

2nd International Conference on Quantum Energy

Thermoelectric Energy Conversion Close to a Phase Transition

<u>Ilia Khomchenko</u>^{1,2,3,4*} Giuliano Benenti^{2,3}, Henni Ouerdane¹

¹Skolkovo Institute of Science and Technology, ²University of Insubria, ³Istituto Nazionale di Fisica Nucleare, ⁴University of Malta, *Current Affiliation

5 June 2025

Skolkovo Institute of Science and Technology

Istituto Nazionale di Fisica Nucleare

Outline

- 1. Research Motivation
- 2. Thermoelectricity & Thermodynamics in a Nutshell
- 3. Key Results: Numerical Simulations & Experiments
- 4. Conclusion and Outlook

General Problem

- Waste heat harvesting for energy efficiency ۲
- **Thermoelectric solution:** •
 - Scalable solid-state technology; ≻
 - No moving parts; \geq
 - Direct heat-to-electrical power conversion; ⊳

Promising technology BUT as of yet <u>low-efficiency</u> solution (1-10 % η_c)

- What are the causes of low-efficiency? ۲
- How to remedy this problem? •

¹X. F. Zheng, C. X. Liu, R. Boukhanouf, Y. Y. Yan, W. Z. Li, "Experimental study of a domestic thermoelectric cogeneration system" Applied Thermal Energy 62, 69 (2014). 3

Thermoelectricity: Applications

"Thermoelectric energy conversion will never be as efficient as steam engines!"²

Why???

²C. B. Vining, "An inconvenient truth about thermoelectrics," *Nature materials*, 8, 83-85 (2009).

Thermoelectricity: Basics

3 main transport coefficients

 $\begin{array}{l} \alpha \text{ is the Seebeck coefficient} \\ \sigma \text{ is the electrical conductivity} \\ \kappa \text{ is the thermal conductivity} \end{array}$

Fig.1. Thermoelectric generator $(TEG)^3$.

³G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials" Nature Materials 7, 105 (2008).

How to Increase Performance?

How to increase performance? Focus on ZT!

²C. B. Vining, "An inconvenient truth about thermoelectrics," *Nature materials*, 8, 83-85 (2009).

Available thermoelectric materials^{2,4}

Material	$T, \ ^{\circ}\mathrm{C}$	ZT
SnSe single crystal	1196	2.6
PbTe-SrTe	1188	2.2
$PbTe_{0.85}Se_{0.15}-2 \% Na-4 \% SrTe$	923	2.3
PbTe-PbS pseudobinary	1196	2.3
Cu_2Se	673	2.3
$Na-Pb_{0.97}Eu_{0.03}Te$	1123	2.2
$PbSe_{0.98}Te_{0.02}/PbTe$	848	3.5
$\mathrm{Bi}_{2}\mathrm{Te}_{3}/\mathrm{Sb}_{2}\mathrm{Te}_{3}$	573	2.4
$AgPb_{18}SbTe_{20}$	1073	2.2

²C. B. Vining, "An inconvenient truth about thermoelectrics," *Nature materials*, **8**, 83-85 (2009).

⁴L. Yang, Zh. Chen, M. S. Dargusch, and J. Zou, "High Performance Thermoelectric Materials: Progress and Their Applications," Advanced Energy Materials **1701797**, (2017)

Available Thermoelectric Materials⁵

Material	$\Delta T, \ ^{\circ}\mathrm{C}$	$\eta_{max},\%$	
$p-Mm_{0.7}Fe_3CoSb_{12}/n-Eu_8Ga_{16}Ge_{30}$	250	1-2	
TGM-127-1.4-2.5	155	4	
$p-Mm_{0.3}Fe_{1.46}Co_{2.54}Sb_{12.05}/$	460	7	
$n-Yb_{0.09}Ba_{0.05}La_{0.05}Co_4Sb_{12}$	400	1	
$p-La_{0.7}Ba_{0.1}Ga_{0.1}Ti_{0.1}Fe_3Co_1Sb_{12}/ n-$	570	8	
$Yb_{0.3}Ca_{0.1}Al_{0.1} - Ga_{0.1}In_{0.1}Co_{3.75}Fe_{0.25}Sb_{12}$	570	0	
$p-La_{0.8}Ba_{0.01}Ga_{0.1}Ti_{0.1}Fe_3CoSb_{12}/n-$	550	8	
$La_{0.3}Ca_{0.1}Al_{0.1} - Ga_{0.1}In_{0.2}Co_{3.75}Fe_{0.25}Sb_{12}$	000	0	

⁵LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E., "Material and manufacturing cost considerations for thermoelectrics," *Renewable and Sustainable Energy Reviews* **32**, 313–327 (2014).

