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tuned:  but not enough to give up on Naturalness  
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• test of SM


•search for new particles above LHC reach



 EFT extensions of SM (electroweak): challenges: 

• bases of SMEFT operators:  ~1000 @ dim-6, more @ dim-8 ..


counting,  explicit constructions [field redefinitions, IBP, EOMs]


• derivation of low-E SMEFT predictions: Lagrangian in broken theory:  


       redefine parameters from “input” physical masses, couplings


• comparing to experiment: a multi-dim mapping


ℒ = ∑
i

ci𝒪i(ϕ1, …, ϕn) ↔ observables
global analyses



+ different EFT extensions: 

    SM only or SM + a few light new fields           


    SMEFT: SU(3)xSU(2)xU(1)  at  


HEFT: SU(3)xU(1)EM


        counting dimensions ambiguous, UV matching ambiguous


          


“sick” EFT : eg integrated out fields with masses from EWSB


Λ

eg Alonso Jenkins Manohar ‘15

…


Dawson Fontes Quezada-Calonge Sanz-Cillero ‘23

Cohen Craig Lu Sutherland ’20


…

h in Higgs doublet;    large scale separation possible:  Λ ≫ v

HEFT/SMEFT distinction can be obscured by field redefinitions

h gauge singlet;    no scale separation:  Λ ∼ v



Formulate using (on-shell) amplitudes: construction & counting

amplitudes: the whole is often SMALLER than the sum of its parts:


gauge boson amplitudes: many Feynman diagrams (~10 million for tree 10-gluon):  


      
+

+

+

+

+
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Parke & Taylor (1986):  n-gluons  helicity amplitudes-squared of definite helicities:                                                                              


-2- FERMILAB-Pub-86/42-T 

For the n gluon scattering amplitude, there are [(n + 2)/21 independent helicity 
amplitudes. At the tree level, the two helicity amplitudes which most violate the 
conservation of helicity are zero. Thii is easily seen by embedding the Yang-Mills 
theory in a supersymmetric theory ‘J. Here we give an expression for the next 
helicity amplitude, also at tree level, to leading order in the number of colors in 
SU(N) Yang-Mills theory. 

If the helicity amplitude for gluons I.. n, of momenta pi.. pn and helicities 
Xi.. . X, is M,(Xr,. . X,), where the momenta and helicities are labelled as though 
all particles are outgoing, then the three helicity amplitudes squared of interest are 

IM,,(+ + + + +. .)I’ = cn(s,N) IO + O(g’) I (1) 

IJL- + + + + . .)I’ = 4!?,N) 10 + OW) I (2) 

IMn(--+++...)I* = Cn(g*N) I(1.2)’ ~(,.2)(2.3)(31.4).,.(n.l) 

+ O(Aq + O(g2) ] (3) 

where c”(g,N) = g *n-4N”-2(NZ - 1)/2”-‘n and (i. j) = pi . pj. The sum 
is over all permutations, P, of 1.. . n. Eqn(3) has the correct dimensions for a 
n particle scattering amplitude squared and also agrees with the known result&’ 
for n=4, 5 and 6. The agreement for n=6 is numerical.’ More importantly, this 
set of amplitudes is consistent with the Altarelli and Paris? relationship for all n, 
when two of the gluons are made parallel. This is trivial for the first two helicity 
amplitudes but is a highly non-trivial statement for the last amplitude, as shown 
below, 

I&(--+++...)I? -+ o 
1 II 2 

I&,--+++...)I* -+ 2g’N +=: *) ; lJLt(- - + + .)I’ (5) 
2 II 3 

IMn(- - + + + . . .)I’ --* 2g’N +y *) ; IJG-I(- -+ + . ..)I’ (‘5) 
3 II 4 

where s is the corresponding pole and z is the momentum fraction. The result for 



so much more efficient than Feynman diagrams 


gauge fields —>  spin-1 massless particles    2 dof’s only


in fact: amplitude bootstrap: gauge symmetry is an output rather than an input


 

• Lorentz

•  global internal symmetries

•  Locality

•  Unitarity } rich beautiful & very diverse program


starting with Bern Dixon Kosower ~90’s

…

now widely used for EFT applications too

bootstrapping amplitudes:



gauge symmetry is an output rather than an input


consistent interactions of spin-1 particles 

in particular: Lie groups       standard QFT textbook example (Schwartz)                               


from 


1. 3-points —> group structure consts


2. factorization of 4-pts on 3-pts —> Jacobi identity


   


                            Benincasa Cachazo   ’08  




also for non-zero mass:


   what are the most general interactions of spin-1 particles?

p1, a

p2, b

 p3, c+ 𝒪(mass-splittings)

Lorentz: completely antisymmetric 

Cabc (⟨12⟩[23]⟨31⟩ + [12]⟨23⟩[31] + perm)/M2

+C′ abc ⟨12⟩⟨23⟩⟨31⟩/Λ2 + C′ ′ abc [12][23][31]/Λ2

Cabc—>              completely antisymmetric        

                    Lie group structure constants 

Durieux Kitahara YS Weiss ’19

Liu Yin ‘22

not surprising:  gauge symmetry broken by mass terms — restored at high-E


reintroduce via:      


                                                            (field redefinition; gauge symmetry = redundancy of description)

Wμ → −
i
g

∂μU U−1 + UWμU−1



amplitude formulation of EFTs (for standard model/EWSB):


blind to field redefinitions   —    notoriously difficult in EFTs: operator bases; HEFT/SMEFT

   


  power of Lorentz symmetry: gauge symmetry is intimately tied to/follows from  Lorentz


                                                  (unbroken/broken)




On-shell applications to EFTs (massless & massive)

count (& construct ) bases of EFT operators


selection rules: explain zeros in 


• matrix of anomalous dimensions of EFT operators (loop cuts & generalized cuts)


• interference of SM x EFT amplitudes (tree)


derive anomalous dimensions of EFT operators (loop cuts & generalized cuts)
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amplitude

ℒ

amplitude LHC

in some of these:



amplitude

ℒ

amplitude LHC

search for new physics: 

0th order: new structures 

mapping amplitudes <—> observables



Outline 

amplitude basics


amplitude construction of EFT bases


bottom-up construction: HEFT   


on-shell Higgsing: low-E SMEFT    ( d=6 + VV production @ d=8 )


   power of Lorentz: gauge theories, Higgsing, perturbative unitarity & gauge symmetry 



1, p1

2, p2

n, pn
amplitude is function of momenta, polarizations ( )


 all can be written in terms of massless 2-component spinors:


          or   

     

