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Less ﬁr‘imonlz‘al Universe

Can we put constraints on which state can propagate during inflation
in a completely model independent way?

What is the imprint of the inflationary physics in the analytic
structure of the relevant observables?

What are the rules governing physical processes at energies as large as
H| . ~ 101 GeV?

infl
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Model independent constraints?

What does it even mean?

@ A theory is defined by.. a La@(ngian

Computables Enjoy sufficiently physical features
(e.g.: physical dofs, gauge inv.,...)

© Basic guiding principles that any reasonable theory ought to satisfy

© Constraints = Consequences of the simultaneous validity of these
principles
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S;n'n 52
Spin 1 S No self-interactions
o g
. ” L opn No interactions
Self-interaction just Graviton uniqueness :
. . with s < 2
for different species N = 1 Sugra
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Guiding principles Simplest processes
(1) + > N
computables constraints
© Language:
Fielda: ‘fRiemannian geometry:
redundant organisation of mathematical tool for the explotation of
redundant degrees of freedom the equivalence principle

[S. Weinberg, Gravitation and Cosmology]

© Problems as our inability to extrapolate high energy knowledge from
our low energy one:
(Quantum) gravity;
Higgs: it is necessary to extrapolate high energy physics from the low energy one



Wh y Combinatorics?

Deeper understanding of the physics encoded
into cosmological observables

Novel rules which can allow to go beyond the regime
in which the combinatorial description has been formulated
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Y23

Y12 Q Y12
°o *r—e X1 X2 *r——e——o
X X1 X2 X1 X3
Yb
[N. Arkani-Hamed, P-B., A.Postnikov; '17]
[P, '19]
o5 dye ns(x,y
Ig = H{/ dXsA(Xs*XS)]/ H {7%9}/‘ ( )
sey X T cew LY H (%, y)
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Loop Universal
Cosmology . . .
1 integration integrand
Power-law FRW
/\(Xs - Xs) ~ (Xs - X5)071
External kinematics: Xs := Z |B], ye := | Z ﬁ(“‘ (e &N\{EW})
JjEs JEse
Loop momenta: ye, := |1l ye, := [T+ B, ... (e € EV)
= Z Xs + Z Ye y23
X1 X3
X1+ X2 + }/23

seV, ecEPt



In this talk

© Cosmological integrands: Singularities, combinatorics & computation
© The IR/UV structure of cosmological integrals

© One loop corrections without integration
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From Graphs to p lg/fo

A flavour of cosmological polytopes

*——0
X1 X2
xx1+y=0
—® ©—
Y+x =0 x1+x =0
—>

The singularities form a bounded region to which a function ) is naturally associated

1 _ ns
(a+x)0a+y)y+x) 9695
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A flavour of cosmological polytopes
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o~ e Lo o D
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Triangulation of the polytope

Representation for the integrand

=0
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A flavour of cosmological polytopes

Y+x =0

ny

Compatibility conditions:

Resg,—0Resg,,—0Q2 = 0 = Resg,,—gResg,; =002

=0
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X5 X6 X7 [PB., W. Torres Bobadilla; '21]

x4 @ [ R

ng—"4 ¢ a=]] P | Eweam)

4eB, qG( {@}ge@ Gy (X, ¥)

X2 X12
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From Graphs to ﬁolg/fopes

[PB., W. Torres Bobadilla; '21]

a=]] 2 11
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From Graphs to p lg/fo

X4

X3

x2

X5

X6
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[PB., W. Torres Bobadilla; '21]

S s

4eB, q9( {Qﬁ}ge@ Gy (X, ¥

Compatibility conditions allow to:

@ write all the possible representations without spurious singularities

© make manifest the symmetries that maps a simplex into another one

© improve analytical /numerical efficiency of the integration.
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gical Polytopes & Ig: A dictionary

Cosmological Polytope Pg

Canonical form w

Triangulations
Boundaries (Faces)

Canonical form pre-
serving transformations

Paths along con-
tiguous vertices

b
Trascendental fi :/ Al e,
a

function

Symbols S(fy) = R®...

Cosmological Integral Zg

Integrand of Zg
Representations for the integrand
Residues of the integrands

Symmetries of
the integrand

Symbols for Zg

Iterated

o dlog Rk integral

® Rk
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[P.B., F. Vazdo; 24]

dx; 1
{71 K ] (x5 + x5 + Xgxg) (xi x5 + Xy x ) (X7 x5 + Xy X7 x3)

2
2
e — [ 11
X1 X2 JRR

+ j=1

)
— 2)
| —
m’uh qmﬂ!
O—
J
@)

The integral converges for values of « that
identifies points inside the Newton polytope