Analogy between TEG and heat engine

Fig.2. Schematic representation of a heat engine connected to two heat baths through heat exchangers.

Fig.3. Thermoelectric (left) and thermodynamic (right) TEG pictures².

Fig.4. Electrons in a crystal lattice vanadium dioxide (Vanadium is in red color, Oxygen is in blue color).⁷

⁷J. D. Budai et al, *Nature* **515**, 535 (2014), and D. Lindley aps.anl.gov

Thermoelastic Properties

The electron gas' thermoelastic properties limit thermoelectric efficiency!

⁸H. Ouerdane et al., "Enhanced thermoelectric coupling near electronic phase transition: The role of fluctuation Cooper pairs" *Physical Review B* **91**, 100501(R) (2015).

Objectives

- Better understand the fundamental limits of the thermoelectric conversion efficiency;
- To find a new productive way to significantly increase the thermoelectric conversion efficiency.

Types of Systems

Quantum dot (0D system)

S. De Franceschi et al., Nature Nanotechnology 5, (2010).

J. Frigerio et al., Sci Rep 5, 15398 (2015).

https://byjus.com/jee/semiconductors/.12

Thermoelastic Coefficients

Analogy between a classical gas and the electron gas as a working fluid

$$V \to N \quad -P \to \mu$$

$$\chi_T = \frac{1}{N} \left(\frac{\partial N}{\partial \mu} \right)_T \quad \text{is the "isothermal compressibility";}$$

$$\beta = \frac{1}{N} \left(\frac{\partial N}{\partial T} \right)_\mu \quad \text{is the "thermal dilatation coefficient";}$$

$$C_\mu = \frac{T}{N} \left(\frac{\partial S}{\partial T} \right)_\mu \quad \text{is the "specific heat at constant pressure";}$$

$$C_N = \frac{T}{N} \left(\frac{\partial S}{\partial T} \right)_N \quad \text{is the "specific heat at constant volume".}$$

$$\gamma = \frac{C_{\mu}}{C_{N}}$$
 is the heat capacity ratio;

Transport Coefficients

 L_{ij} : solutions of the Boltzmann equation

Seebeck coefficient
$$\alpha = \frac{L_{12}}{L_{11}T}$$
 $L_{11} = \frac{T}{d} \int_{0}^{\infty} \mathcal{T}(E) \left(-\frac{\partial f}{\partial E}\right) dE$,
electrical conductivity $\sigma = \frac{e^{2}L_{11}}{T}$ $L_{12} = L_{21} = \frac{T}{d} \int_{0}^{\infty} (E - \mu)\mathcal{T}(E) \left(-\frac{\partial f}{\partial E}\right) dE$,
thermal conductivity $\kappa_{e} = \frac{1}{T^{2}} \left(\frac{L_{21}L_{12} - L_{11}L_{22}}{L_{11}}\right)$ $L_{22} = \frac{T}{d} \int_{0}^{\infty} (E - \mu)^{2}\mathcal{T}(E) \left(-\frac{\partial f}{\partial E}\right) dE$,
where d is the system's dimensionality,
and $v(E)$ is the velocity of the particle.
 $\mathcal{T}(E) = \tau(E)v^{2}(E)g(E)$ is the transport distribution function.

Thermoelastic Coefficients

$$\chi_T = \int_0^\infty g(E) \left(-\frac{\partial f}{\partial E} \right) dE$$
$$\beta = \frac{1}{T} \int_0^\infty g(E) (E - \mu) \left(-\frac{\partial f}{\partial E} \right) dE$$
$$C_\mu = \frac{1}{T} \int_0^\infty g(E) (E - \mu)^2 \left(-\frac{\partial f}{\partial E} \right) dE$$

where g(E) is the density of states.

Results

• 2D Fluctuating Cooper Pairs (theory)⁹;

• Nematic fluctuations (experiment)⁹;

⁹I. Khomchenko et al., "The thermoelectric conversion efficiency problem: Insights from the electron gas thermodynamics close to a phase transition" SciPost Physics Core, **8** 015, (2025).

¹⁰I. Khomchenko, H. Ouerdane, G. Benenti, "Influence of the Anderson Transition on Thermoelectric Energy Conversion in Disordered Electronic Systems", *IOP* 16 *Journal of Physics: Conference Series*, **2701**, 012018 (2024).

 $z_{
m e}T$

Fig.6. Relative change of the power factor α^2/ρ , plotted as a function of temperture for 2D functuation of Cooper pairs and 2D electron gas. Fig.7. Relative change of the power factor α^2/σ , normalized to its value at 300 K for a 100 nm Ba(Fe_{0.90}Co_{0.10})₂As₂ thin film.