               


      

    —> unified description of amplitudes of different spins


          massless-massive relations (Higg mechanism) & relation to Lorentz made transparent                                         

s = 1/2, s = 1

u+(p) = p] u−(p) = p⟩

ū+(p) = [p ū−(p) = ⟨p

writing amplitudes: spinor variables:

Little group covariant massive spinors of Arkani-Hamed Huang Huang ‘17



    :  

Little group: U(1) = Lorentz transformations keeping  invariant:  

 

 

pi = i⟩[i

pi

i] → eiϕ i] : charge + 1

i⟩ → e−iϕ i⟩ : charge − 1

massless momenta:



pi = i⟩I [iI I = 1,2

Little group  SU(2)  = Lorentz transformations keeping  invariant:  pi

 i⟩I → WI
J i⟩J [iI → (W−1)J

I [ iJ

Arkani-Hamed Huang Huang ‘17massive momenta: LG covariant spinor formalism



i, h = 1/2 i]

i, h = − 1/2 i⟩

i, h = + 1 i]i]

i, h = − 1 i⟩i⟩

external leg  : i

i, s = 1/2 i] or i⟩

i, s = 1 i]i] or i⟩i⟩ or i⟩i]

i]i] ≡ i]{I i]J}

can construct any SU(2) LG rep from symm

combinations of doublets  

massless massive



amplitude = function of spinor products        , or  


        & Lorentz invariants           

⟨ij⟩, [ij] ⟨ij⟩, [ij]

sij = (pi + pj)2

amplitudes transform under external particle little group


U(1) massless / SU(2) massive


—> selection rules on allowed (spinor) structures



massless-massive amplitude relations

high-energy limit:





HE:               


eg,     only        survives;             subleading


—> HE limit: simply unbold spinor structures


massless <—> massive amplitudes :  bolding <—> unbolding 

p = pI=1 + pI=2 ≡ k + q

k = 𝒪(E) ( ∼ p) q = 𝒪(m2/E)

p]I=1 ∼ p] p]I=2 = q]

Arkani-Hamed Huang Huang ‘17



amplitude construction of EFT bases 



• most general 3-points (renormalizable + higher-dim): consistent with symmetries: Lorentz—LG + 
internal


• higher-point contact terms: consistent with symmetries: Lorentz—LG + internal, manifestly local in 
kinematic variables (pole free)

input: massive (and/or massless) particles, global symmetries 

amplitude construction of EFT bases



ℒ = ∑
i

ci𝒪i(ϕ1, …, ϕn) ∝ ∑
i

ci (⋯)i

AL AR

on top of factorizable part:

1, p1

2, p2

n, pn

1-1 correspondence

CT
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…[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
local: no poles

contact-terms:



carries LG weight; “stripped” off 

all Lorentz invariants 


“stripped contact term”   SCT
sij

[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩
Λ#

P ( sij

Λ2 )



[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩
Λ#

P ( sij

Λ2 )
carries LG weight; “stripped” of 


all Lorentz invariants 

“stripped contact term”   SCT

sij

polynomial in Lorentz

invariants  


subject to kinematical constraints,

eg, 

sij

s12 + s13 + s23 = ∑ m2

derivative expansion



[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩
Λ#

P ( sij

Λ2 )
carries LG weight; “stripped” of 


all Lorentz invariants 

“stripped contact term”   SCT

sij

polynomial in Lorentz

invariants  


subject to kinematical constraints,

eg, 

sij

s12 + s13 + s23 = ∑ m2

derivative expansion

1. Find SCT basis

2. Multiply SCT by polynomial of invariants

3. Make sure no redundancies re-introduced

  for s=0,1/2,1 relevant for SM-EFTs:    


  m=0 generic SCTs & CTs


 full list of 4-pt massive SCTs 

Durieux Machado ’19
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  use this for a bottom-up construction of

 


EFT extensions of SM:  

input: physical particles (massive & massless)


 SU(3)xU(1) 


higgs = SU(3)xU(1) singlet


gives  HEFT amplitudes




• CT basis with   growth


• corresponding to  HEFT operators


• clear identification of operator dimension from dim-analysis:


                   factors of     (external massive vector)     


                  any extra powers  of   compensated by powers of     

 

                    —>  read off dimension of operator      (4-pt ampl is dim-less)

E2, E3, E4

d ≤ 8

p]p⟩ → p]p⟩/M

E Λ

—>   terms in amplitudes;  reflect non-locality  


vs SMEFT where bad HE behavior must cancel  (will see: gauge invariance <—> perturbative unitarity)

E/M

4-pt HEFT contact-terms: Liu Ma YS Waterbury ’23

[Dong Ma Shu Zhou ’22: HEFT operators]

Durieux Kitahara Machado YS Weiss ’20



can be viewed as dimension-six, since it generates E
2 terms. Alternatively, it can be

viewed as dimension-four, since it corresponds to the operator V
2
h
2. In any case, the

physical quantity is the numerical coefficient of each kinematic structure, and these
differences are just a matter of theory interpretation. Moreover, there is no sharp
distinction in the HEFT between the cutoff ⇤̄ and the electroweak mass scale v, with
⇤̄ ⇠ v. In the following, when we refer to HEFT dimensions, we will refer to the
dimension of the corresponding operator. The contact terms h12i[12] and h13i[23]

are then dimension-4 and 5 respectively. Furthermore, it is easy to read off the minimal
dimensions of these operators in the SMEFT. To leading order in the v expansion,
⇤̄�2 = ⇤�2, and ⇤̄�1 = v⇤�2. Therefore, both of these contact terms can be first
generated at dimension-six in the SMEFT. This is consistent with the fact that the
factorizable fermion-fermion-vector-higgs amplitudes only feature E/M growth (see
Table 4), so C

±⌥0,fac
ffV h

= 0. Indeed, as was shown in [33], perturbative unitarity of
this amplitude only implies relations between SM couplings, specifically, the relation
between the fermion mass, the Yukawa coupling, and the Higgs VEV.

