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The Timeless Primordial Universe

1 Can we put constraints on which state can propagate during inflation
in a completely model independent way?

2 What is the imprint of the inflationary physics in the analytic
structure of the relevant observables?

3 What are the rules governing physical processes at energies as large as
H|infl ∼ 1014 GeV ?
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Model independent constraints?

What does it even mean?

1 A theory is defined by.. a Lagrangian

Computables Enjoy sufficiently physical features
(e.g.: physical dofs, gauge inv.,...)

2 Basic guiding principles that any reasonable theory ought to satisfy

3 Constraints ≡ Consequences of the simultaneous validity of these
principles
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Model independent constraints? The particle physics lesson

Guiding Principles

Cluster
decomposition

Poincaré
invariance

Unitarity

Theorems

Spin 2
Graviton uniqueness

N = 1 Sugra

Spin 1
Self-interaction just
for different species

Spin >2
No self-interactions

No interactions
with s ≤ 2

No elementary
massive particles



Model independent constraints? The particle physics lesson

Guiding Principles

Cluster
decomposition

Poincaré
invariance

Unitarity

Theorems

Spin 1:
Charge conservation

Spin 2:
Equivalence principle
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Poincaré invariant operator: Ô
⟨3, 4|Ô|1, 2⟩ := δ (p1 + p2 − p3 − p4)

Unitary S-matrix: Ŝ | ŜŜ† = Î = Ŝ†Ŝ
Ŝ := eiλÔ

⟨3, 4|Ŝ|1, 2⟩ = δ (p1 + p2 − p3 − p4)
{

1 + iλ + λ2 ϑ(s − 4m2)+ . . .
}

Anything
wrong?

Wrong analytic structure

Non causal!
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The particle physics lesson

1

Guiding principles
+

computables

Simplest processes
+
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Poincaré
invariance Unitarity

Poincaré invariant operator: Ô
⟨3, 4|Ô|1, 2⟩ := δ (p1 + p2 − p3 − p4)

Unitary S-matrix: Ŝ | ŜŜ† = Î = Ŝ†Ŝ
Ŝ := eiλÔ

1
2

3
4

⟨3, 4|Ŝ|3, 4⟩ = δ (p1 + p2 − p3 − p4)

{
1 + iλ + λ2 log

4m2 − s
Λ2

UV

+ . . .

}
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The particle physics lesson

1

Guiding principles
+

computables

Simplest processes
+

constraints

2 Language:

Fields:

redundant organisation of
redundant degrees of freedom

Riemannian geometry:

mathematical tool for the explotation of
the equivalence principle

[S. Weinberg, Gravitation and Cosmology]

3 Problems as our inability to extrapolate high energy knowledge from
our low energy one:
(Quantum) gravity;
Higgs: it is necessary to extrapolate high energy physics from the low energy one



Why Combinatorics?

Deeper understanding of the physics encoded
into cosmological observables

Novel rules which can allow to go beyond the regime
in which the combinatorial description has been formulated
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η

⟨Φ(p⃗1) · · · Φ(p⃗n)⟩ =

∫
DΦ Ψ†[Φ]Φ(p⃗1) · · · Φ(p⃗n)Ψ[Φ]∫

DΦ |Ψ[Φ]|2

Ψ[Φ] := ⟨Φ|T̂ exp
{

−i
∫ 0

−∞
dη H(η)

}
|0⟩

Wavefunction of the universe
(transition amplitude from |0⟩ to ⟨Φ|)

Perturbation theory
η = 0

η = −∞

η
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[∫ +∞

Xs
dxs λ̃(xs − Xs)

] ∫
Γ

∏
e∈E (L)

[dye
ye

yβe
e

]
µd (y)

nδ(x , y)∏
g⊆G

qg(x , y)

Cosmology Loop
integration

Universal
integrand

Power-law FRW
λ̃(xs − Xs) ∼ (xs − Xs)α−1

External kinematics: Xs :=
∑
j∈s

∣∣⃗p(j)
∣∣, ye :=

∣∣∣ ∑
j∈se

p⃗(j)
∣∣∣ (e ∈ E \ {E (L)})

Loop momenta: ye1 := |⃗l |, ye2 := |⃗l + p⃗(2)|, . . . (e ∈ E (L))

qg(x , y) :=
∑
s∈Vg

xs +
∑

e∈Eext
g

ye

x1 x2 x3

y12 y23

x1 + x2 + y23



In this talk

1 Cosmological integrands: Singularities, combinatorics & computation

2 The IR/UV structure of cosmological integrals

3 One loop corrections without integration
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x1 x2

y12

x1 x2

ya

yb

ω (Y, PG) =
nδ(x , y)∏

g⊆G
qg(x , y)