20— 3 a—2 a—2 —a -«
w2 = 1 |, w¥=| 1 |, w¥=| 0 | WY=|-1|], w®=1|0],
1 0 1 0 -1

The integral diverges in the direction ¢ if
the related A\ is > 0




Jowards a combinatorial RG: The IR/UV structure of Ig

[P.B., F. Vazdo; 24]

dx; 1
- {71 K ] (x5 + x5 + Xgxg) (xi x5 + Xy x ) (X7 x5 + Xy X7 x3)

2)

O— 4 I
w Al L4
X i
E.g.: if \® — 0: sector decomposition
" d¢ (¢)~ 1 déin —A(2)
Z/12 _/ — X (CIZ)
G 1+¢G o G2 1
X1



Jowards a combinatorial RG: The IR/UV structure of Ig

[P.B., F. Vazdo; 24]

x1 X =/ ﬁ[ﬁxq} /H [%yﬂ 1(y) x
Roop % 7 roelye °

« 20 +x2 +ya + yb + Xg)
(Xl +X2+Xg)(X1+X2 +ya+Xg)(X1 +X2+yb+Xg)(X1 +ya+yb+é’(1)(xz +ya+yb+é\?2)

d—3

VoI’ (y2, P?) | 2
o ~ |2 Ve T ) Ya ¥
N(y) VO|221(P2) b

P
© [ = Volume of the triangle, and all its side, are positive

(Ya+Yb+P)(Ya‘f'}/b*P)(}’a*Yb'i‘P)(*)/a"‘Yb'i"D) >0,

¥a>0, y»>0, P>0
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[P.B., F. Vazdo; 24]
o S )
Ry Jj= ecé

o 2(x1 +x2 + ya+yp + Ag)
(Xl +X2+Xg)(X1+X2 +ya+Xg)(X1 +X2+yb+Xg)(X1 +ya+yb+é’(1)(xz +ya+yb+é\?2)

> Ya
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[P.B., F. Vazdo; 24]

T [ IS ] f TT [ ) X

H (a9 (x + X, y)]™®

9CG

seVy ecel) Ye



Jowards a combinatorial RG: The IR/UV structure of Ig

[P.B., F. Vazdo; 24]

o O[S ) QTZSXZXXYy))P

Ig = /OMH

seV ec&L)

The asymptotic structure of Zg is captured by:

@ 2 nestohedron, which is determined by the underlying cosmological polytope Pg,

and whose facets are fixed via subgraphs

Ur--d (g), (o))
Groo ) g ng [V )
oo _ ( ) D S D D S

e . .
Ud o) () seV, ccel) o € (tubings)
The integral diverges in the direction ¢ if
the related A is > 0

© the contour of the loop integration I', which selects the divergent directions

among the 20's of the nestohedron



Jowards a combinatorial RG: The IR/UV structure of Ig

[P.B., F. Vazdo; 24]

[dxs }/ 11 {%ye} a(y) nslx ¥ X,y)

Ig = /OMH

seVy ecel) Ye

I las(x + X, y)]™

9cg
This combinatorial picture allows to:

@ straightforwardly determine both the directions along which Zg can diverge and

their degree of divergence;

© straightforwardly compute leading and subleading divergences (both in the IR

and in the UV) via sector decomposition;

© the leading divergence in the IR are associated to the restriction of the underlying

cosmological polytope onto special hyperplanes;

@ write a systematic substraction that produces IR-finte quantities.



U/mlersfandz‘ng the space of functions

[PB., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazdo; 24]

e [T ] I (2] o

11 lag(x + X, y)]™
46



U/mlersfandz‘ng the space of functions

[PB., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazdo; 24]

Ig = /+°° H {ﬁxsas} /r H {%yﬁe} () ns(x + X, y)

0 eyl ecew) L Ye H [qg(x + X, y)]™
9cg
can be expressed in terms of
IT v
(twisted period A / A ecgll)
. = Hd P Y = )
integrals) {7} Jr [qg(y)rg
geellu{e}

Each of these integrals can be expressed as a finite linear combination of master integrals

)y =367,  dJ = dAJ
Jj=1

Canonical form: dJ = edAJ = J = Pexp {E/dA} To
T
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[PB., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazdo; 24]

@ The system of differential equations has a block-triangular form, and for each block

can be rewritten in terms of a higher order differential equation for a single Jj;

© The factorisation property of such higher order operator determines the type;

of solutions

© Expressing the integrand in terms of triangulations of the cosmological polytope

or its restrictions, allows to simplify the problem;

x1 X2 Loop og Li, — Site-weight
integration g L2 integration
Loop L
A integration Polylogs, Elliptics

General power-law

2F1, 3F2 FRW cosmologies



First clues on constraints on cosmological processes:
perturbative unitarity, flat-space limit,
factorisations, higher-codimensions singularities

General framework to have a direct formulation
with IR safe observables
& a novel formulation of the RG

We scratched the surface of the one-loop structure:
first glimpses of its analytic structure and its space of functions.
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