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Abstract. We consider a quantum battery composed of a pair of qubits coupled with

an Ising interaction in the usual NMR framework, where the longitudinal applied field

is constant and the time-dependent variables controlling the system are the amplitude

and phase of the transverse field, and use optimal control to derive fast charging

protocols. We study both the cases where the Ising coupling is weaker and stronger

than the longitudinal field. In the first case, where the lowest-energy state of the

system is the spin-down state, the optimal charging protocol stipulates the transverse

field amplitude to be constant and equal to its maximum allowed value, while the

minimum time for full charging of the battery tends to zero as this maximum bound

increases. In the second case, where the lowest-energy state is a maximally entangled

Bell state, the optimal charging protocol includes a time interval where the transverse

field amplitude is zero and its phase is immaterial, corresponding to singular control.

In this case, the quantum battery can be charged with higher levels of stored energy,

while the minimum time for full charging tends to a nonzero limit proportional to the

inverse Ising interaction, as the maximum bound of the control amplitude increases.

We analyze intuitively and quantitatively the distinct behavior of the two cases and

additionally use the dynamical Lie algebra of the system to elucidate the presence of a

singular arc in the optimal pulse-sequence in the second case. The discovered interplay

between the quantum battery parameters, the stored energy and the minimum time

for full charging, provides great flexibility for optimizing the performance of the device

according to the operating constraints. The valuable insights gained regarding the

design of quantum batteries is expected to find immediate applications in modern

quantum science and technology, while we aim to extend the proposed methods to

larger spin chains.

1. Introduction

Quantum batteries (QBs) [1, 2] are a rapidly evolving concept in quantum technology,

with the potential to outperform classical batteries in energy storage and retrieval at

microscopic scales due to their reliance on inherently quantum mechanical phenomena,

such as superposition and entanglement [2], as highlighted in recent theoretical studies
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[3, 4, 5, 6, 7]. A wide variety of QB models have been proposed, ranging from simple

few-level systems to complex many-body architectures, including spin chains, quantum

oscillators, and interacting systems such as the Su-Schrieffer-Heeger and Sachdev-Ye-

Kitaev models [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

Experimental efforts have also begun to demonstrate QB prototypes on platforms such

as superconductors [37], quantum dots [38], organic microcavities [39], and nuclear spin

systems [29].

A crucial aspect of quantum batteries (QBs) is the design of efficient charging

protocols to maximize the energy stored within the battery. Various quantum control

techniques have been proposed to achieve this goal [51]. For instance, stimulated Raman

adiabatic passage (STIRAP) [52, 53] has been employed to charge three-level QBs

in both open [12] and closed [40] system configurations. Adiabatic passage has also

been applied to non-interacting two-qubit systems [15]. Shortcuts to adiabaticity [54]

have been utilized to accelerate charging processes across different models, including

simple few-level setups [41, 42] as well as more complicated ones like the Lipkin-

Meshkov-Glick system [43]. A related approach, the quantum adiabatic brachistochrone

method, has been used experimentally in superconducting qutrit QBs [37]. Strong-

pulse protocols have enabled rapid charging in many-body QB [44], while the quantum

speed limit formalism has provided tighter bounds on the achievable charging times

[55, 56]. Recently, optimal control theory [57, 58, 59, 60, 61] has been employed to derive

optimal charging drives for qubit-based QBs [46, 47], numerical optimal control has been

applied to coupled oscillator systems [48], while reinforcement learning optimization has

been used to efficiently charge a Dicke quantum battery [49] and a cavity-Heisenberg

spin-chain QB [50], highlighting the versatility of control techniques in enhancing QB

performance.

In our recent work [47] we considered a pair of spin-1/2 particles coupled through

an Ising interaction in the usual NMR framework, where the longitudinal applied field is

fixed and the transverse field is used to control the system. We restricted our analysis to

the case where the Ising coupling is weaker than the constant longitudinal field, so the

spin-down state is the lowest energy state of the system, and used the transverse field

amplitude as a control function, similarly to other studies [44, 46]. We derived optimal

protocols for the fast charging of the QB, from the spin-down to the spin-up state.

