hat{\mathcal{O}}$ Unitary S-matrix: $\hat{S} \mid \hat{S}\hat{S}^{\dagger} = \hat{\mathbb{I}} = \hat{S}^{\dagger}\hat{S}$ $\langle 3, 4 \mid \hat{\mathcal{O}} \mid 1, 2 \rangle := \delta \left(p_1 + p_2 - p_3 - p_4 \right)$ $\hat{S} := e^{i\lambda\hat{\mathcal{O}}}$

$$\langle 3,4|\hat{S}|1,2\rangle = \delta\left(p_1+p_2-p_3-p_4\right)\left\{1+i\lambda+\lambda^2\vartheta(s-4m^2)+\ldots\right\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶▲□▶▲□▶▲□▶ □ のQの

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

The particle physics lesson

Simplest processes + constraints

Language:

Fields:

redundant organisation of redundant degrees of freedom

Riemannian geometry: mathematical tool for the explotation of the equivalence principle

[S. Weinberg, Gravitation and Cosmology]

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Language:

Fields: redundant organisation of redundant degrees of freedom **Riemannian geometry:** mathematical tool for the explotation of the equivalence principle

[S. Weinberg, Gravitation and Cosmology]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problems as our inability to extrapolate high energy knowledge from our low energy one:

(Quantum) gravity;

Higgs: it is necessary to extrapolate high energy physics from the low energy one

Deeper understanding of the physics encoded into cosmological observables

Novel rules which can allow to go beyond the regime in which the combinatorial description has been formulated

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

$$\langle \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \rangle = \int \mathcal{D}\Phi \mathfrak{P}[\Phi] \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n)$$

ヘロト 人間ト 人間ト 人間ト

$$\langle \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \rangle = \int \mathcal{D} \Phi \mathfrak{P}[\Phi] \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n)$$

Probability
distribution

ヘロト 人間ト 人間ト 人間ト

$$\langle \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \rangle = \frac{\int \mathcal{D}\Phi \,\Psi^{\dagger}[\Phi] \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \Psi[\Phi]}{\int \mathcal{D}\Phi \,|\Psi[\Phi]|^2}$$
$$\Psi[\Phi] := \langle \Phi | \hat{\mathcal{T}} \exp\left\{-i \int_{-\infty}^0 d\eta \,H(\eta)\right\} |0\rangle$$

Wavefunction of the universe (transition amplitude from $|0\rangle$ to $\langle\Phi|)$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

$$\langle \Phi(\vec{p}_1)\cdots\Phi(\vec{p}_n)\rangle = \frac{\int \mathcal{D}\Phi \,\Psi^{\dagger}[\Phi]\Phi(\vec{p}_1)\cdots\Phi(\vec{p}_n)\Psi[\Phi]}{\int \mathcal{D}\Phi \,|\Psi[\Phi]|^2}$$

$$\Psi[\Phi] := \langle \Phi | \hat{\mathcal{T}} \exp \left\{ -i \int_{-\infty}^{0} d\eta \, H(\eta)
ight\} | 0
angle$$

Wavefunction of the universe (transition amplitude from $|0\rangle$ to $\langle\Phi|)$

Perturbation theory

 $\eta = -\infty$

Observables & Their Analytic Structure

External kinematics:
$$X_s := \sum_{j \in s} |\vec{p}^{(j)}|, y_e := \left| \sum_{j \in s_e} \vec{p}^{(j)} \right| (e \in \mathcal{E} \setminus \{\mathcal{E}^{(L)}\})$$

Loop momenta: $y_{e_1} := |\vec{l}|, y_{e_2} := |\vec{l} + \vec{p}^{(2)}|, \dots (e \in \mathcal{E}^{(L)})$

$$q_{\mathfrak{g}}(x,y) := \sum_{s \in \mathcal{V}_{\mathfrak{g}}} x_s + \sum_{e \in \mathcal{E}_{\mathfrak{g}}^{ext}} y_e$$