Massive amplitudes E
2 contact terms

M(WWhh) C
00
WWhh

h12i[12], C±±
WWhh

(12)2

M(ZZhh) C
00
ZZhh

h12i[12], C±±
ZZhh

(12)2

M(gghh) C
±±
gghh

(12)2

M(��hh) C
±±
��hh

(12)2

M(�Zhh) C
±
�Zhh

(12)2

M(hhhh) Chhhh

M(f c
fhh) C

±±
ffhh

(12)

M(f c
fWh) C

+�0
ffWh

[13]h23i , C�+0
ffWh

h13i[23] , C±±±
ffWh

(13)(23)

M(f c
fZh) C

+�0
ffZh

[13]h23i , C�+0
ffZh

h13i[23] , C±±±
ffZh

(13)(23)

M(f c
f�h) C

±±±
ff�h

(13)(23)

M(qcqgh) C
±±±
qqgh

(13)(23)

M(f c
ff

c
f)

C
±±±±,1
ffff

(12)(34), C��++
ffff

h12i[34], C�+�+
ffff

h13i[24], C�++�
ffff

h14i[23]

C
±±±±,2
ffff

(13)(24), C++��
ffff

[12]h34i, C+�+�
ffff

[13]h24i, C+��+
ffff

[14]h23i

Table 1: Contact terms with E
2 growth. The C’s stand for independent HEFT coefficients,

and are mostly generated at ⇤̄�2, corresponding to d = 6 operators. The only exceptions
are C

00
WWhh

and C
±⌥0
ffV h

which appear with M
�2
V

and (MV ⇤̄)�1 respectively, corresponding
to d = 4 and d = 5 operators (for details see text). Color structures and indices are not
shown but can be added unambiguously. For identical Majorana neutrinos, the structures
C

±±±
ffZh

(13)(23) and C
±±±
ff�h

(13)(23) do not appear.

10

full set of HEFT (+SMEFT) contact terms with  growth:  (mostly dim-6 operators)E2

(12) = [12] or ⟨12⟩

most suppressed by 

(amplitude dim-less)

Λ̄2

’s: Wilson coefficientsC

Ma Liu YS Waterbury 2301.11349

LOW ENERGY 

AMPLITUDES

bold: massive particle
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it to the factorizable part, the full amplitude has no E growth. The coefficient C00,CT
WWhh

can be viewed as dimension-six, since it generates E2 terms. Alternatively, it can be

viewed as dimension-four, since it corresponds to the operator V 2h2. In any case, the
physical quantity is the numerical coefficient of each kinematic structure, and these
differences are just a matter of theory interpretation. Moreover, there is no sharp

distinction in the HEFT between the cutoff Λ̄ and the electroweak mass scale v, with
Λ̄ → v. In the following, when we refer to HEFT dimensions, we will refer to the

dimension of the corresponding operator. The contact terms 〈12〉[12] and 〈13〉[23]
are then dimension-4 and 5 respectively. Furthermore, it is easy to read off the minimal
dimensions of these operators in the SMEFT. To leading order in the v expansion,

Λ̄→2 = Λ→2, and Λ̄→1 = vΛ→2. Therefore, both of these contact terms can be first
generated at dimension-six in the SMEFT. This is consistent with the fact that the

factorizable fermion-fermion-vector-higgs amplitudes only feature E/M growth (see
Table 4), so C±∓0,fac

ffV h = 0. Indeed, as was shown in [33], perturbative unitarity of

this amplitude only implies relations between SM couplings, specifically, the relation
between the fermion mass, the Yukawa coupling, and the Higgs VEV.

Massive amplitudes E2 contact terms
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Table 1: Contact terms with E2 growth. The C’s stand for independent HEFT coefficients,
and are mostly generated at Λ̄→2, corresponding to d = 6 operators. The only exceptions
are C00

WWhh and C±∓0
ffV h which appear with M→2

V and (MV Λ̄)→1 respectively, corresponding
to d = 4 and d = 5 operators (for details see text). Color structures and indices are not
shown but can be added unambiguously. For identical Majorana neutrinos, the structures
C±±±
ffZh(13)(23) and C±±±

ffγh (13)(23) do not appear.
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ffγh (13)(23) do not appear.
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physical quantity is the numerical coefficient of each kinematic structure, and these
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dimensions of these operators in the SMEFT. To leading order in the v expansion,

Λ̄→2 = Λ→2, and Λ̄→1 = vΛ→2. Therefore, both of these contact terms can be first
generated at dimension-six in the SMEFT. This is consistent with the fact that the
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SMEFT: this term required to cancel E^2/M^2 of low-E factorizable amplitude:

with E4 growth in Section 4. Together with the three-point electroweak amplitudes
derived in Ref. [33]1, the four-point contact terms and their coefficients allow for a full

parametrization of general EFT amplitudes up to E4.
The generic dimension-six contact terms are listed in Table 1. The bolded products

(ij) stand for either square or angle brackets, as appropriate for the helicity category

in question. The Wilson coefficients of these structures are denoted by capital C’s,
with subscripts denoting the external particles, and superscripts denoting the helicity

category. Here and in the following, f denotes any SM fermion, V denotes the W or
the Z, and h denotes the physical Higgs.

Note that at this order, all the contact terms are given by spinor structures with

no additional powers of the Mandelstam invariants. Thus they correspond to SCTs.
In Section 4, when we consider also E4 terms, these expansions will appear. Recall

that the SCTs carry the little group weights associated with the external particles and
encode their polarization information. Amplitudes not shown in this Table have their

leading contributions from SCTs involving more than two spinor products.
Most of the contact terms in Table 1 are suppressed by two powers of the cutoff,

namely 1/Λ̄2, and correspond to independent dimension-six operators. The exceptions

are structures in longitudinal vector categories. As mentioned above, these are nor-
malized as 〈12〉[12]/M2

V and 〈13〉[23]/(MV Λ̄) (and similarly for 1 → 2). With this

normalization, we can read off the dimension of the low-energy operator which first
generates these terms as 4 and 5 respectively. Indeed, 〈12〉[12] is first generated at

dimension-4, and corresponds to the operator V µVµh2. It is required to cancel the high-
energy growth of the massive SM factorizable amplitude 2. We can split the coefficient
of the contact term 〈12〉[12] as C00

WWhh = C00,fac
WWhh+C00,CT

WWhh with the part C00,fac
WWhh can-

celing the E2/M2
V part of the factorizable amplitude. Thus C00,fac

WWhh is determined by
three-point couplings, while the remaining C00,CT

WWhh constitutes an independent Wilson

coefficient. In the SMEFT, this split cleanly correlates with the counting of operator
dimensions in the high-energy theory. C00

WWhh is an expansion in v2/Λ2, with the lead-
ing v0 piece corresponding to C00,fac

WWhh, and determined by the SM dimension-four gauge

coupling. At dimension-six, both the three-point couplings and C00,fac
WWhh are shifted by

v2/Λ2 corrections such that the cancelation still holds. On top of this, C00,CT
WWhh/Λ

2 is

an independent 4-point Wilson coefficient.
In the HEFT, on the other hand, the various couplings are just numbers, and there

is no expansion in the VEV. Power counting can be done in various ways. Splitting
C00

WWhh as before, C00,fac
WWhh is naturally treated as dimension-four, such that upon adding

1Three-point gluons were not included in Ref. [33], but can be obtained from the photon amplitudes
by simply adding a color factor.