Here, we make a two-fold extension of our previous work. First, we use the phase of the

transverse field as an extra control variable. This expanded control framework introduces

new dynamical pathways and allows for the possibility of faster charging, as the phase

modulation provides an extra degree of freedom. Second, we also study the case where

the Ising interaction is stronger than the longitudinal field, so the lowest-energy state

of the system is a maximally entangled Bell state, and show that, when starting from

this state, higher levels of stored energy can be achieved in the QB. With the inclusion

of phase control, the optimal charging protocol when the Ising coupling is weaker than

the constant longitudinal field dictates that the transverse field amplitude is kept fixed
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to its maximum allowed value. The minimum time for full charging of the QB tends to

zero as this maximum bound increases. On the other hand, when the Ising interaction

is stronger than the constant longitudinal field, the optimal charging protocol includes

a time interval where the transverse field amplitude is zero and its phase is immaterial,

corresponding to a so-called singular control. In this case, as the maximum bound on

the control amplitude increases, the minimum time for full charging tends to a nonzero

limit, which is is proportional to the inverse Ising coupling. We explain both intuitively

and quantitatively the different behaviors observed in the two cases. We also employ

the dynamical Lie algebra of the system to explain the presence of a singular arc in the

optimal pulse-sequence in the case of stronger Ising interaction. The revealed interplay

between system parameters, stored energy and charging time enables the performance

optimization of the QB depending on the operating constraints.

While the present work focuses on a pair of spins, in the near future we plan to

extend the methods introduced here to spin chains with three or more spins. Towards

this goal, we may exploit the TorchQC framework for efficiently integrating machine

and deep learning methods in quantum dynamics and control [62], recently developed

by our group. Additionally, studying the role of phase-modulated controls in enhancing

robustness against environmental noise and imperfections offers intriguing possibilities

for future exploration. Investigating these aspects could provide valuable insights into

the design of QBs that are both efficient and noise-resilient, particularly in experimental

platforms where noise and decoherence are prevalent. The current findings contribute

to the broader understanding of multi-parameter control in quantum batteries and lay

the groundwork for more scalable and robust designs, potentially impacting modern

quantum science and technology.

The paper is structured as follows. In section 2 we present the QB under study

and formulate its charging in terms of optimal control. In sections 3 and 4 we derive

optimal charging protocols for the cases where the Ising coupling is respectively weaker

or stronger than the longitudinal field. In section 5 we use the dynamical Lie algebra of

the system to understand how the different charging protocols for the two cases arise,

while the article closes with section 6.

2. Optimal charging of an Ising two-qubit quantum battery

Consider an Ising spin-chain with N spins-1/2 in the standard NMR framework, with

a constant longitudinal magnetic field and time-dependent transverse fields serving as

the control functions, described by the Hamiltonian (ℏ = 1) [63]

Ĥ(t) = Ĥ0 + Ĥ1(t) (1)

with

Ĥ0 = Ωz

N∑
n=1

σnz + J
∑

1≤n<n′≤N

σnzσn′z, (2a)
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Ĥ1(t) = Ωx(t)
N∑

n=1

σnx + Ωy(t)
N∑

n=1

σny, (2b)

where J is the Ising interaction, Ωz the constant longitudinal field and Ωx(t),Ωy(t)

the transverse control fields. In this work we concentrate on the case with N = 2,

corresponding to a quantum battery composed of a pair of coupled qubits.

Charging of this quantum battery corresponds to transferring population from the

initial state |ψ(0)⟩, which is usually taken to be the ground state, to the excited states

such that at the final time T the stored energy is maximized

∆E = E(T )− E(0)

= ⟨ψ(T )| Ĥ0 |ψ(T )⟩ − ⟨ψ(0)| Ĥ0 |ψ(0)⟩ . (3)

In this work we use transverse control fields with time-dependent amplitude Ω(t) and

phase ϕ(t), and carrier frequency ωc

Ωx(t) = Ω(t) cos[ωct+ ϕ(t)], (4a)

Ωy(t) = − Ω(t) sin[ωct+ ϕ(t)]. (4b)

We consider that the amplitude is bounded by a maximum value Ω0

0 ≤ Ω(t) ≤ Ω0, (5)

and under this restriction we find Ω(t), ϕ(t) maximizing the stored energy (3) for a given

duration T .

