

Fundamental physics with low energy muons

Angela Papa Paul Scherrer Institute and University of Pisa/INFN PLANCK 2025, 26th-30th May, Padova (Italy)

Content

- Muon physics cases
- Muon beams
- Muon experiments

Content

- Muon physics cases
- Muon beams
- Muon experiments

The role of the low energy precision physics

• The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

unveiling **new physics** and probing very **high energy scale**

Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for

Charged lepton flavour violation search: Motivation

- Neutrino oscillations: Evidence of physics Behind Standard Model (BSM). Neutral lepton flavour violation •
- Charged lepton flavour violation: NOT yet observed •
- An experimental evidence of cLFV at the current sensitivities will be a clear signature of New Physics •

BSM

muEDM dedicated search: Motivations

- Baryogenesis, the creation of more matter over anti-matter, requires additional CP violation (CPV) beyond the SM (BSM)
- charge and parity **CP**
- sensitivity, well above the SM predictions

EDMs of fundamental particles are intimately connected to the **violation** of time invariance **T** and, through the CPT Theorem, the combined symmetry of

• These additional CPV underlying interactions would also result in Electric Dipole Moments (EDMs) of fundamental particles at the current experimental

A permanent EDM requires T violation, equivalently CP violation by the CPT Theorem.

Content

- Muon physics cases
- Muon beams
- Muon experiments

Muon beams worldwide

Note: See the back-up for a summary table

Muon beams

• intensities, proper (DC or pulsed) time structure, w/o polarization, optimal phase space

•
$$\mu \rightarrow e\gamma$$
, $\mu \rightarrow eee$

Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam

PSI's muon beams

- Low-energy muon beam lines typically tuned to surface- μ^+ at ~ 28 MeV/c
- Note: surface-µ —> polarised positively charged muons (spin antiparallel to the momentum)
- Contribution from cloud muons at similar momentum about 100x smaller
- Negative muons only available as cloud muons

PSI's muon beams

• PSI delivers the most intense continuous (DC) low momentum (surface) muon beam in the world up to few x 10⁸ mu/s (28 MeV/c, polarised beam (Intensity Frontiers)

How the beam intensity can be increased...

The HiMB (High Intensity Muon Beam) project at PSI

- - (up to 60% of gain: Graphite Slanted target)
 - channel
- - **Increase surface muon rates (30-60% increase depending of the beamline)**
 - Increase safety margin for "missing" target with the proton beam
- PSI Long shut-down: 2027-28. HiMB from end of 2028

The muCool project at PSI

- Aim: low energy high-brightness muon beam •
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor **10¹⁰** with an efficiency of **10⁻⁴**
- Longitudinal and transverse compression (1st stage + 2nd stage): experimentally proved
- **Next Step:** Extraction into vacuum

J-PARC muon beams

- Bunched 8 GeV protons extracted from the Main Ring and delivered to the pion target production inside a capture solenoid
- Muons are charged and momentum selected using curved superconducting solenoids

2x10¹¹ muons/s from 56 kW

COMET @ Main Ring

Fermilab's muon beams

- A dedicated accelerator facility to provide beams to muon g Fermilab
- Muon g-2 precedes Mu2e (that will follow). The delivered r background in the BNL experiment

- Booster provides 8 GeV protons to the Recycler
- Recycler stacks protons into 4 bunches
- Delivery Ring takes 1 out of every 4 bunches from the Recycler
- Mu2e slow extracts protons every 1695 ns

A dedicated accelerator facility to provide beams to muon g-2 and Mu2e experiments has been designed and constructed at

Muon g-2 precedes Mu2e (that will follow). The delivered muon beam is free of protons and pions, which created a major

Content

- Muon physics cases
- Muon beams
- Muon (present) experiments

CLFV searches with muons: Status and prospects

- In the near future impressive sensitivities via the so called "golden" muon channels
- Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV

 $e\gamma$

 \uparrow

T

eee

 \uparrow

n

 μN

CLFV searches with muons: Status and prospects

- In the near future impressive sensitivities via the so called "golden" muon channels
- Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV •
- Probing energy scale otherwise unreachable at the energy frontiers
- •

Note: τ ideal probe for NP w. r. t. μ (Smaller GIM suppression, stronger coupling, many decays). μ most sensitive probe due to huge statistics (= muon campus)

