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Background
Quantum annealing

Quantum annealing
The technique used to solve optimization problems with a quantum system
that evolves based on the time-dependent Schrödinger equation

The quantum system is prepared in the known ground state of an initial
Hamiltonian Hinit and is changed over time into Hfinal 
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Background
Quantum annealing

Based on the adiabatic theorem:
a system stays in an instantaneous ground state if change happens
sufficiently slowly.

The formulation is built so that:

H(t/tmax) = A(t/tmax)Hinit + B(t/tmax)Hfinal

Hamiltonian Hfinal encodes optimization problem Functions A and B
satisfy A(0) >> B(0) and A(1) << B(1)
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Background
Unit commitment problem

Unit commitment problem
The unit Commitment (UC) problem involves optimizing the scheduling of
power generators to either minimize production costs or maximize revenue.

Vast family of problems: many different aspects of the scheduling can be
considered.
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Problem Formulation
Constrained optimization

The UC problem is a continuous variable constrained optimization
problem. Most instances of this problem include three aspects:

• Time: each optimization is done in a time window with discrete time
steps.

• Generators: the targets of the optimization.
• Forecast: requirement or conditions for the energy production.
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Problem Formulation
Our problem

The problem we choose is a prosumer’s earning optimization problem:

Instead of a network we modeled the activity of a single small prosumer like
a residential building. This model takes into consideration added details:

• Green energy production.
• Batteries for energy storage.
• Fixed consumption and production.
• Financial incentives.
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Problem formulation
Generators

Each generator k is represented by the set
• Energy produced (Ek(t)).
• Unitary production cost (costk).
• Minimum energy produced (Emin

k ).
• Maximum energy produced (Enom

k ).
• Maximum energy produced at time t (Emax

k (t)).
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Problem formulation
Forecast

The forecasts predict energy market prices:
• unitary selling price (Pvend(t)).
• Unitary buying price (Pacqu(t)).
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Problem formulation
Batteries

Each battery a is represented by the set
• Energy stored at time t (Ea(t)).
• Energy discharged at time t (Es

a(t)).
• Energy charged at time t (Ec

a(t)).
• Maximum energy capacity (Emax

a ).
• ...
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Problem formulation
Objective function

The end goal of optimization is to maximize prosumer earnings based on
the forecast. To achieve this we create a cost function:

T∑
t

(
EvendPvend + EincPinc − EacquPacqu −

K∑
k

costkEk(t)
)

And we selected the variables Ek(t), Es
a(t), and Ec

a(t) to be the target
variable to optimize.
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Problem formulation
Constraints

Finally, to obtain a reasonable solution we need to set some constraints to
this problem:
• Range (max and min).
• Charge and discharge.
• Sell and buy.
• Incentives.
• Zero sum.
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QUBO formulation

Once we have our constrained model, we need to change that formulation
to one that can be embedded in a quantum annealer. To do so we follow
these steps:
• Create a binary representation of the continuous variables.
• Rewrite the objective function on the basis of the new variables.
• Rewrite each constraint on the basis of the new variables.
• Add the new constraints to the objective function using

hyperparameters.
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Complexity

The number of time slots T greatly influences the complexity.

T is a multiplication factor for both the number of constraints (9
constraints for each t) and the number of variables (7̃5 new variables each
t).

Real-life scenarios time-slots of 15 minutes over 24 hours (96 time slots).
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Complexity

The binarization of big values creates combinations of variables (QUBO
matrix entries) with different values.

Adding the constraints to the objective function through hyperparameters
changes these values as well.

Optimizing a problem where weights can be between 1 and 106 is
extremely difficult.

Orazi et al. UC and Annealers 14 / 21



Numerical results

We performed experiments with multiple techniques.
• Dwave quantum annealer.
• Dwave hybrid solver.
• Simulated annealing.
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Numerical results
Simulated annealing

Test with 80 periods and 1 battery:

time = 4115.8 s constraint violated = 3.3% (24/720)
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Numerical results
Quantum annealer

Test with 2 periods and 0 batteries:

Broken chain = 100/100 (avg chain break: 0.9814)
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Numerical results
Hybrid solution

Test with 80 periods and 1 battery:

time = 72.4 s constraint violated = 7.2% (52/720)
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Conclusions

Transforming the UC formulation to a QUBO problem revealed some
criticalities:
• The range of values a variable can assume is very big.
• More comprehensive the formulation is the more complex the

hyperparameter tuning is.
• Current Hardware cannot support a full quantum execution.
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Conclusions

At the same time, we also found that:
• A QUBO formulation is feasible without special techniques.
• Hybrid solver performs slightly worse than classical simulated

annealing in terms of accuracy but using a fraction of the time.
• We found that hyperparameters tuned on small problems work on

bigger ones as well.
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End

Thank you.
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