For N = 2, Hamiltonian Ĥ1 couples the triplet states

|ψ0⟩ = |00⟩ , (6a)

|ψ1⟩ =
1√
2
(|01⟩+ |10⟩) , (6b)

|ψ2⟩ = |11⟩ , (6c)

while the singlet state |ϕ⟩ = (|01⟩ − |10⟩) /
√
2 is decoupled [64]; note that |0⟩ =

(0 1)T , |1⟩ = (1 0)T are the individual spin-down and spin-up states, respectively. Let

|ψ(t)⟩ = a0(t) |ψ0⟩+ a1(t) |ψ1⟩+ a2(t) |ψ2⟩ (7)

be the representation of the system state on the triplet manifold, with ai, i = 0, 1, 2 the

corresponding probability amplitudes. Schrödinger equation

i
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ (8)

leads to equation

i
da

dt
=

 J − 2Ωz

√
2 (Ωx − iΩy) 0√

2 (Ωx + iΩy) −J
√
2 (Ωx − iΩy)

0
√
2 (Ωx + iΩy) J + 2Ωz

 a (9)

for the state vector a = (a0 a1 a2)
T . The diagonal terms express the eigenenergies of

the triplet states and obviously the ground state of the battery depends on the ratio

χ =
J

Ωz

. (10)

We thus distinguish the following two cases.
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3. Case J < Ωz

In this case, the ground state is the spin-down state |ψ0⟩. Using it as the initial state

|ψ(0)⟩ = |ψ0⟩ in Eq. (3), we obtain the following expression for the stored energy in

terms of the final populations of the spin-up and spin-down states

∆E

Ωz

= 2
[
(1− χ)(1− |a0(T )|2) + (1 + χ)|a2(T )|2

]
, (11)

where χ = J/Ωz < 1 and for the closed system under study we have used |a1(T )|2 =

1− |a0(T )|2 − |a2(T )|2. The maximum stored energy is ∆Emax = 4Ωz.

By making the population preserving transformation

c0 = a0e
i(J−ωc)t, (12a)

c1 = a1e
iJt, (12b)

c2 = a2e
i(J+ωc)t, (12c)

we obtain for c = (c0 c1 c2)
T the equation

i
dc

dt
=

 ωc − 2Ωz

√
2Ω(t)eiϕ(t) 0√

2Ω(t)e−iϕ(t) −2J
√
2Ω(t)eiϕ(t)

0
√
2Ω(t)e−iϕ(t) 2Ωz − ωc

 c.

(13)

We would like starting from state |ψ0⟩ to maximize the stored energy and since the

spin-up state |ψ2⟩ has the highest energy we choose the carrier frequency as ωc = 2Ωz,

ending up with the equation

i
dc

dt
=

 0
√
2Ω(t)eiϕ(t) 0√

2Ω(t)e−iϕ(t) −2J
√
2Ω(t)eiϕ(t)

0
√
2Ω(t)e−iϕ(t) 0

 c. (14)

Note that this equation may describe the time evolution of populations of exciton and

biexciton states in a semiconductor quantum dot, see for example Ref. [65].

In our recent work [47] we solved the problem of maximizing the stored energy for

fixed charging duration T when J < Ωz, thus the battery starts from the spin-down

state, for the cases where the control phase is allowed to take only the value ϕ = 0 or

the two values ϕ = 0, π. Since we were interested in the fast charging of the battery,

we considered relatively strong values of the maximum control amplitude, Ω0 >
√
3J/2.

We found that, although for short durations a single On pulse Ω(t) = Ω0 with any of the

allowed phases is optimal, for longer durations, including those needed for full charging

of the battery (maximum stored energy), a pulse-sequence of the form bang-singular-

bang is optimal. The two bang pulses in the optimal sequence are On pulses, with

different durations and the same phase when ϕ = 0 and same duration but different

phases when the values ϕ = 0, π are permitted. The intermediate singular pulse is an

Off pulse Ω(t) = 0 with different duration than a bang Off pulse. We also found that
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the minimum necessary duration for full charging, for the cases ϕ = 0 and ϕ = 0, π, is

given by the transcendental equations

nz tan JT + tan

[
ω(π − 2JT )

2J

]
= 0, (15a)

tan JT + nz tan

[
ω(π − 2JT )

2J

]
= 0, (15b)

where

ω =
√

4Ω2
0 + J2, nz =

J

ω
. (16)

Note that Eqs. (15a),(15b) are slightly different from the corresponding equations in

Ref. [47] since here we use different scaling for Ωk, k = x, y, z and J . In Fig. 1 we plot

the minimum duration obtained from Eqs. (15a),(15b) as a function of the maximum

control amplitude, with blue dashed line for the case where ϕ = 0, Eq. (15a), and with

red solid line for the case where the phase can take the values ϕ = 0, π, Eq. (15b). We

observe that for large values of Ω0 both curves tend to the limiting value π/2J .