⁹I. Khomchenko et al., "The thermoelectric conversion efficiency problem: Insights from the electron gas thermodynamics close to a phase transition" SciPost Physics Core, **8** 015, (2025).

Fig.8. Maximum thermoelectric conversion efficiencies $\eta_{\text{max}}^{\text{th}}$ and $\eta_{\text{max}}^{\text{tr}}$ scaled to Carnot efficiency vs. temperature⁹.

⁹I. Khomchenko et al., "The thermoelectric conversion efficiency problem: Insights from the electron gas thermodynamics close to a phase transition" SciPost Physics Core, **8** 015, (2025).

Discussion of the results

- The thermoelectric conversion efficiency η is directly related to the heat capacity ratio γ .
- We established relationships between the two figures of merit $z_e T$ (resp. z_e) (transport) and $Z_{th}T$ (resp. Z_{th}) (thermodynamic);
- New concepts in thermoelectricity have been developed.
- The thermoelectric conversion efficiency η can be greatly enhanced:
- For systems with high heat capacity ratio;
- > For systems with thermal fluctuations and phase transitions.

Innovative implementation

Technology Readiness Levels

Fig.9. Technology Readiness Levels with a brief explanation of each level¹¹.

¹¹B. Goldense, Technology readiness levels are widely adopted. MachineDesign 89, 64 (2017).

Conclusion

- 1. A thermodynamic approach allowed us to gain a deep insight into better control conditions for the increased efficiency of energy conversion.
- 2. Phase transitions provide an approximate 30 % enhancement of energy conversion efficiency in the fluctuating regime compared to the electron gas.
- 3. Our approach predicts the increase the size of thermoelectric market from \$460 million/annum in 2019 to \$741 million/annum in 2025.¹²

¹²S. Singh, Thermoelectric Generators Market by Application (Waste Heat Recovery, Energy Harvesting, Direct Power Generation, Co-generation), Wattage (< 10 W, 10-1kW, >1kW), Temperature (<80°C, 80°- 500°C, >500°C, Material, Vertical, Component, Region - Global Forecast to 2025, MarketsandMarkets[™], (2019).

Acknowledgements

I thank

- Prof. Henni Ouerdane, Skoltech, Russia;
- Prof. Giuliano Benenti, University of Insubria, Italy for their supervision;
- Organizers of ICQE 2025 for inviting me.
- Dr. Francesco Campaioli for his support.

ASPECTS Conference

Thank you for your attention!

ilia.khomchenko@um.edu.mt

Ilia Khomchenko: LinkedIn/Facebook/Telegram

I. Khomchenko et al., "The thermoelectric conversion efficiency problem: Insights from the electron gas thermodynamics close to a phase transition" SciPost Physics Core, **8** 015, (2025).

Fig.10. Thermoelectric transport characterization **Dr.** of the 100 nm Ba(Fe_{0.90}Co_{0.10})₂As₂ thin film showing the Seebeck coefficient α and electrical resistivity ρ : a) high structural quality before ion bombardment, and b) low structural quality after ion bombardment.

Appendix: Quantum well structure

Fig.11. Quantum well: Scematic Picture.

M. Fox, Oxford University press, (2010).

D. Neilson et al. Journal of Physics: Conference Series 012008, 702 (2016). 26

Appendix: Available thermoelectric materials⁵

Applications Scenario temperature	Thermoelectric cooling (Cooling)	Low temperature recovery Scenario #1 Low	Solar thermal generator Scenario #2 Medium-Low	Automotive exhaust heat recovery Scenario #3 Medium-High	Industrial furnace heat recovery Scenario #4 High
Hot side temperature,	15	100	250	500	800
Cold side temperature,	5	20	20	50	50
<i>T_C</i> (°C) Average temperature,	10	60	135	275	425
T_m (°C) Hot side <i>U</i> -value,	∞	102	102	120	120
U_H (W/m ² K) Cold side U-value,	∞	105	105	105	105
HX & Plate Costs (\$/(W/K))	-	18.48	18.48	18.48	18.48

⁵LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E., "Material and manufacturing cost considerations for thermoelectrics," *Renewable and Sustainable Energy Reviews* **32**, 313–327 (2014).