(日) (四) (日) (日) (日)

O Cosmological integrands: Singularities, combinatorics & computation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2 The IR/UV structure of cosmological integrals

One loop corrections without integration

Cosmological integrands: Singularities, combinatorics & computation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cosmological Integrals

External kinematics:
$$X_s := \sum_{j \in s} |\vec{p}^{(j)}|, y_e := \left| \sum_{j \in s_e} \vec{p}^{(j)} \right| (e \in \mathcal{E} \setminus \{\mathcal{E}^{(L)}\})$$

Loop momenta: $y_{e_1} := |\vec{l}|, y_{e_2} := |\vec{l} + \vec{p}^{(2)}|, \dots (e \in \mathcal{E}^{(L)})$

$$q_{\mathfrak{g}}(x,y) := \sum_{s \in \mathcal{V}_{\mathfrak{g}}} x_s + \sum_{e \in \mathcal{E}_{\mathfrak{g}}^{ext}} y_e$$

人口 医水黄 医水黄 医水黄素 化甘油

Cosmological Integrals

Cosmological Integrals

$$------ x_1 + x_2 = 0$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A flavour of cosmological polytopes

The singularities form a bounded region to which a function Ω is naturally associated

$$\Omega = \frac{1}{(x_1 + x_2)(x_1 + y)(y + x_2)} \equiv \frac{\mathfrak{n}_{\delta}}{q_{\mathcal{G}}q_{\mathfrak{g}_1}q_{\mathfrak{g}}}$$

A flavour of cosmological polytopes

A flavour of cosmological polytopes

[P.B., W. Torres Bobadilla; '21]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\Omega = \prod_{\mathfrak{g} \in \mathfrak{G}_{o}} \frac{1}{q_{\mathfrak{g}}(x, y)} \sum_{\{\mathfrak{G}_{c}\}} \prod_{\mathfrak{g}' \in \mathfrak{G}_{c}} \frac{1}{q_{\mathfrak{g}'}(x, y)}$$

[**P.B.**, W. Torres Bobadilla; '21]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\Omega = \prod_{\mathfrak{g} \in \mathfrak{G}_{\circ}} \frac{1}{q_{\mathfrak{g}}(x, y)} \sum_{\{\mathfrak{G}_{c}\}} \prod_{\mathfrak{g}' \in \mathfrak{G}_{c}} \frac{1}{q_{\mathfrak{g}'}(x, y)}$$

Example: $\{\mathfrak{G}_{\circ}\}$ for a triangle graph

[P.B., W. Torres Bobadilla; '21]

$$\Omega = \prod_{\mathfrak{g} \in \mathfrak{G}_{\circ}} \frac{1}{q_{\mathfrak{g}}(x, y)} \sum_{\{\mathfrak{G}_{c}\}} \prod_{\mathfrak{g}' \in \mathfrak{G}_{c}} \frac{1}{q_{\mathfrak{g}'}(x, y)}$$

[P.B., W. Torres Bobadilla; '21]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Compatibility conditions allow to:

- write all the possible representations without spurious singularities
- 2 make manifest the symmetries that maps a simplex into another one
- improve analytical/numerical efficiency of the integration.

(Weighted) Cosmological Polytopes & I_G : A dictionary

Cosmological Polytope $\mathcal{P}_{\mathcal{G}}$

Canonical form $\boldsymbol{\omega}$

Triangulations

Boundaries (Faces)

Canonical form preserving transformations

> Paths along contiguous vertices

Cosmological Integral $\mathcal{I}_\mathcal{G}$

Integrand of $\mathcal{I}_{\mathcal{G}}$

Representations for the integrand

Residues of the integrands

Symmetries of the integrand

Symbols for $\mathcal{I}_{\mathcal{G}}$

(Weighted) Cosmological Polytopes & I_G : A dictionary

Cosmological Polytope $\mathcal{P}_{\mathcal{G}}$

Canonical form $\boldsymbol{\omega}$

Triangulations

Boundaries (Faces)