In the present work, we solve the problem of maximizing the stored energy (11)

using as an additional control the time-dependent phase ϕ(t) of the control field. We

use the Scrödinger equation (14) as state equation, so |ψ(t)⟩ = [c0(t), c1(t), c2(t)]
T . If

|λ(t)⟩ = [λ0(t), λ1(t), λ2(t)]
T denotes the adjoint ket state then, using the standard

control formalism as applied to quantum systems [66], the control Hamiltonian is

Hc = ℜ(⟨λ|ψ̇⟩),
=

√
2Ω(A sinϕ+B cosϕ) + JC, (17)

where

A = ℜ (c1)ℜ (λ0 − λ2) + ℑ (c1)ℑ (λ0 − λ2) + ℜ (λ1)ℜ (c2 − c0) + ℑ (λ1)ℑ (c2 − c0) ,

B = −ℜ (c1)ℑ (λ0 + λ2) + ℑ (c1)ℜ (λ0 + λ2) + ℜ (λ1)ℑ (c0 + c2)−ℑ (λ1)ℜ (c0 + c2) ,

C = 2ℜ (c1)ℑ (λ1)− 2ℑ (c1)ℜ (λ1) (18)

and ℜ,ℑ denote real and imaginary parts, respectively.

If we define the derivative with respect to |ψ⟩ as
∂

∂ |ψ⟩
=

1

2

(
∂

∂ℜ (|ψ⟩)
− i

∂

∂ℑ (|ψ⟩)

)
, (19)

then |ψ⟩ , |λ⟩ satisfy the pair of Hamilton’s equation

|ψ̇⟩ = 2
∂Hc

∂ ⟨λ|
,

⟨λ̇| = − 2
∂Hc

∂ |ψ⟩
, (20)

The first equation gives Eq. (14) as expected, while the second one leads to a similar

equation for ⟨λ|

⟨λ̇| = i ⟨λ| Ĥ, (21)
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Figure 1: Minimum durations for full charging a quantum battery with ratio χ = J/Ωz =

1/2 when the transverse control field amplitude is constrained as 0 ≤ Ω(t) ≤ Ω0, for the

cases where the field phase is restricted to the value ϕ = 0 (blue dashed curve), or the

values ϕ = 0, π (red solid curve), or is allowed to be time-dependent ϕ(t) (black solid

curve).

where Ĥ is the Hermitian matrix on the right hand side of Eq. (14). The adjoint

variables should also satisfy the terminal condition

⟨λ(T )| = 2
∂
(

∆E(T )
Ωz

)
∂ |ψ(T )⟩

, (22)

which leads to

|λ(T )⟩ =

 4(χ− 1)c0(T )

0

4(χ+ 1)c2(T )

 . (23)

According to Pontryagin’s maximum principle [57, 58], the optimal controls

Ω∗(t), ϕ∗(t) are selected to maximize the control Hamiltonian (17). Since there are

no restrictions on ϕ, we have when Ω(t) ̸= 0

∂Hc

∂ϕ

∣∣∣
ϕ=ϕ∗

= 0 ⇒ tanϕ∗ =
A

B
, (24)

which leads to

Hc = Ω
√
2(A2 +B2) + CJ. (25)

Observe from Eq. (25) that if either A ̸= 0 or B ̸= 0 then the optimal control amplitude

maximizing Hc is Ω∗(t) = Ω0. If A = B = 0 for a finite time interval then maximum

principle provides a priori no information about the optimal Ω. In this case Ω∗ can

take any value in the interval [0 Ω0] and the corresponding optimal control is called

singular. Particular attention should be paid to the intervals where Ω∗(t) = 0, in which
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case the phase is immaterial. In the next section we will clarify the mechanism under

which optimal solutions containing such intervals emerge, while in section 5 we will

further expand our understanding of this phenomenon using the dynamical Lie algebra

generated by the system Hamiltonian.