The MEGII experiment at PSI

- Best upper limit on the BR ($\mu^+ \rightarrow e^+ \gamma$) set by the MEG experiment (4.2 10⁻¹³ @90% C.L.)
- Searching for $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of ~ 6 10-14
- Five observables (E_g, E_e, t_{eg}, 9_{eg} , ϕ_{eg}) to identify $\mu^+ \rightarrow e^+ \gamma$ events

New electronics: Wavedream ~9000

channels at **5GSPS**

> x2 Resolution everywhere

Backgrounds

Updated and new Calibration methods Quasi monochromatic positron beam

MEGII status: New Physics Results and data taking

- MEGII started data taking in 2021 and is expected to run until 2026 •
- A new Physics Result has recently been released based on the data 2021+2022

https://arxiv.org/pdf/2504.15711

Data 2021+2022: Opening the signal region

-0.9994

 $\cos\Theta_{e\gamma}$

-0.9998

-1

-0.9996

The Mu3e experiment at PSI

- Previous upper limit BR($\mu^+ \rightarrow e^+ e^-$) $\leq 1 \times 10^{-12}$ @90 C.L. by SINDRUM experiment)

• The Mu3e experiment aims to search for $\mu^+ \rightarrow e^+ e^-$ with a sensitivity of ~10⁻¹⁵ (Phase I) up to down ~10⁻¹⁶ (Phase II).

Mu3e: Latest news and currents status

Key points:

- First integration Run 2021
- Inner MuPix layer
- SciFi ribbons
- Sub-detector services
- Full beam line commissioning 2022 and fine tuning 2023
- Very successful: TDR promised values matched!
 - 2.49e10⁸ mu/s @2.4 mA (at the collimator): The highest beam rate in pie5 at the collimator
 - 1.02e10⁸ mu/s @2.4 mA (Mu3e magnet): Several beam configurations studied, some of them connected with possible Mu3e magnetic field intensity optimisation

Time line phase I (exploiting current beam-line intensity)

- Engineering run: 2025
- First physics run: 2026

Phase II: It requires 10⁹ mu/s —> **HiMB**

つく

μ N \rightarrow e N experiments: general concept

- Signal of mu-e conversion is single mono-energetic electron
- Stop a lot of muons! $O(10^{18})$
- Backgrounds:
 - Beam related, Muon Decay in orbit, Cosmic rays
- Use timing to reject beam backgrounds (extinction factor 10⁻¹⁰)
 - Pulsed proton beam 1.7 µs between pulses
 - Pions decay with 26 ns lifetime
 - Muons capture on Aluminum target with 864 ns lifetime
- Good energy resolution and Particle ID to defeat muon decay in orbit
- Veto Counters to tag Cosmic Rays

Mu2e: Detector installation ongoing

- The Mu2e experiment aims to search for $\mu^- N \rightarrow e^- N$ with a final sensitivity of ~10⁻¹⁷
- Previous upper limit BR(μ N \rightarrow e N) \leq 7 x 10⁻¹³ @90 C.L. by SINDRUM experiment)

vity of ~10⁻¹⁷ experiment)

COMET: Preparation in view of the Physics run

- The COMET experiment aims to search for $\mu^- N \rightarrow e^- N$ with a final sensitivity of ~10⁻¹⁷ with a Stage phase approach: Phase I and Phase II •
- Previous upper limit BR(μ N \rightarrow e N) \leq 7 x 10⁻¹³ @90 C.L. by SINDRUM experiment) •

Outlook:

Data taking: By 2026

muEDM dedicated search at PSI: Current status and Motivations

- The different EDM searches are sensitive to **different**, **specific** combinations of underlying **CPV sources**
- Muon unique feature: the only currently direct accessible EDM of a naked fundamental particle

ific combinations of underlying **CPV sources** DM of a **naked** fundamental particle

> Quite poor current direct limit $d_{\mu} < 1.5 \times 10^{-19} ecm$ (CL 90%)

Complementarity of EDM searches

muEDM direct search: Why now?