Canonical form preserving transformations

> Paths along contiguous vertices

Cosmological Integral $\mathcal{I}_\mathcal{G}$

Integrand of $\mathcal{I}_\mathcal{G}$

Representations for the integrand

Residues of the integrands

Symmetries of the integrand

Symbols for $\mathcal{I}_{\mathcal{G}}$

Trascendental
function $f_k = \int_a^b d \log R_1 \circ \ldots \circ d \log R_k$ Iterated
integralSymbols $\mathcal{S}(f_k) := R_1 \otimes \ldots \otimes R_k$

Towards a combinatorial RG: The JR/UV structure of cosmological integrals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

[P.B., F. Vazão; 24]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\underbrace{\begin{array}{c} \begin{array}{c} y_{12} \\ \mathbf{x}_1 \end{array}}_{X_1} x_2 = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \frac{1}{(x_1 + x_2 + \mathcal{X}_{\mathcal{G}})(x_1 + \mathcal{X}_{g_1})(x_2 + \mathcal{X}_{22})} \end{array}$$

[P.B., F. Vazão; 24]

(日)

$$\underbrace{ \sum_{x_1}^{y_{12}} }_{x_2} = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \frac{1}{(x_1^1 x_2^0 + x_1^0 x_2^1 + \mathcal{X}_{\mathcal{G}} x_1^0 x_2^0)(x_1^1 x_2^0 + \mathcal{X}_{\mathfrak{g}_1} x_1^0 x_2^0)(x_1^0 x_2^1 + \mathcal{X}_{\mathfrak{g}_2} x_1^0 x_2^0)}$$

The integral converges for values of α that identifies points inside the Newton polytope

[P.B., F. Vazão; 24]

$$\underbrace{ \begin{array}{c} & y_{12} \\ \bullet \\ x_1 \end{array} }_{X_1} \underbrace{ \begin{array}{c} y_{12} \\ x_2 \end{array} }_{X_2} = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \frac{1}{(x_1^1 x_2^0 + x_1^0 x_2^1 + \mathcal{X}_{\mathcal{G}} x_1^0 x_2^0)(x_1^1 x_2^0 + \mathcal{X}_{\mathfrak{g}_1} x_1^0 x_2^0)(x_1^0 x_2^1 + \mathcal{X}_{\mathfrak{g}_2} x_1^0 x_2^0)}$$

The integral converges for values of α that identifies points inside the Newton polytope

$$\mathfrak{W}^{(12)} = \begin{pmatrix} 2\alpha - 3\\ 1\\ 1 \end{pmatrix}, \ \mathfrak{W}^{(1)} = \begin{pmatrix} \alpha - 2\\ 1\\ 0 \end{pmatrix}, \ \mathfrak{W}^{(2)} = \begin{pmatrix} \alpha - 2\\ 0\\ 1 \end{pmatrix}, \ \mathfrak{W}^{'(1)} = \begin{pmatrix} -\alpha\\ -1\\ 0 \end{pmatrix}, \ \mathfrak{W}^{'(2)} = \begin{pmatrix} -\alpha\\ 0\\ -1 \end{pmatrix},$$

The integral diverges in the direction \mathfrak{e} if the related λ is ≥ 0

[P.B., F. Vazão; 24]

$$\underbrace{ \begin{array}{c} {}_{y_{12}}}_{x_1} \quad {}_{x_2} = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} \, x_j^{\alpha} \right] \frac{1}{(x_1^1 x_2^0 + x_1^0 x_2^1 + \mathcal{X}_{\mathcal{G}} x_1^0 x_2^0)(x_1^1 x_2^0 + \mathcal{X}_{\mathfrak{g}1} x_1^0 x_2^0)(x_1^0 x_2^1 + \mathcal{X}_{\mathfrak{g}2} x_1^0 x_2^0)}$$