2The leading high-energy behavior of each factorizable amplitude is shown in Table 4.
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SMEFT: this term required to cancel E^2/M^2 of low-E factorizable amplitude:
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in question. The Wilson coefficients of these structures are denoted by capital C’s,
with subscripts denoting the external particles, and superscripts denoting the helicity

category. Here and in the following, f denotes any SM fermion, V denotes the W or
the Z, and h denotes the physical Higgs.

Note that at this order, all the contact terms are given by spinor structures with

no additional powers of the Mandelstam invariants. Thus they correspond to SCTs.
In Section 4, when we consider also E4 terms, these expansions will appear. Recall

that the SCTs carry the little group weights associated with the external particles and
encode their polarization information. Amplitudes not shown in this Table have their

leading contributions from SCTs involving more than two spinor products.
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V and 〈13〉[23]/(MV Λ̄) (and similarly for 1 → 2). With this

normalization, we can read off the dimension of the low-energy operator which first
generates these terms as 4 and 5 respectively. Indeed, 〈12〉[12] is first generated at

dimension-4, and corresponds to the operator V µVµh2. It is required to cancel the high-
energy growth of the massive SM factorizable amplitude 2. We can split the coefficient
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WWhh = C00,fac
WWhh+C00,CT

WWhh with the part C00,fac
WWhh can-

celing the E2/M2
V part of the factorizable amplitude. Thus C00,fac

WWhh is determined by
three-point couplings, while the remaining C00,CT

WWhh constitutes an independent Wilson

coefficient. In the SMEFT, this split cleanly correlates with the counting of operator
dimensions in the high-energy theory. C00

WWhh is an expansion in v2/Λ2, with the lead-
ing v0 piece corresponding to C00,fac

WWhh, and determined by the SM dimension-four gauge

coupling. At dimension-six, both the three-point couplings and C00,fac
WWhh are shifted by

v2/Λ2 corrections such that the cancelation still holds. On top of this, C00,CT
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2 is

an independent 4-point Wilson coefficient.
In the HEFT, on the other hand, the various couplings are just numbers, and there

is no expansion in the VEV. Power counting can be done in various ways. Splitting
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WWhh as before, C00,fac
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1Three-point gluons were not included in Ref. [33], but can be obtained from the photon amplitudes
by simply adding a color factor.

2The leading high-energy behavior of each factorizable amplitude is shown in Table 4.
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4.1.5 W+W�Zh

000 : [12][343ih12i, (1 $ 3), (2 $ 3) (5; 8) # = 3

+00 : [12]h23i[31]; Perm(+00); PF (5; 8) # = 6

+ + 0 : {[12]2[313i, [12]2[323i}; Perm(+ + 0); PF (7; 8) # = 12

+� 0 : [13][142ih23i,Perm(+� 0) (7; 8) # = 6

+ + + : [12][13][23]; PF (7, 8) # = 2

(7)

Above, “Perm” stands for the different possible helicity assignments, eg, (+00), (0+0),
(00+). For the (+ � 0) helicity category, two of the six structures can be exchanged
for other O(E4) SCTs times Mandelstams. Since the latter are beyond quartic order
and therefore not included in our counting, all six structures (+� 0) are independent.

4.1.6 ZZZh

000 : [12][343ih12i+ Perm(123) (5; 8) # = 1

+ + 0 : [12]2[343i+ Perm(+ + 0); PF (7; 8) # = 2

+� 0 : [13][142ih23i+ Perm(+� 0) (7; 8) # = 1

(8)

Here, Perm(123) means all permutations of the momenta. The remaining SCTs which
appear in WWZh require additional Mandelstams to satisfy the Bose symmetry of the
Z bosons. The (+00) helicity category first appears at E

5 as (s12 � s13)[12]h23i[31].
With the parity flipped structure, this introduces two independent coefficients. The
(+++) helicity category first appears at E9 from (s12�s13)(s13�s23)(s21�s23)[12][13][23],
with an additional independent structure from parity.

4.1.7 W+W�ZZ

0000 : [12][34]h12ih34i, [13][24]h13ih24i+ (3 $ 4) (4; 8) # = 2

+ + 00 : [12]2[34]h34i; PF (6; 8) # = 2

+0 + 0 : {[12][34][13]h24i, [14][23][13]h24i}+ (3 $ 4); (1 $ 2); PF (6; 8) # = 8

00 + + : [34]2[12]h12i; PF (6; 8) # = 2

+� 00 : [13][14]h23ih24i; PF (6; 8) # = 2

+0� 0 : {[12][14]h23ih34i+ (3 $ 4), (1 $ 2)}; PF (6; 8) # = 4

00 +� : [13][23]h14ih24i+ (3 $ 4) (6; 8) # = 1

+ + ++ : {[12]2[34]2, [13]2[24]2 + (3 $ 4)}; PF (8; 8) # = 4

+ +�� : [12]2h34i2; PF (8; 8) # = 2

�+�+ : [14]2h23i2 + (3 $ 4); PF (8; 8) # = 2
(9)

At order E5 several new vvvv SCTs become independent in the (+000), (+++0), and
(+ +�0) helicity categories.
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HEFT; naive SMEFT dim’s

# of indep 

structures/couplings
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(leading HE amplitude)

 do new SCTs appear at higher dim’s and where

Ma Liu YS Waterbury 2301.11349
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angle <—> square
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SCT bases may or may not be exhausted in different HEFT 4pt’s:
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
eg:  VVVV: new-independent SCTs typically appear at    but all of type    


      

      

          Zhhh: one at dim-7:


          remaining one at dim-13:


          ZZhh: SCT basis exhausted at dim-8: 

     

E5 ( . . )2( . . )2

4.1 Bosonic Amplitudes with All Massive Particles

4.1.1 hhhh

There is no E2 contact term due to the Bose symmetry of the Higgs legs. The first
contact term appears at E4 and is,

s̃212 + s̃213 + s̃214 (8, 8) # = 1 (3)

Here and in the following, the numbers in the parenthesis indicate the dimensions of

the corresponding HEFT and SMEFT operators respectively, and # is the number of
independent contact terms.