- Impressive limits on the electron EDM deduced from measurements using atoms or molecules, e.g., thorium oxide molecules $d_{\rm e}$ < 1.1×10^{-29} ecm (CL 90%) lead to $d_{\mu} < 2.3 \times 10^{-27}$ ecm (CL 90%), which is many orders of magnitude better than the direct limit d_{μ}
 - m_{μ}/m_{e} naive rescaling assumes minimal flavor violation (MFV), that is a model dependent assumption
- FNAL/JPARC g-2 experiments aims at $d_{\mu} \sim O(10^{-21}) ecm$ (via g-2)
- Direct muEDM search at PSI in stages:
 - Precursors: $d_{\mu} < 3 \times 10^{-21} ecm$
 - Final: $d_{\mu} < 6 \times 10^{-23} ecm$

• **Proof-of-principle of a complete new experimental technique that can** pave the way to other EDM searches

EDM search: From the "frequency" approach...

$$\vec{\omega} = \frac{q}{m} \left[a\vec{B} - \left(a + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{q}{m} \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right)$$

ωa

- i.e. FNAL: The decay positrons are recorded using calorimeters and straw tube trackers inside the storage ring
- The sensitivity to a muon EDM is limited by the resolution of the vertical amplitude, proportional to ζ , of the oscillation in the tilted precession plane
- i.e. J-PARC: even if the technique is different the sensitivity to an EDM is limited by the resolution of the vertical amplitude

 ω_{e}

...to the frozen-spin technique

$$\vec{\omega} = \frac{q}{m} \left[a\vec{B} - \left(a + \frac{1}{1 - \gamma^2}\right) \right]$$

 $\boldsymbol{\omega}_{a}$

 The frozen-spin technique uses an Electric field perpendicular to the moving particle and magnetic field, fulfilling the condition:

$$a\vec{B} = \left(a - \frac{1}{\gamma^2 - 1}\right)\frac{\vec{\beta} \times \vec{E}_f}{c}$$

- Without EDM, $\omega = 0$, the spin follows the momentum vector as for an ideal Dirac spin-1/2 particle, while with an EDM it will result in a precession of the spin with $\omega_e \parallel E$
- The sensitivity to a muon EDM is given by the asymmetry up/down of the positron from the muon decay

Signal: asymmetry up/down positron tracks

- Positron are emitted predominantly along the muon spin direction
- muon decay time distribution (lifetime = $\gamma \tau_{\mu}$)

The sensitivity to muon EDM is extracted from the **asymmetry up/down** of the **positron** from the muon decay, averaged over the

- P_0 = initial muon polarisation
- E_f = electric field in the lab frame
- N = number of observed decays
- τ = muon lifetime
- α = mean decay asymmetry (~ 0.3)
- a = anomalous magnetic moment
- γ = gamma factor of the muon

 $\sigma(|d_{\mu}|) = \frac{d|d_{\mu}|}{d\overline{A}} \sigma(\overline{A}) \sim \frac{a\hbar\gamma}{2P_{0}E_{f}\sqrt{N}\tau_{\mu}\alpha}$

The general experimental idea

- efficiency
- A radial magnetic field pulse stops them within a weakly focusing where they are stored
- **Radial electric** field "freezes" the spin so that the precession due to the magnetic dipole moment is cancelled •

• Muons enter the uniform magnetic field region via SC injection lines. Correction coils are used to increased the storage

Where muEDM is: Integration phase

https://arxiv.org/html/2501.18979v1

Muonium physics

• Mu is the simplest atomic species: μ +e- atom

- Purely leptonic hydrogen species!
- Rich structure and phenomenology
 - Readily formed
 - Spectrum understood
 - Forms molecules!
 - Decays with free muon lifetime
- 1s-2s transition frequency predicted in QED to 0.6 ppb
 - Minimal hadronic contributions!
- Similar story for 1s hyperfine splitting
- Mu-MASS at PSI
 - Improve 1S-2S measurement three orders of magnitude
 - Improves muon mass determination to 1ppb
- MuSEUM at J-PARC
 - Improve hyperfine measurement one order of magnitude 1ppb
- The combination will determine the Rydberg constant to 4ppt!

LEMING at PSI: Muonium gravity

• equivalence with and elementary, second generation (anti)lepton

SFHe

mirror

- Muonium source and mirror
- Mach-Zehnder interferometer _
 - 100nm!
- Muonium decay trigger detectors -
- Sign of g in 1 day at 100kHz -
- ~month to precision comparison

Measurement of gravitational acceleration of muonium, and next generation laser spectroscopy, testing the weak

Courtesy: A. Soter

Summary

- foreseen for the incoming future
- frontier research program
- projects

Thanks a lot for your attention !!!