E.g.: if $\lambda^{(12)} \longrightarrow 0$: sector decomposition

$${\cal I}^{
m div}_{\Delta_{j,12}} \ = \ \int_{0}^{1} {d\zeta_{j}\over \zeta_{j}} \ {(\zeta_{j})^{-\lambda^{(j)}}\over 1+\zeta_{j}} \ imes \ \int_{0}^{1} {d\zeta_{12}\over \zeta_{12}} \ (\zeta_{12})^{-\lambda^{(12)}}$$

[P.B., F. Vazão; 24]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$x_{1} \bigoplus x_{2} = \int_{\mathbb{R}_{+}} \prod_{j=1}^{2} \left[\frac{dx_{j}}{x_{j}} x_{j}^{\alpha} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}} \left[\frac{dy_{e}}{y_{e}} y_{e}^{\beta} \right] \mu(y) \times$$
$$\times \frac{2(x_{1} + x_{2} + y_{a} + y_{b} + \mathcal{X}_{\mathcal{G}})}{(x_{1} + x_{2} + \mathcal{X}_{\mathcal{G}})(x_{1} + x_{2} + y_{a} + \mathcal{X}_{\mathcal{G}})(x_{1} + x_{2} + y_{b} + \mathcal{X}_{\mathcal{G}})(x_{1} + y_{a} + y_{b} + \mathcal{X}_{1})(x_{2} + y_{a} + y_{b} + \mathcal{X}_{2})}$$

$$\mu(y) \sim \left[\frac{\text{Vol}^2 \Sigma_2(y_e^2, P^2)}{\text{Vol}^2 \Sigma_1(P^2)}\right]^{\frac{d-3}{2}}$$

$$y_a \swarrow y_b$$

$$P$$

$$\Gamma \implies \text{Volume of the triangle, and all its side, are positive}$$

$$(y_a + y_b + P)(y_a + y_b - P)(y_a - y_b + P)(-y_a + y_b + P) \ge 0,$$

$$y_a \ge 0, \quad y_b \ge 0, \quad P \ge 0$$

[P.B., F. Vazão; 24]

$$\begin{aligned} x_1 & \longrightarrow x_2 = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}} \left[\frac{dy_e}{y_e} y_e^{\beta} \right] \mu(y) \times \\ & \times \frac{2(x_1 + x_2 + y_a + y_b + \mathcal{X}_{\mathcal{G}})}{(x_1 + x_2 + \mathcal{X}_{\mathcal{G}})(x_1 + x_2 + y_a + \mathcal{X}_{\mathcal{G}})(x_1 + x_2 + y_b + \mathcal{X}_{\mathcal{G}})(x_1 + y_a + y_b + \mathcal{X}_1)(x_2 + y_a + y_b + \mathcal{X}_2)} \end{aligned}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

[P.B., F. Vazão; 24]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} \, x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} \, y_e^{\beta_e} \right] \, \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{g \subseteq \mathcal{G}} \left[q_g(x + X, y) \right]^{\tau_g}}$$

[P.B., F. Vazão; 24]

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} \, x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} \, y_e^{\beta_e} \right] \, \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}$$

The asymptotic structure of $\mathcal{I}_{\mathcal{G}}$ is captured by:

) a nestohedron, which is determined by the underlying cosmological polytope $\mathcal{P}_{\mathcal{G}}$, and whose facets are fixed via subgraphs

$$\mathfrak{W}^{(i_1\ldots i_{\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})}+\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})})}} = \begin{pmatrix} \lambda^{(i_1\ldots j_{\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})}+\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})})} \\ \mathfrak{e}_{(i_1\ldots i_{\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})}+\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})})} \end{pmatrix}, \qquad \lambda^{(i_1\ldots i_{\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})}+\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})})} = \sum_{\boldsymbol{s}\in\mathcal{V}_{\mathfrak{g}}} \alpha_{\boldsymbol{s}} + \sum_{\boldsymbol{e}\in\mathcal{E}^{(L)}} \beta_{\boldsymbol{e}} - \sum_{\boldsymbol{\mathfrak{g}}'\in(\mathsf{tubings})} \tau_{\boldsymbol{\mathfrak{g}}'}$$