For the present case, numerical optimal control indicates that Ω∗(t) = Ω0

throughout the whole interval [0 T ], no matter how large the maximum amplitude

Ω0 is. The optimal phase is determined by Eq. (24) and is actually a function of the

components of state |ψ⟩ and adjoint state |λ⟩, see Eqs. (18) for A,B. In this case,

Eqs. (14) and (21) along with the initial condition |ψ(0)⟩ = |ψ0⟩ for the state and

the terminal condition (23) involving both the state and the adjoint, form a two-point

boundary value problem. The optimal control solver finds numerically the adjoint state

initial condition |λ(0)⟩, which can then be used along with the state initial condition

|ψ(0)⟩ = |ψ0⟩ to propagate Eqs. (14) and (21) forward in time, while the optimal phase

is determined from Eq. (24).

We use numerical optimal control to solve the problem of full charging a quantum

battery with ratio χ = J/Ωz = 1/2 and various values of the maximum control amplitude

Ω0, and plot in Fig. 1 the minimum necessary duration for full charging versus Ω0 (black

solid curve). Observe that the time needed in this case is shorter than the previously

studied cases with restricted control on phase ϕ. Furthermore, this time now approaches

zero as Ω0 increases, beating the π/(2J) lower limit of the previous cases. We can

understand how the zero time limit is approached by considering a delta pulse with

amplitude Ω0 → ∞, duration T → 0 and constant phase ϕ. In this case, the J-term in

Eq. (14) can be ignored and the solution of this equation becomes

c0(T ) =
1

2
(cos 2Ω0T + 1), (26a)

c1(T ) = − ie−iϕ

√
2

sin 2Ω0T , (26b)

c2(T ) =
e−2iϕ

2
(cos 2Ω0T − 1). (26c)

If the pulse area is Ω0T = π/2, then |c2(T )| = 1 and the battery is fully charged within

T → 0.

In Figs. 2, 3, 4, 5, we present results regarding the full charging of the quantum

battery with ratio χ = J/Ωz = 1/2 and maximum control amplitude Ω0/J = 1, 3, 6, 50,

respectively. For each case we display the optimal controls Ω(t), ϕ(t) [subfigures (a),

(b)], as well as the time evolution of the stored energy ∆E(t) [subfigure (c)] and the

populations of the triplet states |c0(t)|2, |c1(t)|2, |c2(t)|2 [red, green and blue lines in

subfigures (d)]. Observe that in all the cases the optimal amplitude is constant and

equal to the maximum value Ω(t) = Ω0, while the optimal phase has a similar shape

with some slight differences at the beginning and end. This “cup” profile of the optimal

phase persists even for large values of Ω0, see f.e. Fig. 5(b) obtained for Ω0/J = 50. The

time-dependent phase allows the full charging of the battery within a duration which

tends to zero as Ω0 increases, see the black curve in Fig. 1. On the contrary, in our
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Figure 2: Optimal control amplitude (a) and phase (b), along with the corresponding

time evolution of stored energy (c) and populations (|c0|2 red, |c1|2 green, |c2|2 blue) (d)
for full charging in minimum time, when Ω0/J = 1 and χ = J/Ωz = 1/2.

previous work [47] where ϕ was restricted to the values 0 or 0, π, there was a finite time

limit for full charging even for large Ω0, see the red and blue curves tending to π/(2J)

in Fig. 1.

4. Case J > Ωz

In this case, the lowest energy state is |ψ1⟩. If we use it as the initial state |ψ(0)⟩ = |ψ1⟩
in Eq. (3), we find for the final stored energy the expression

∆E

Ωz

= 2
[
(χ− 1)(1− |a1(T )|2) + 2|a2(T )|2

]
, (27)

where now χ = J/Ωz > 1 and we have also used that |a0(T )|2 = 1− |a1(T )|2 − |a2(T )|2.
Now the maximum stored energy is ∆Emax = 2(χ+1)Ωz, larger than the previous case

since χ > 1. This observation provides additional motivation for the investigation of

this case.

