Advanced tensor network methods for many body physics
Quantum dynamics in two dimensions etc.
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Tensor networks

are an efficient way to compress the wavefunction.

auxiliary bonds \

EAA A

physical indices

There is a fundamental relation between the size of the auxiliary
bonds (compression) and the amount of correlations captured.



Why does it work? Q_Q_Q_Q_Q_Q

(1) Ground states of systems with short range interactions have
dominantly short-range correlations.

(2) Efficient algorithms for ground state search and time evolution.

(3) Mimics the connectivity of the system being represented.



Tensor networks in 2D: PEPS

(projected entangled pair state)

Can represent area-law entangled states.

https://tensornetwork.org/peps/



Tensor networks in 2D: PEPS

(projected entangled pair state)

Can represent area-law entangled states.

BUT:

Cannot be efficiently contracted. O(x")

Approximate optimization is unfeasible: O(y'°)

This is all because PEPS has loops!

https://tensornetwork.org/peps/



A compromise: tree tensor networks

A network with as many links as possible,
without any loops.

(DMRG and TDVP map directly from MPS)

auxiliary bonds”~

~

physical indices



A compromise: tree tensor networks

A network with as many links as possible,
without any loops.

(DMRG and TDVP map directly from MPS) ~2 log(L)

/-
It is better than MPS at ® o o

encoding long-range interactions: / O

) O Q) Q) Q) C '/IQ

We expect ~log(N) better results
than with MPS.






Systems with dynamical constraints

where the dynamics is (@pproximately) constrained
to a subspace of the Hilbert space



Systems with dynamical constraints

where the dynamics is (@pproximately) constrained
to a subspace of the Hilbert space

gquantum scars emergent dynamical constraints




2D gquantum Ising on a square lattice

H=-J) ZZ;—g» X; withg<g.=3J
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energy cost of J spin flipping

domain walls



2D Ising on a square lattice

(4,7) ¢

energy cost of J spin flipping

domain walls

Creating domains is energetically expensive:
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2D Ising on a square lattice

I — _JZZiZj —gZXi with ¢ < g. = 3J
(4,7) ?

energy cost of J spin flipping

domain walls |
But, there are resonant processes:
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Creating domains is energetically expensive:
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Resonant processes conserve the length of the domain wall

Fragmentation into sectors with

But, there are resonant processes: same total domain wall length n.
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Yoshinaga et al. Emergence of Hilbert Space Fragmentation in Ising
Models with a Weak Transverse Field, PRL 129, 090602, 2022



Dynamics from a domain wall? ~ __n [
;

Cij = <Zi Zj> - <Zi><Zj>
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Melting of a square

arXiv:2406.11979



Melting of a square
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So what

Quantum coarsening and collective dynamicsona

programmable simulator

. Nat. Commun. 12 2323, 2021
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Efficient Tensor Network Simulation of IBM’s Eagle Kicked Ising Experiment
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False vacuum decay

+ longitudinal field




Outlook?2: false vacuum decay & metastable states

False vacuum decay @dWave? Yes!(?)

Jaka Vodeb, Gregor Humar, Marko Ljubotina, Jean-Yves Desaules, Zlatko Papic



2D Ising at the critical point and adS/CFT
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g/l]=1.0

gll]=1.5

Scattering in 2D
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