∏
s∈V

dxs
∏
e∈E

dye

Vol{GL(1)}

(Weighted) cosmological polytopes capture

the singularity structure of IG
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From Graphs to Polytopes

A flavour of cosmological polytopes

x1 x2

y

x1 + x2 = 0

x1 + y = 0

y + x2 = 0

The singularities form a bounded region to which a function Ω is naturally associated

Ω =
1

(x1 + x2)(x1 + y)(y + x2)
≡ nδ

qGqg1qg2



From Graphs to Polytopes

A flavour of cosmological polytopes

x1 x2

y

x1 + x2 = 0

x1 + y = 0

y + x2 = 0

1
2

3
4

A

B

q41 = 0
q23 = 0

q12 = 0

q34 = 0

n1(Y) = 0

Ω =
n1

q12q23q34q41
=

1
q12q34

[ 1
q23

+
1

q41

]
Linear relation

q12 + q34 = q23 + q41

Triangulation of the polytope
≡

Representation for the integrand



From Graphs to Polytopes

A flavour of cosmological polytopes

x1 x2

y

x1 + x2 = 0

x1 + y = 0

y + x2 = 0

1
2

3
4

A

B

q41 = 0
q23 = 0

q12 = 0

q34 = 0

n1(Y) = 0

Ω =
n1

q12q23q34q41
=

1
q12q34

[ 1
q23

+
1

q41

]
Linear relation

q12 + q34 = q23 + q41

Point B:
{

q12 = 0
q34 = 0

Compatibility conditions:

Resq12=0Resq34=0Ω = 0 = Resq23=0Resq41=0Ω
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From Graphs to Polytopes
[P.B., W. Torres Bobadilla; ’21]

x3

x5 x6 x7

x8

x9
x13

x1 x11 x10

x2 x12

x4

Ω =
∏
g∈G◦

1
qg(x , y)

∑
{Gc}

∏
g′∈Gc

1
qg′(x , y)

Example: {G◦} for a triangle graph

⇒

=

=

, , , = , ,

, = , ,

, ,



From Graphs to Polytopes
[P.B., W. Torres Bobadilla; ’21]

x3

x5 x6 x7

x8

x9
x13

x1 x11 x10

x2 x12

x4

Ω =
∏
g∈G◦

1
qg(x , y)

∑
{Gc}

∏
g′∈Gc

1
qg′(x , y)

Compatibility conditions allow to:

1 write all the possible representations without spurious singularities

2 make manifest the symmetries that maps a simplex into another one

3 improve analytical/numerical efficiency of the integration.
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Cosmological Polytope PG Cosmological Integral IG

Canonical form ω Integrand of IG

Triangulations Representations for the integrand

Boundaries (Faces) Residues of the integrands

Canonical form pre-
serving transformations

Symmetries of
the integrand

Paths along con-
tiguous vertices Symbols for IG

fk =
∫ b

a
d log R1 ◦ . . . ◦ d log Rk

S(fk) := R1 ⊗ . . . ⊗ Rk

Trascendental
function

Iterated
integral

Symbols
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Towards a combinatorial RG: The IR/UV structure of IG
[P.B., F. Vazão; 24]

x1 x2

y12 =
∫

R+

2∏
j=1

[
dxj
xj

xα
j

]
1

(x1
1 x0

2 + x0
1 x1

2 + XGx0
1 x0

2 )(x1
1 x0

2 + Xg1x0
1 x0

2 )(x0
1 x1

2 + Xg2x0
1 x0

2 )

The integral converges for values of α that
identifies points inside the Newton polytope



Towards a combinatorial RG: The IR/UV structure of IG
[P.B., F. Vazão; 24]

x1 x2

y12 =
∫

R+

2∏
j=1

[
dxj
xj

xα
j

]
1

(x1
1 x0

2 + x0
1 x1

2 + XGx0
1 x0

2 )(x1
1 x0

2 + Xg1x0
1 x0

2 )(x0
1 x1

2 + Xg2x0
1 x0

2 )

The integral converges for values of α that
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W
′(2)

W
′(1)

W(2)

W(1)

W(12)