The integral diverges in the direction \mathfrak{e} if the related λ is ≥ 0

the contour of the loop integration Γ , which selects the divergent directions among the \mathfrak{W} 's of the nestohedron

[P.B., F. Vazão; 24]

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} \, x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} \, y_e^{\beta_e} \right] \, \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}$$

This combinatorial picture allows to:

- straightforwardly determine both the directions along which I_G can diverge and their degree of divergence;
- straightforwardly compute leading and subleading divergences (both in the IR and in the UV) via sector decomposition;
- the leading divergence in the IR are associated to the restriction of the underlying cosmological polytope onto special hyperplanes;
- write a systematic substraction that produces IR-finte quantities.

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} \, x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} \, y_e^{\beta_e} \right] \, \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}$$

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_{s}}{x_{s}} \, x_{s}^{\alpha_{s}} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_{e}}{y_{e}} \, y_{e}^{\beta_{e}} \right] \, \mu_{d}(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}$$

can be expressed in terms of

$$\begin{array}{ll} \text{(twisted period} \\ \text{integrals)} \end{array} \quad \quad \mathcal{I}_{\{\tau_{\mathfrak{g}}\}}^{(j)} := \int_{\Gamma} \mu_{d} \, \varphi \ \, , \qquad \varphi := \frac{\prod_{e \in \mathcal{E}^{(L)}} dy_{e}}{\prod_{\mathfrak{g} \in \mathfrak{G}^{(j)} \cup \{e\}} [q_{\mathfrak{g}}(y)]^{\tau_{\mathfrak{g}}}},$$

Each of these integrals can be expressed as a *finite* linear combination of master integrals

$$\mathcal{I}_{\{\tau_{\mathfrak{g}}\}}^{(j)} := \sum_{j=1}^{\nu} c_{j} \mathcal{J}_{j}, \qquad d\mathcal{J} = d\mathbb{A} \mathcal{J}$$

Canonical form: $d\mathcal{J} = \varepsilon d\mathbb{A} \mathcal{J} \Rightarrow \mathcal{J} = \mathbb{P} \exp\left\{\varepsilon \int_{\Gamma} d\mathbb{A}\right\} \mathcal{J}_{\circ}$

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single J_i ;
- 2 The factorisation property of such higher order operator determines the type; of solutions

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

A D N A 目 N A E N A E N A B N A C N

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;
- 2 The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;
- The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

A D N A 目 N A E N A E N A B N A C N

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

A D N A 目 N A E N A E N A B N A C N

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single J_j;
- 2 The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

First clues on constraints on cosmological processes: perturbative unitarity, flat-space limit, factorisations, higher-codimensions singularities

General framework to have a direct formulation with IR safe observables & a novel formulation of the RG

We scratched the surface of the one-loop structure: first glimpses of its analytic structure and its space of functions.

SUMMER SCHOOL ON:

THE DISORDERED UNIVERSE

21 July - 01 August 2025, As Barreiras (Castro Caldelas, Spain)

TOPICS Features of a $\Lambda > 0$ Universe Disorder & Expanding Universes Cosmology & Open Systems Landau analysis & Observables

OUTREACH & EDUCATION

BERENGUER MIMÓ CARRASCO CARMONA

LUCAS VICENTE SILVIA GARCÍA-CONSUEGRA PLÁ GARCÍA

Optimization of economical resources Lowering economical barriers to participation Informal & stimulating environment Backreaction in the area

のからきますの人間とうしょ