4.1.2 Zhhh

Once we symmetrize over h legs, there is no E2 contact term. At E4 there is a single
structure,

0 : s̃12[121→+ s̃13[131→+ s̃14[141→ (7; 8) # = 1 (4)

The Mandelstams are necessary due to symmetrization over h. The symmetric sum of
s̃13[121→ is (s̃13 + s̃14)[121→+ (s̃12 + s̃14)[131→+ (s̃13 + s̃14)[141→ which simplifies to the

above structure. Note that there is no LE factorizable amplitude.
There is an additional SCT in this case, which first contributes at dimension 13,

(s̃12 − s̃13)(s̃12 − s̃14)(s̃13 − s̃14)([1231]− 〈1231→).

4.1.3 ZZhh

00 : [131→[232→+ [141→[242→, s̃12[12]〈12→ (6; 8) # = 2

++ : s̃12[12]2; PF (8; 8) # = 2
+− : [1(3 − 4)2→2 + 〈1(3 − 4)2]2 (8; 8) # = 1

(5)

Since there is no E4/(M2Λ̄2) growth in the factorizable amplitude, there are no M2Λ2-
suppressed contact terms in the SMEFT. All independent vvss SCTs appear at E4

order.

4.1.4 W+W−hh

00 : [131→[242→+ [141→[232→, s̃12[12]〈12→ (6; 8) # = 2

++ : s̃12[12]2; PF (8; 8) # = 2
+− : [1(3 − 4)2→2; PF (8; 8) # = 2

(6)

All independent vvss SCTs appear at order E4.
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Since there is no E4/(M2Λ̄2) growth in the factorizable amplitude, there are no M2Λ2-
suppressed contact terms in the SMEFT. All independent vvss SCTs appear at E4

order.

4.1.4 W+W−hh

00 : [131→[242→+ [141→[232→, s̃12[12]〈12→ (6; 8) # = 2

++ : s̃12[12]2; PF (8; 8) # = 2
+− : [1(3 − 4)2→2; PF (8; 8) # = 2

(6)

All independent vvss SCTs appear at order E4.
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𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( s

Λ2
,

t
Λ2 )

SCT

scattering 

angle 

and 


decay angles

scattering 
angle

Results: mapping of all possible kinematic structures in 2 to 2 amplitudes: 

completely model-independent

Experiment:  ? construct observables to isolate


novel structures not appearing in SM



back to the SMEFT: is counting dimensions that useful? 


imagine a UV model that gives 


            with all  of same order        

                      more a UV nightmare rather than dream.. (baroque & tuned)  

ci

ℒ(6) = ∑
i

ci 𝒪(6)
i (ϕ1, …, ϕn)

{

}



Theory:   different SCTs typically from integrating out different UV fields 


               (with derivative expansion given by polynomial in invariants)


               reasonable UV models are likely sparse in SCT space at given dim 

𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( s

Λ2
,

t
Λ2 )

SCT

scattering 

angle 

and 


decay angles

scattering 
angle

Results: mapping of all possible kinematic structures in 2 to 2 amplitudes: 

completely model-independent

see also 


Chang Chen Liu Luty ’22 


Chang et al ’23 



SMEFT amplitude bases

@ low-energy


  1. derive amplitudes of massless SU(3)xSU2)xU(1)  theory


                 

                                         

  2. (on-shell) Higgs to get massive amplitudes


        


as above



on-shell Higgsing 
Balkin Durieux Kitahara YS Weiss ’21


Liu Ma Waterbury YS ’23


+ Northey YS Soreq Ueda in progress

main focus here: contact-term part:


starting with contact-terms of massless SMEFT


how do we get the massive LE contact terms?


    

IR unification of UV amplitudes


N=4 Coulomb branch amplitudes

Arkani-Hamed Huang Huang ‘17

Craig Elvang Kiermaier Slatyer ‘11



high-energy massless amplitudes : 


     ,  ,   ,   …A(k1, . . , kn) A(k1, . . , kn; H(q1), . . ) A(k1, . . , kn; H(q1), H(q2), . . )

low-energy massive amplitudes:       M(k1, . . , kn)

·
.



high-energy massless amplitudes : 


     ,  ,   ,   …A(k1, . . , kn) A(k1, . . , kn; H(q1), . . ) A(k1, . . , kn; H(q1), H(q2), . . )

low-energy massive amplitudes:       M(k1, . . , kn)

match  at  E ≫ v qi → 0 [ qi ∼ v2/E → 0 ]
·
.



high-energy massless amplitudes : 


     ,  ,   ,   …A(k1, . . , kn) A(k1, . . , kn; H(q1), . . ) A(k1, . . , kn; H(q1), H(q2), . . )

low-energy massive amplitudes:       M(k1, . . , kn)

match  at  E ≫ v qi → 0 [ qi ∼ v2/E → 0 ]

Mn(1,…, n) = An(1,…, n) + v lim
(qn)∼v→0

An+1(1,…, n; H(q)) + ⋯

see also 

Cheung Helset Parra-Martinez ‘21

·
.
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Figure 2: High-energy origins of the leading and subleading, helicity-flipped, spinor com-
ponents of massive fermions, transverse and longitudinal vectors. The ellipsis stands for
amplitudes with additional Higgs legs.

leg, and q is the momentum of the extra Higgs leg, which is frozen such that (k +q)2 = m2

f
.

In the small (k + q)2 = m2

f
mass limit,

v An+1(kh=≠1/2, 2, . . . , n; H(q)) = v y Èk÷Í
1

(k + q)2
cn[÷ · · · )

= ≠y v cn

Èk(k + q) · · · )
ÈkqÍ[qk] = ≠y v cn

[q · · · )
[qk] , (2.10)

where ÷ = ≠(k + q). Here we used the fact that v isolates the pole piece in An+1, and the
residue is given by the product of the fermion-fermion-Higgs amplitude and the n-point
contact An = cn[÷ · · · ). Using yv = mf = ÈkqÍ = ≠[kq], this simply becomes

v An+1(kh=≠1/2, 2, . . . , n; H(q)) = ≠cn [q · · · ) = cn[pI=2
· · · ) . (2.11)

Together with the leading order term cn[k · · · ) = cn[pI=1
· · · ), we get the full LE structure

with a massive fermion cn[p · · · ), and identify its Wilson coe�cient as Cn = cn + O(m).
One can also easily check that cnÈpI=1