Astonishing sensitivities in muon precision physics at intensity frontiers are ongoing and

Rare/forbidden decay searches and symmetry tests remain among the most exciting places where to search for new physics complementary to the energy

• Achieving such remarkable sensitivity requires both advanced beamlines — operating in either continuous or pulsed mode—and the development of **new detector technologies**. The emergence of next-generation beamlines at PSI, Fermilab, and J-PARC underscores the growing importance and global commitment to this research area and stimulates new

Back-up

Muon beams worldwide summarv

Laboratory	Beam Line	DC rate (μ /sec)	Pulsed rate (μ/sec)
PSI (CH) (590 MeV, 1.3 MW)	$\mu E4, \pi E5$ HiMB at EH	$2 \div 4 \times 10^8 \ (\mu^+)$ $\mathcal{O}(10^{10}) \ (\mu^+) \ (>2018)$	
J-PARC (Japan) (3 GeV, 210 kW) (8 GeV, 56 kW)	MUSE D-Line MUSE U-Line COMET		$3 \times 10^{7} (\mu^{+}) \\ 6.4 \times 10^{7} (\mu^{+}) \\ 1 \times 10^{11} (\mu^{-}) (2020)$
FNAL (USA) (8 GeV, 25 kW)	Mu2e		$5 \times 10^{10} (\mu^{-}) (2020)$
TRIUMF (Canada) (500 MeV, 75 kW)	M13, M15, M20	$1.8 \div 2 \times 10^6 (\mu^+)$	
RAL-ISIS (UK) (800 MeV, 160 kW)	EC/RIKEN-RAL		$7 imes 10^4 (\mu^-) \ 6 imes 10^5 (\mu^+)$
KEK (Tsukuba, Japan) (500 MeV, 25 kW)	Dai Omega		$4 \times 10^5 (\mu^+)(2020)$
RCNP (Osaka, Japan) (400 MeV, 400 W)	MuSIC	$10^{4}(\mu^{-}) \div 10^{5}(\mu^{+}) \\ 10^{7}(\mu^{-}) \div 10^{8}(\mu^{+})(>2018)$	
JINR (Dubna, Russia) (660 MeV, 1.6 kW)	Phasotron	$10^{5}(\mu^{+})$	
RISP (Korea) (600 MeV, 0.6 MW)	RAON	$2 \times 10^8 (\mu^+) (> 2020)$	
CSNS (China) (1.6 6eV, 4 kW)	HEPEA	$1 \times 10^8 (\mu^+) (> 2020)$	

Muonium production

- Stop (nearly!) a positive muon beam in a target in vacuum; some of the muonium will be ejected into the vacuum space
- J-PARC g-2 plans to utilize laser ablated silica aerogel •
 - This yields of order 1% muonium in vacuum, with thermal momentum distribution
 - Thermal Mu requires cooling for beam formation
- PSI and Fermilab muonium experiments plan to use layers of superfluid helium on target surfaces
 - "Hydrogen" is immiscible in superfluid helium \rightarrow stopped Mu ejected from the surface with a very narrow momentum spread (chemical potential)
 - Naturally cooled and emitted at 6,300 m/s normal to surface
 - A superfluid layer can also be used as a slow Mu mirror

Precision Muonium physics

muEDM schedule

Simulations Conception/Design Prototyping Acquisition/Assembly Tests/Measurements

1 Full proposal for both phases to CHRISP committee

- 2/a Magnet call for tender / precursor design fix
- Precursor ready for assembly/commissioning
- 3/c Technical design report / frozen spin demonstration
- d First data for precursor muEDM
- 4 Magnet delivered, characterized and accepted
- 5 Successful commissioning / start of data taking
- 6 End of data acquistion for muEDM

	Simulations g
	Instrument o
_	Magne
curso	Magneti
	SC shielded o
De la	High
Δ.	De
	Data acq
	EDM measu
	Simulations g
nt	Dedicated I
nent	Dedicated I Magneti
trument	Simulations g Dedicated I Magneti SC shielded o
Instrument	Dedicated I Magneti SC shielded o High
ed Instrument	Simulations g Dedicated I Magneti SC shielded o High Muon de
ated Instrument	Simulations g Dedicated I Magneti SC shielded o High Muon de Positron
dicated Instrument	Simulations g Dedicated I Magneti SC shielded o High Muon de Positron Data acq
Dedicated Instrument	Simulations g Dedicated I Magneti SC shielded o High Muon de Positron Data acq Commis