By making the following transformation

c0 = a0e
−i(J+ωc)t, (28a)

c1 = a1e
−iJt, (28b)

c2 = a2e
−i(J−ωc)t, (28c)
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Figure 3: Optimal control amplitude (a) and phase (b), along with the corresponding

time evolution of stored energy (c) and populations (|c0|2 red, |c1|2 green, |c2|2 blue) (d)
for full charging in minimum time, when Ω0/J = 3 and χ = J/Ωz = 1/2.

we find for c = (c0 c1 c2)
T the equation

i
dc

dt
=

 ωc + 2J − 2Ωz

√
2Ω(t)eiϕ(t) 0√

2Ω(t)e−iϕ(t) 0
√
2Ω(t)eiϕ(t)

0
√
2Ω(t)e−iϕ(t) 2J + 2Ωz − ωc

 c. (29)

We want starting from |ψ1⟩ to maximize the stored energy and since the spin-up state

|ψ2⟩ has the highest energy, we choose the carrier frequency as ωc = 2Ωz + 2J , ending

up with the equation

i
dc

dt
=

 4J
√
2Ω(t)eiϕ(t) 0√

2Ω(t)e−iϕ(t) 0
√
2Ω(t)eiϕ(t)

0
√
2Ω(t)e−iϕ(t) 0

 c. (30)

Eq. (30) can be seen as describing two two-level systems with the same ground state

|ψ1⟩ and excited states |ψ2⟩ and |ψ0⟩. The applied field appears to be on-resonance with

the first two-level system, while out of resonance by an effective detuning 4J from the

second. If the strength of the control field, as expressed by the maximum amplitude Ω0,

is not very large compared to the detuning, then the highest energy state |ψ2⟩ can be

selectively excited.

The optimal control analysis of the previous section, expressed by Eqs. (17)-(25),

is also carried here. Eq. (17) for the control Hamiltonian still holds, with the same A,B
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Figure 4: Optimal control amplitude (a) and phase (b), along with the corresponding

time evolution of stored energy (c) and populations (|c0|2 red, |c1|2 green, |c2|2 blue) (d)
for full charging in minimum time, when Ω0/J = 6 and χ = J/Ωz = 1/2.

but different C given below

C = 4ℑ (c0)ℜ (λ0)− 4ℜ (c0)ℑ (λ0) , (31)

while the terminal condition for the adjoint state is also modified as follows

|λ(T )⟩ =

 0

4(1− χ)c1(T )

8c2(T )

 . (32)

We use symbol J ′ to denote the coupling in Eq. (30) and consider the case J ′ =

4J = 2Ωz, where the symbol J is reserved for the coupling of the case presented in

the previous section and is used here to normalize control amplitude and duration to

facilitate comparison. We use numerical optimal control to solve the problem of full

charging the quantum battery with ratio χ = J ′/Ωz = 2 and various values of the

maximum control amplitude Ω0/J = 1, 3, 4, 6, with the corresponding results displayed

in Figs. 6, 7, 8, 9, respectively. Observe that for smaller Ω0 (Figs. 6 and 7), the optimal

control amplitude attains its maximum value, as in the case of the previous section,

while the time-dependence of the optimal phase changes appreciably. But for larger

Ω0 (Figs. 8 and 9), it appears an interval where the optimal control amplitude is zero,

during which the phase is immaterial.
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Figure 5: Optimal control amplitude (a) and phase (b), along with the corresponding

time evolution of stored energy (c) and populations (|c0|2 red, |c1|2 green, |c2|2 blue) (d)
for full charging in minimum time, when Ω0/J = 50 and χ = J/Ωz = 1/2.

In Fig. 10(a) we display the minimum necessary duration for full charging of the

quantum battery versus the maximum control amplitude Ω0, for the case where J
′ = 4J

(red solid line). We observe that, as Ω0 increases, this minimum time tends to a limiting

value greater than zero. We also plot the minimum full charging duration versus Ω0 for

J ′ = 5J (green solid line) and J ′ = 6J (blue solid line), corresponding to larger values of

ratio χ. We observe that, with increasing J ′, full charging is achieved faster, while the

minimum time limit reached for larger Ω0 is decreased. For comparison, we also display

in the same figure (black solid line) the minimum full charging duration for the example

with J < Ωz presented in the previous section, which tends to zero with increasing Ω0.

It is clear that for smaller values of Ω0, the battery with J ′ > Ωz is charged faster. In

addition, the maximum stored energy achieved is larger, 2(χ+1)Ωz > 4Ωz since χ > 1.