· · · ) is obtained as a subleading component of the
LE amplitude from An(kh=≠1/2, 2, . . . , n) = cnÈk · · · ) with an extra Higgs leg.
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→ 0

n-pt amplitude 

with external 


massive vector n


massless spinor structure gets bolded      k]k] → p]p]



each high-E contact term: CT ci Si

low-E contact term: CT ci Si

2. Contact-term basis     (= EFT input = new couplings) 



may need extra Higgs 
leg(s):

CT ci Si

low-E contact term: CT ci Siv

Cn = cn + vcn+1 + ⋯



may need extra Higgs 
leg(s):

CT ci Si

low-E contact term: CT ci Siv

Cn = cn + vcn+1 + ⋯

+ higher-orders:


 corrections to LE couplings 


 via factorizable ampls: 


wave   function renorm’s



to get any LE n-pt CT: 


consider HE massless CTs with same  legs  +     external Higgs legs:      


  x  (kinematic structure)


take Higgs momenta = 0 


        x  (kinematic structure)


    


next treat (kinematic structure)  — simply bold as saw above

 

n nH = 0,1,…

c(nH)
i

c(nH)
i → vnH c(nH)

i

simple prescription for obtaining LE contact terms:



massless fermion:   


massless vector     


massless scalar with momentum insertion    


—> 1. massive scalar CT with momentum insertion   


—> 2. massive vector CT        

                                                                            ( longitudinal vector from Goldstone boson )

                                                     

i] → i]

i]i] → i]i]

pi = i]⟨i

pi

pi = i]⟨i → i]⟨i



 


from Lorentz symmetry pov: 


covariantize massless spinor structure wrt SU(2) LG              bolding


—> Higgsing                              mass must be proportional to VEV & coupling (gauge/Yukawa)



all low-energy 4-pt CTs generated by dim-8 SMEFT   


                  ..     (massless fermions)


•   dim-8 is leading effect     (dim-6 SMEFT merely corrects SM-3pts;  easy to see from amplitudes)


•  good at           (not just high-E where EFT may be unreliable)


• sensitivity to anomalous Higgs self couplings 


• up/down quark SU(2) relations broken: 


   eg:      have different Wilson coefficients      first happens at dim-8


                                                                                                              

VV → VV f̄f → VV

MV ∼ E ≪ Λ

ūuW+W−, d̄dW+W

VV pair production from dim=8 SMEFT:               V = W, Z, γ, g
Goldberg Liu YS 2407.07945



 +  differences between  HEFT and SMEFT:


• number of independent couplings: eg, for 4W:  21 in HEFT, 13 in SMEFT


• some structures are not generated in the dim-8 SMEFT       due to SU(2)xU(1)


 only one VVVV:         


more “missing” entries in ffVV:

W+W+W−W− : [12]⟨12⟩[34]2

VV pair production from dim=8 SMEFT:               V = W, Z, γ, g
Goldberg Liu YS 2407.07945

J
H
E
P
1
2
(
2
0
2
4
)
0
5
7

fcfW+W− and fcf ′W±Z

Structure/Amplitude UUW+W− DDW+W− UDW−Z DUW+Z

or ŪUZZ or D̄DZZ

[23]→14〉[3(1 − 2)4〉 ! ! − −

[34]2[2(3 − 4)1〉 − − − −

fcfZ(γ/g) and fcf ′W±(γ/g)
Structure UUZ(γ/g) DDZ(γ/g) UDW−(γ/g) DUW+(γ/g)

→13〉[24][4(1 − 2)3〉 ! ! − −

[34]2[2(3 − 4)1〉 −/! −/! − −

Table 2. Missing kinematic structures in the dimension-8 SMEFT fcfW+W− and fcf ′W±Z
amplitudes. A ! means a structure is generated at dimension-8 for the given amplitude, while −
means it is not.

(and its conjugate structure). The reason is hypercharge: this CT would have to come from
a HE WWHH (or WWH†H†) amplitude, which violates hypercharge.

In table 2, we collect the structures that are not generated in dimension-8 SMEFT
f cfW+W− and f cf ′W±Z amplitudes. These structures may still be generated in the
SMEFT at higher dimensions, if they are allowed by symmetry. All of these structures are
generated in the dimension-8 HEFT. The contact term [23]→14〉[324〉, generated in the HEFT
for all listed particle configurations, is absent in the SMEFT for amplitudes whose fermionic
state has non-zero hypercharge. The reason for this is clear from the HE symmetry: this
kinematic structure is in the f c

−f
′
+V+V− helicity category. Since the HE vector bosons have

zero hypercharge, and the fermion pair has non-zero total hypercharge, these amplitudes are
forbidden. The same argument explains the discrepancy in the last line of table 2.

Next, we turn to the structures

[34]2[2(3 − 4)1〉 and [34]2[2(3 − 4)1〉, (4.2)

which are generated in the HEFT for all particle configurations except f cfZZ due to Bose
symmetry. In the SMEFT however, these structures are generated only for amplitudes with
zero total fermionic hypercharge whose final state includes a gluon. These structures are
in the f c

−f+V+V+ helicity category. Examining the HE CTs in table 5, we see that the
contributions to ŪUW+W+, ŪUB+B+ and ŪUW+B± vanish. The first two vanish due to
Bose symmetry. The contribution to ŪUW a

+B± is forbidden by SU(2). On the other hand,
the gluon amplitude f cfZg originates from ŪUgB which respects the HE symmetry.

One also expects fewer independent parameters in the Wilson coefficients of the SMEFT
compared to the HEFT. Indeed, in the LE 4W amplitudes, we find 13 independent parameters,
whereas the HEFT 4W contact terms of [22] feature 21 parameters. Similarly, in the
ucuW+W− amplitude for example, we find 14 (16) free parameters in the chirality-conserving
(violating) CTs. The HEFT contains 20 (22) free parameters in this case. In the HEFT, each
independent CT corresponds to an independent Wilson coefficient, so one could naively expect
a sharper difference in the numbers of parameters featured in the two theories. However, LE
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also transparent in amplitude framework:


gauge invariance <—> perturbative unitarity     


 low-E SM particles + perturbative unitarity —> SU(3)xSU(2)xU(1) SM 




transverse polarization: (I, J) = (1,1) get ∼
p1⟩
M

W p]p], p⟩p⟩, or
1
M

p]p⟩

long. polarization: (I, J) = (1,2) get p]{I p⟩J}

M
∼

E ⋅ E
M

: bad energy growth

bottom-up HEFT construction: amplitude featuring massive vector:  