Appendix: Available thermoelectric materials⁵

Material type	ID	ID Material name #	Manufacturing type	Material cost (\$/kg)	Evaluated for low or high temp. scenario				Ref.
	#				ZT_m material	F _{opt}	L_{opt} (mm)	Scenario Temp.	
Chalcogenides and	1	Bi ₂ Te ₃	Bulk	110	0.74	0.18	4.53	Low	[35,36]
SiGe	2	Bi _{0.52} Sb _{1.48} Te ₃	Bulk	125	1.05	0.21	4.41	Low	[37]
	3	Bi _{0.52} Sb _{1.48} Te ₃	Nanobulk	125	1.52	0.29	3.47	Low	[37]
	4	Bi _{0.54} Te _{0.46}	Nanowire	84	0.02	0.07	1.10	Low	[38]
	5	(Na _{0.0283} Pb _{0.945} Te _{0.9733}) (Ag _{1.11} Te _{0.555})	Nanobulk	81	1.45	0.34	3.01	High	[39]
	6	Bi-doped PbSe _{0.98} Te _{0.02} /PbTe	Superlattice	55	1.96	0.02	0.31	Low	[40]
	7	AgPb ₁₈ SbTe ₂₀	Bulk	84	1.31	0.26	3.59	High	[41]
	8	SiGe	Bulk	679	0.30	0.07	2.66	High	[42]
	9	Si ₈₀ Ge ₂₀	Nanobulk	371	0.53	0.13	3.39	High	[42]
	10	SiGe	Nanowire	679	0.22	0.06	1.59	Low	[43]
Silicides	11	Mg ₂ Si _{0.85} Bi _{0.15}	Nanobulk	6.67	0.67	0.74	29.5	High	[44]
	12	Mg ₂ Si _{0.6} Sn _{0.4}	Bulk	4.04	1.05	~ 1	45.5	High	[45]
	13	Si	Nanobulk	3.09	0.21	0.71	94.5	High	[46]
	14	Si	Nanowire	3.09	0.72	0.09	3.38	Low	[47]
	15	MnSi _{1.75}	Bulk	1.46	0.05	~ 1	37.5	Low	[48]
	16	Mn ₁₅ Si ₂₈	Nanobulk	1.51	0.07	~ 1	35.7	Low	[48]
Clathrates	17	Ba ₈ Ga ₁₆ Ge ₂₈ Zn ₂	Bulk	615	0.48	0.13	1.50	High	[49]
	18	Ba ₈ Ga ₁₆ Ge ₃₀	Bulk	644	0.36	0.11	1.65	High	[50]
	19	$Ba_7Sr_1Al_{16}Si_{30}$	Bulk	1.64	0.09	~ 1	38.6	High	[51]
Skutterudites	20	CeFe ₄ Sb ₁₂	Bulk	37	0.77	0.28	8.34	High	[52]
	21	Yb _{0.2} In _{0.2} Co ₄ Sb ₁₂	Bulk	24	0.93	0.31	10.6	High	[53]
	22	Ca _{0.18} Co _{3.97} Ni _{0.03} Sb _{12.40}	Bulk	13	0.77	0.39	17.6	High	[54]
Oxides	23	(Zn _{0.98} Al _{0.02})O	Bulk	2.30	0.08	0.48	58.6	High	[55]
	24	Ca _{2.4} Bi _{0.3} Na _{0.3} Co ₄ O ₉	Bulk	30	0.13	0.43	7.17	High	[56]
	25	InGaZnO	Nanowire	511	0.07	0.04	1.59	Low	[39]
	26	$Na_{0.7}CoO_{2-\delta}$	Bulk	36	0.52	0.22	12.7	High	[57]
Half Heuslers	27	Zr _{0.25} Hf _{0.25} Ti _{0.5} NiSn _{0.994} Sb _{0.006}	Bulk	9.71	1.38	0.49	19.6	High	[58]
	28	Zr _{0.5} Hf _{0.5} Ni _{0.8} Pd _{0.2} Sn _{0.99} Sb _{0.01}	Bulk	8.51	0.69	0.46	15.4	High	[59]
	29	Ti _{0.8} Hf _{0.2} NiSn	Bulk	10.70	0.41	0.41	16.5	High	[60]
Other	30	PEDOT:PSS	Polymer	0.34	0.01	~ 8	101	Low	[61]

⁵LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E., "Material and manufacturing cost considerations for thermoelectrics," *Renewable and Sustainable Energy Reviews* **32**, 313–327 (2014).

Appendix: Thermoelastic & Transport coefficients: FCP

 $\alpha_{\rm GL}$ – dimensionless parameter in the Ginzburg-Landau free energy functional.

⁹I. Khomchenko et al., "The thermoelectric conversion efficiency problem: Insights from the electron gas thermodynamics close to a phase transition" SciPost Physics Core, **8** 015, (2025).

Appendix: Additional z_eT vs. $Z_{th}T$ curves

Fig.12. $z_e T$ vs $Z_{th}T$ for the 0D, 1D and 3D electron gases.

⁹I. Khomchenko et al., "The thermoelectric conversion efficiency problem: Insights from the electron gas thermodynamics close to a phase transition" SciPost Physics Core, **8** 015, (2025).