The full advantage of using batteries with J ′ > Ωz for smaller Ω0 becomes apparent in

Fig. 10(b), where we show the charging power corresponding to the cases displayed in

Fig. 10(a). The almost linear dependence of the charging power for J < Ωz is attributed

to that in this case T ∼ 1/Ω0 for large Ω0, as we explained in the previous section.

We can intuitively understand the observed behavior and especially the appearance

of a zero control time interval and the finite minimum full charging duration as Ω0

increases, using the Schrödinger equation (30). Note that when the control amplitude

is Ω(t) = Ω0 ≫ J ′, the effect of the detuning is screened and state |ψ2⟩ cannot be
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Figure 6: Optimal control amplitude (a) and phase (b), along with the corresponding

time evolution of stored energy (c) and populations (|c0|2 red, |c1|2 green, |c2|2 blue) (d)
for full charging in minimum time, when Ω0/J = 1 and χ = J ′/Ωz = 2.

selectively excited when starting from |ψ1⟩, since state |ψ0⟩ is also excited. This is

additionally confirmed by evaluating the eigenvalues of the matrix in the right hand

side of Eq. (30). The characteristic equation is(
E

Ω0

)3

− 4J ′

Ω0

(
E

Ω0

)2

− 2
E

Ω0

+
4J ′

Ω0

= 0, (33)

with solutions E0/Ω0 ≈ 2J ′/Ω0 and E±/Ω0 ≈ ±
√
2 + J ′/Ω0 to first order in J ′/Ω0,

which tend to the values E0 → 0 and E± → ±
√
2Ω0 in the limit Ω0 ≫ J ′. To resolve

the levels |ψ2⟩ and |ψ0⟩ for large Ω0, it is necessary to introduce a time interval where

Ω(t) = 0, during which only the J ′ term is active in Eq. (30). The resolution time is

proportional to 1/J ′, as observed with the limiting durations in Fig. 10(a).

We next move to explain with a specific example how the segment Ω(t) = 0 enters

the optimal solution. We use a coupling in Eq. (30) equal to J ′ = 4J = 2Ωz and

consider a maximum control amplitude Ω0 = 4J , as in Fig. 8. The maximum stored

energy for the above values is ∆Emax = 2(χ + 1)Ωz = 12J . In Fig. 11 we display the

numerically obtained optimal controls Ω(t), ϕ(t) for three durations T = 0.29J−1 (first

row), T = 0.31J−1 (second row) and T = 0.33J−1 (third row), which achieve stored

energies at the final time ∆E/∆Emax = 97.14%, 99.11%, 99.95%, respectively. Observe

that for the shorter duration (first row) the optimal controls resemble those displayed

in the first row of Fig. 7, which achieve full charging for smaller Ω0 = 3J . But as the
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Figure 7: Optimal control amplitude (a) and phase (b), along with the corresponding

time evolution of stored energy (c) and populations (|c0|2 red, |c1|2 green, |c2|2 blue) (d)
for full charging in minimum time, when Ω0/J = 3 and χ = J ′/Ωz = 2.

duration increases (second raw) and higher charging levels are reached, the change in

phase ϕ becomes more abrupt. A further increase in the duration (third row) which

allows to approach full charging levels, leads to a discontinuity in ϕ and the development

of a corresponding time interval where Ω(t) = 0. From a control-theoretic point of

view we can understand this behavior as follows. According to Pontryagin’s maximum

principle, for an autonomous control system (without explicit time dependence) like the

one of Eq. (30), the control Hamiltonian (17) is constant throughout. Since the state

and adjoint variables c, λ are continuous, coefficients A,B,C in expression (17) are also

continuous. Then, the discontinuity in ϕ can be consistent with the constancy of Hc

only when either Ω(t) = 0 or A = B = 0. In the next section we use the dynamical Lie

algebra of the system to show that the singular condition A = B = 0 also implies that

Ω(t) = 0.