1
M

p]p⟩ ≡
1
M

p]{I p⟩J}

(HE : p]1 ∼ E p⟩1 ∼ M/ E)



transverse polarization: (I, J) = (1,1) get ∼
p1⟩
M

W p]p], p⟩p⟩, or
1
M

p]p⟩

long. polarization: (I, J) = (1,2) get p]{I p⟩J}

M
∼

E ⋅ E
M

: bad energy growth

1
M

p]p⟩ ≡
1
M

p]{I p⟩J}

(HE : p]1 ∼ E p⟩1 ∼ M/ E)

finite arbitrary spinor  

bottom-up HEFT construction: amplitude featuring massive vector:  



transverse polarization: (I, J) = (1,1) get ∼
p1⟩
M

W p]p], p⟩p⟩, or
1
M

p]p⟩

long. polarization: (I, J) = (1,2) get p]{I p⟩J}

M
∼

E ⋅ E
M

: bad energy growth

1
M

p]p⟩ ≡
1
M

p]{I p⟩J}

(HE : p]1 ∼ E p⟩1 ∼ M/ E)

finite arbitrary spinor  

bottom-up HEFT construction: amplitude featuring massive vector:  

these terms appear in HEFT; cancel in SMEFT



cancellation of bad energy growth  <—>  cancellation of spurious spinor dependence


                                  gauge invariance <—> perturbative unitarity     


power of Lorentz symmetry: equivalence of  gauge invariance & perturbative unitarity:


    two components of one massive LG tensor


        


reference spinor of massless 


gauge boson polarization

Liu Ma YS Waterbury ’23



  to conclude:


LHC: new measurements of Higgs, electroweak interactions — many for first time 


Amplitude formulations of EFTs provide truly model-independent parametrization of possible new 
effects: search for new physics/test of SM 


Theory: new perspectives on gauge theories: massless & Higgsed


Thank you!



• all HEFT 3-points  (+matching to SMEFT)                                                Durieux Kitahara YS Weiss ‘19 

• [all generic 3-points for spins up to 3]                      

• all generic 4-pt SCTs for spins 0, 1/2, 1  ]                                Durieux Kitahara Machado YS Weiss’20 

• HEFT 4-points: hggg, Zggg,  ffVh, WWhh                  Shadmi et al ’18, Durieux  et al ’19, Balkin et al ’21 

  + some full amplitudes (factorizable + contact terms): ffWh, ffZh, WWhh 

•  5V (4W+Z etc)                                                                                                      De Angelis  ‘21 

• Higgs, top 4pts in terms of momenta+polarizations                                   Chang et al ’22, ‘23    

• all HEFT 4pts up to d=8                                                                         Liu Ma YS Waterbury ’23

HEFT CT bases inventory (more results on operators via on-shell)



LE (HEFT) construction: factorizable amplitude features WWh, hhh 3-pt amplitudes


                                       + WWhh contact terms


can be determined by on-shell Higgsing: eg,

where T± ij

kl = (δikδ
j
l ± δilδ

j
k)/2 are the symmetric and anti-symmetric SU(2) structures.

Parameterizing the Higgs doublet as in 1, we find that

A(G+G→hh) =
1

2

(

A(H1H†
1H

2H†
2) +A(H1H†

1H
†
2H

2)
)

= →
c+(H†H)2 → 3c→(H†H)2

2

s12
2Λ2

(53)
which bolds into

→
c+(H†H)2 → 3c→(H†H)2

2

s12
2Λ2

→→
c+(H†H)2 → 3c→(H†H)2

2

[12]〈12↔
Λ2

. (54)

Thus there is a contact term in the massive EFT of the form,

C00,CT
WWhh

[12]〈12↔
Λ2

=
c+(H†H)2 → 3c→(H†H)2

2

[12]〈12↔
Λ2

. (55)

We now turn to the contribution of the massless WWH†H contact terms,

A(W a,±W b,±H†
iH

j) = c±±
WWHH

(12)2

Λ2

(

T ab
)j

i
. (56)

Here ± are the helicites of the W ’s, (12) = [12] for ++, (12) = 〈12↔ for →→, and
(

T ab
)j

i
= δabδji is required by the symmetry of the spinor structure. The kinematics

bold trivially (12) → (12), and one finds the low-energy contact terms

C±±
WWhh

(12)

Λ2
= 2c±±

WWHH

(12)

Λ2
. (57)

A.3 The WWh coupling from on-shell Higgsing

The WWh coupling C00
WWh in Eq. (44) is given by the gauge coupling to leading order,

with a v2/Λ2 correction at dimension-six. Here we show how both of these contributions

can be obtained from on-shell Higgsing. The relevant massless amplitudes to consider
are WH†H or WWH†H to determine the dimension-4 part, and H2(H†)2WW to

determine the dimension-6 shift.
Our discussion closely parallels the derivation of three-points from the massless

amplitudes of a toy model with higgsed U(1) symmetry in Ref. [47], and we refer the
reader to that paper for more details.

To determine C00
WWh one can start from either of its components, which map to

different high-energy amplitudes. Apriori, the obvious amplitude to start from is the
massless three point WH†H , which for positive W helicity is,

A((W+)+G→h) =
g√
2

[12][13]

[23]
(58)
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A.3 The WWh coupling from on-shell Higgsing

The WWh coupling C00
WWh in Eq. (44) is given by the gauge coupling to leading order,

with a v2/Λ2 correction at dimension-six. Here we show how both of these contributions

can be obtained from on-shell Higgsing. The relevant massless amplitudes to consider
are WH†H or WWH†H to determine the dimension-4 part, and H2(H†)2WW to

determine the dimension-6 shift.
Our discussion closely parallels the derivation of three-points from the massless

amplitudes of a toy model with higgsed U(1) symmetry in Ref. [47], and we refer the
reader to that paper for more details.