Signal: asymmetry up/down positron tracks

- Positron are emitted predominantly along the muon spin direction
- muon decay time distribution (lifetime = $\gamma \tau_{\mu}$)

 μ E1 Beamline Flux 2 × 10⁸ μ ⁺/s Momenta $\gamma = 1.55$ Polarisation $P_0 \approx 0.95$

Av. Decay Asymmetry $A \approx 0.3$

Electric Field $E_f = 2 \,\mathrm{MV/m}$

The sensitivity to muon EDM is extracted from the **asymmetry up/down** of the **positron** from the muon decay, averaged over the

Sensitivity vs B and Momentum

DeeMe experiment

- Pulsed proton beams from 3 GeV RCS (fast extraction)
- Muon production target = stopping target
- SES ~ 10⁻¹³ (Carbon target, 1 year)
- Detector commissioning in Jun-2022
- Momentum reconstruction successful & More beam-time expected later this year

energetic
$$e^{-1}$$

 e^{-1} $\mu^{-1} N \rightarrow e^{-1} N$

MuSIC's muon beams

proton beam energy is only 100 MeV above pion production threshold ($\sim 2m_{\pi}$) muon source with low proton power $(1.1 \text{ uA} \sim 0.4 \text{kW}, 5 \text{ uA} \text{ in future})$

Few scalings model-independent predictions

- BR $(\ell_i \rightarrow \ell_j \gamma)$ vs. $(g-2)_{\mu}$
 - $BR(\mu \rightarrow e\gamma) \approx$
 - $BR(\tau \rightarrow \mu \gamma) \approx$
- EDMs assuming

$$g \text{ "Naive scaling" } d_{\ell_i}/d_{\ell_j} = m_{\ell_i}/m_{\ell_j}$$

 $d_e \simeq \left(rac{\Delta a_{\mu}}{3 \times 10^{-9}}
ight) 10^{-28} \left(rac{\phi_e^{CPV}}{10^{-4}}
ight) e \operatorname{cm},$
 $d_{\mu} \simeq \left(rac{\Delta a_{\mu}}{3 \times 10^{-9}}
ight) 2 imes 10^{-22} \phi_{\mu}^{CPV} e \operatorname{cm}.$

• Main messages:

from P. Paradisi's talk

$$3 \times 10^{-13} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \right)^2 \left(\frac{\theta_{e\mu}}{10^{-5}} \right)^2$$
$$4 \times 10^{-8} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \right)^2 \left(\frac{\theta_{\ell\tau}}{10^{-2}} \right)^2$$

• $\Delta a_{\mu} \approx (3 \pm 1) \times 10^{-9}$ requires a nearly flavor and CP conserving NP - Large effects in the muon EDM $d_{\mu} \sim 10^{-22} \ e \, {
m cm}$ are still allowed .

The muCool project at PSI

- Aim: low energy high-brightness muon beam
- Increase in brightness by a factor **10¹⁰** with an efficiency of O(**10-4**)

D. Taqqu, PRL 97 (2006) 194801

Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm

Trajectories in E and B field

PhD I. Belosevic

Working principle: 1st Stage

I. Belosevic

Summary: The muCool project at PSI

- Aim: low energy high-brightness muon beam •
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor **10¹⁰** with an efficiency of O(**10-4**) ٠
- Longitudinal and transverse compression (1st stage + 2nd stage): experimentally proved •
- Next Step: Extraction into vacuum ٠
- ٠

Summary: The HiMB (High Intensity Muon Beam) project at PSI

- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
 - Target: alternate materials (B₄C and Be₂C show 10-15% gain) and/or geometry (up to 60% of gain: Graphite Slanted target)
 - Beam line: high capture efficiency and large phase space acceptance transport channel
- Slanted target test ("towards the new M-target") successfully done (2019) and installed as "default" target since 2020
 - Increase surface muon rates for all connected beam lines (30-60% increase depending of the beamline): Confirmed
 - Increase safety margin for "missing" target with the proton beam: Confirmed
 - Slanted target final place: Current "M" target
- PSI Long shut-down: 2017-18. HiMB from 2018

Standard	Grooved	Trapezoio	dal F	orked	Slanted
\square	/7, ×1	\square	x1.1	x1.4	x1.5
	note: Each possible, th the target st	note: Each geometry was required to preserve, as best as possible, the proton beam characteristics down-stream of the target station (spallation neutron source requirement)			
	2 J			ý	