W(12) =

2α − 3
1
1

 , W(1) =

α − 2
1
0

 , W(2) =

α − 2
0
1

 , W
′(1) =

−α
−1
0

 , W
′(2) =

−α
0

−1

 ,

The integral diverges in the direction e if
the related λ is ≥ 0



Towards a combinatorial RG: The IR/UV structure of IG
[P.B., F. Vazão; 24]

x1 x2

y12 =
∫

R+

2∏
j=1

[
dxj
xj

xα
j

]
1

(x1
1 x0

2 + x0
1 x1

2 + XGx0
1 x0

2 )(x1
1 x0

2 + Xg1x0
1 x0

2 )(x0
1 x1

2 + Xg2x0
1 x0

2 )

W
′(2)

W
′(1)

W(2)

W(1)

W(12)

E.g.: if λ(12) −→ 0: sector decomposition

Idiv
∆j,12 =

∫ 1

0

dζj
ζj

(ζj)
−λ(j)

1 + ζj
×

∫ 1

0

dζ12
ζ12

(ζ12)
−λ(12)

0

x2

x1
1

1



Towards a combinatorial RG: The IR/UV structure of IG
[P.B., F. Vazão; 24]

x1 x2 =
∫

R+

2∏
j=1

[
dxj
xj

xα
j

] ∫
Γ

∏
e∈E

[dye
ye

yβ
e

]
µ(y)×

× 2(x1 + x2 + ya + yb + XG)

(x1 + x2 + XG)(x1 + x2 + ya + XG)(x1 + x2 + yb + XG)(x1 + ya + yb + X1)(x2 + ya + yb + X2)

1 µ(y) ∼
[

Vol2Σ2(y2
e , P2)

Vol2Σ1(P2)

] d−3
2

2 Γ =⇒ Volume of the triangle, and all its side, are positive

(ya + yb + P)(ya + yb − P)(ya − yb + P)(−ya + yb + P) ≥ 0,

ya ≥ 0, yb ≥ 0, P ≥ 0

P

ya yb



Towards a combinatorial RG: The IR/UV structure of IG
[P.B., F. Vazão; 24]

x1 x2 =
∫

R+

2∏
j=1

[
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] ∫
Γ

∏
e∈E
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The asymptotic structure of IG is captured by:

1 a nestohedron, which is determined by the underlying cosmological polytope PG ,
and whose facets are fixed via subgraphs

W
(j1 . . . j

n(g)s +n(g)e
)

=

λ
(j1 . . . j

n(g)s +n(g)e
)

e(j1 . . . j
n(g)s +n(g)e

)

 , λ
(j1 . . . j

n(g)s +n(g)e
)

=
∑
s∈Vg

αs +
∑

e∈E (L)

βe −
∑

g′∈(tubings)

τg′

The integral diverges in the direction e if
the related λ is ≥ 0

2 the contour of the loop integration Γ, which selects the divergent directions
among the W’s of the nestohedron
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This combinatorial picture allows to:

1 straightforwardly determine both the directions along which IG can diverge and
their degree of divergence;

2 straightforwardly compute leading and subleading divergences (both in the IR
and in the UV) via sector decomposition;

3 the leading divergence in the IR are associated to the restriction of the underlying
cosmological polytope onto special hyperplanes;

4 write a systematic substraction that produces IR-finte quantities.
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can be expressed in terms of

I (j)
{τg} :=

∫
Γ

µd φ , φ :=

∏
e∈E (L)

dye∏
g∈G(j)∪{e}

[qg(y)]τg
,(twisted period

integrals)

Each of these integrals can be expressed as a finite linear combination of master integrals

I (j)
{τg} :=

ν∑
j=1

cjJj , dJ = dA J

Canonical form: dJ = εdA J ⇒ J = Pexp
{

ε

∫
Γ

dA

}
J◦
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2 The factorisation property of such higher order operator determines the type;
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or its restrictions, allows to simplify the problem;

x1 x2
Loop

integration log, Li2 =⇒ Site-weight
integration 2F1, 3F2

General power-law
FRW cosmologies

x1

x2 x3

Loop
integration Polylogs, Elliptics



Conclusion

First clues on constraints on cosmological processes:
perturbative unitarity, flat-space limit,

factorisations, higher-codimensions singularities

General framework to have a direct formulation
with IR safe observables

& a novel formulation of the RG

We scratched the surface of the one-loop structure:
first glimpses of its analytic structure and its space of functions.
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