To determine C00
WWh one can start from either of its components, which map to

different high-energy amplitudes. Apriori, the obvious amplitude to start from is the
massless three point WH†H , which for positive W helicity is,

A((W+)+G→h) =
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2

[12][13]
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30

factorizable d=4 WWHH amplitude —> Higgses to same term with 1/M^2  (coeff~ gauge coupling)


4H CT —> 


4H CT —> hhh amplitude 


example: back to WWhh     @ dim-6




example: back to WWhh     @ dim-6


4 5

63

1 2

1
2

3

4

6

5

W+ W−W+

W+ W−

Figure 1. Feynman-diagram of H2(H†)2WW factorizable amplitude.

and
C = (c+(HH†)2 → 3c→(HH†)2)/2 . (64)

The piece A(3)((H0)4(W+)+(W→)→) is the sum over Feynman diagrams in which the
vector legs attach to different scalar legs (left panel of Fig. 1), and A(4)((H0)4(W+)+(W→)→)

is the piece with the vector legs attached to the same scalar legs (see the right figure
in Fig. 1). (Of course, only the sum is gauge invariant.) Taking the momenta of three

H0 legs-4,5,6 to be soft, only A(4) ((H0)4(W+)+(W→)→) survives,

lim
q4,5,6→0

A(4)
(

H0(q4)H
0(q5)H

0(q6)H
0(3)(W+)+(1)(W→)→(2)

)

= 6g2v3C
[1kξ2k〉
[2kξ1k〉

, (65)

where at the last stage we set qi ∝ ξ for some arbitrary ξ as before. This bolds to
the same massive structure as above. Altogether, after adding in the renormalizable

contribution we have,

Mm
d=6(h(W

+)+(W→)→) = g(1 + v2C)
[12]↔12〉
MW

. (66)

Note that this correction is nothing but the correction to the Higgs wave-function
renormalization induced by the four-Higgs contact term C.

One can derive the SMEFT corrections to the remaining three-point low-energy
amplitudes along the same lines. However, since the most general 3-point couplings

were listed in Ref. [33] based on Feynman diagrams matching, we do not do so here.

32

d=4 WHH (gauge) —> 


where we parametrized the Higgs doublet as in Eq. (1). Bolding this amplitude is not
entirely straightforward because it is non-local, and indeed, its non-locality translates

in the massive amplitude to the 1/MW “pole”. However, we can proceed by multiplying
and dividing Eq. (58) by →3ξ〉 for some arbitrary ξ. After some manipulations using
momentum conservation, we get

A((W+)+G→h) =
g√
2

[12]→ξ2〉
→1ξ〉

. (59)

Identifying 1q] = ξ], this maps to the longitudinal W component of

C00
WWh

→12〉[12]
MW

(60)

with C00
WWh = g. Alternatively, a simpler way to get this coupling is to start from

the 4-point amplitude H2(H†)2, which matches the all-longitudinal component of the

spinor structure. At the renormalizable level, this amplitude,

ASM((W
→)→(W+)+hh) = ↔

g2

2

→132]
→231]

. (61)

Identifying iq) = (MW/(ik3)) 3) for i = 1, 2 and taking p4 → 0 gives,

Am
SM(hW

+W→) =
g2v

2

[23]→23〉
M2

W

(62)

where we also used →ikiq〉 = [iqik] = MW . Therefore, at the leading order, C00
WWh =

g2v/MW . Note that the arbitray ξ spinor that we identified with the q spinors above
naturally arises in this case from the soft higgs leg, with 1̂q and 2̂q along 4̂ (see also

Ref. [66]).
Turning to the dimension-six correction to C00

WWh, this originates, to leading or-

der, from the 6-point H2(H†)2WW factorizable amplitude with a single insertion of a
H2(H†)2 contact term. The massless amplitude can be written as,

Atot

d=6((H
0)4(W+)+(W→)→) = A(3)((H0)4(W+)+(W→)→) +A(4)((H0)4(W+)+(W→)→) ,

with

A(3)((H0)4(W+)+(W→)→) =
8g2C

4

[

[142〉
→12〉s41

s63 +
[162〉
→12〉s61

s43 +
[132〉
→12〉s31

s64

]

→251]
[21]s52

+ (5 ↔ 4, 6, 3) ,

A(4)((H0)4(W+)+(W→)→) =
8g2C

4

→25〉[15]
→15〉[25]

+ (5 ↔ 3, 4, 6) , (63)

31
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momentum conservation, we get

A((W+)+G→h) =
g√
2

[12]→ξ2〉
→1ξ〉

. (59)

Identifying 1q] = ξ], this maps to the longitudinal W component of

C00
WWh

→12〉[12]
MW

(60)

with C00
WWh = g. Alternatively, a simpler way to get this coupling is to start from

the 4-point amplitude H2(H†)2, which matches the all-longitudinal component of the

spinor structure. At the renormalizable level, this amplitude,

ASM((W
→)→(W+)+hh) = ↔

g2

2

→132]
→231]

. (61)

Identifying iq) = (MW/(ik3)) 3) for i = 1, 2 and taking p4 → 0 gives,

Am
SM(hW

+W→) =
g2v

2

[23]→23〉
M2

W

(62)

where we also used →ikiq〉 = [iqik] = MW . Therefore, at the leading order, C00
WWh =

g2v/MW . Note that the arbitray ξ spinor that we identified with the q spinors above
naturally arises in this case from the soft higgs leg, with 1̂q and 2̂q along 4̂ (see also

Ref. [66]).
Turning to the dimension-six correction to C00
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+ contribution from d=6—>  4H
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Figure 1. Feynman-diagram of H2(H†)2WW factorizable amplitude.

and
C = (c+(HH†)2 → 3c→(HH†)2)/2 . (64)

The piece A(3)((H0)4(W+)+(W→)→) is the sum over Feynman diagrams in which the
vector legs attach to different scalar legs (left panel of Fig. 1), and A(4)((H0)4(W+)+(W→)→)

is the piece with the vector legs attached to the same scalar legs (see the right figure
in Fig. 1). (Of course, only the sum is gauge invariant.) Taking the momenta of three

H0 legs-4,5,6 to be soft, only A(4) ((H0)4(W+)+(W→)→) survives,

lim
q4,5,6→0

A(4)
(

H0(q4)H
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0(q6)H
0(3)(W+)+(1)(W→)→(2)

)

= 6g2v3C
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where at the last stage we set qi ∝ ξ for some arbitrary ξ as before. This bolds to
the same massive structure as above. Altogether, after adding in the renormalizable

contribution we have,

Mm
d=6(h(W

+)+(W→)→) = g(1 + v2C)
[12]↔12〉
MW

. (66)

Note that this correction is nothing but the correction to the Higgs wave-function
renormalization induced by the four-Higgs contact term C.

One can derive the SMEFT corrections to the remaining three-point low-energy
amplitudes along the same lines. However, since the most general 3-point couplings

were listed in Ref. [33] based on Feynman diagrams matching, we do not do so here.

32

—> 


altogether: all 1/M pieces cancel out in HE limit


could get same result from bottom-up construction plus requiring this cancellation


  = perturbative unitarity (all E, E^2 terms suppressed by cutoff Lambda)


  or equivalently: requiring cancellation of spurious spinors for transverse Ws

used in Durieux et al to 


derive relation between


Yukawa and fermion mass