Numerical optimal control indicates that, as the maximum control amplitude Ω0

increases, the interval where Ω(t) = 0 occupies a larger portion in the optimal pulse-

sequence achieving full charging, compare f.e. Figs. 8(a) and 9(a). We use this

observation to calculate the minimum duration for full charging, corresponding to the

lower time limits in Fig. 10(a). In the limit Ω0 → ∞ we expect the optimal pulse-

sequence to consist of an initial delta pulse, followed by the interval of duration T where

Ω(t) = 0, and a final delta pulse. Let τ1 → 0 denote the “duration” of the first delta
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Figure 8: Optimal control amplitude (a) and phase (b), along with the corresponding

time evolution of stored energy (c) and populations (|c0|2 red, |c1|2 green, |c2|2 blue) (d)
for full charging in minimum time, when Ω0/J = 4 and χ = J ′/Ωz = 2.

pulse and ϕ1 its constant phase, while define the angle θ1 = 2Ω0τ1. Using Eq. (30) we

find immediately after the application of the pulse

c0(0
+) = − i√

2
sin θ1, (34a)

c1(0
+) = e−iϕ1 cos θ1, (34b)

c2(0
+) = − ie−2iϕ1

√
2

sin θ1. (34c)

In the subsequent interval where Ω(t) = 0, only the coupling term in Eq. (30) is active.

Thus, if we set θ2 = 4J ′T , we get

c0(T
−) = c0(0

+)e−iθ2 , (35a)

c1(T
−) = c1(0

+), (35b)

c2(T
−) = c2(0

+). (35c)

Now let τ2 → 0 denote the “duration” of the final delta pulse and ϕ2 its constant phase,

while define the angle θ3 = 2Ω0τ2 and the difference of the phases δϕ = ϕ2 − ϕ1. Then,

Eq. (30) gives

c0(T ) =
ieiδϕ√

2

{
1

2
sin θ1(1− cos θ3)e

iδϕ − 1

2
sin θ1(1 + cos θ3)e

−i(δϕ+θ2) − cos θ1 sin θ3

}
,
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Figure 9: Optimal control amplitude (a) and phase (b), along with the corresponding

time evolution of stored energy (c) and populations (|c0|2 red, |c1|2 green, |c2|2 blue) (d)
for full charging in minimum time, when Ω0/J = 6 and χ = J ′/Ωz = 2.
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Figure 10: Minimum duration for full charging (a) and achieved charging power

∆Emax/T (b) as functions of parameter Ω0/J , for the case J < Ωz (black solid line) and

the case J ′ > Ωz with different values of J ′/J = 4, 5, 6 (red, green, and blue solid lines,

respectively).

c1(T ) = e−iϕ1

{
−1

2
sin θ1 sin θ3[e

iδϕ + e−i(δϕ+θ2)] + cos θ1 cos θ3

}
, (36)

c2(T ) =
ie−i(ϕ1+ϕ2)

√
2

{
−1

2
sin θ1(1 + cos θ3)e

iδϕ +
1

2
sin θ1(1− cos θ3)e

−i(δϕ+θ2) − cos θ1 sin θ3

}
.
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Figure 11: Optimal control amplitude (first column) and phase (second column) when

Ω0/J = 4 and χ = J ′/Ωz = 2, for charging duration T = 0.29J−1 (a, b), T = 0.31J−1

(c, d), and T = 0.33J−1 (e, f).

For full charging of the battery it is necessary that c0(T ) = c1(T ) = 0. These equations

form a linear system for eiδϕ and e−i(δϕ+θ2) which can be easily solved to give

eiθ2 = − tan2 θ1, (37a)

eiδϕ = cot θ1 cot
θ3
2
. (37b)

From Eq. (37a) it is sin θ2 = 0 and since cos θ2 = − tan2 θ1 < 0 we get θ2 = π and

consequently θ1 = π/4. Using this last value in Eq. (37b) we have sin δϕ = 0 and

cos δϕ = cot θ3
2
. For δϕ = 0 the smallest positive solution θ3 = π/2 is obtained. We
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have thus found that for full charging

θ1 =
π

4
, θ2 = π, θ3 =

π

2
. (38)

The initial and final delta pulses do not contribute to the pulse-sequence duration, which

is solely determined by angle θ2. Thus, in the limit Ω0 → ∞, the minimum duration for

full charging tends to

T → π

4J ′ . (39)

For J ′/J = 4, 5, 6, we recover the limits shown on the right of Fig. 10(a).

5. Singular control and dynamical Lie algebra

In this section we will use the dynamical Lie algebras generated by the corresponding

Hamiltonians in Eqs. (14) and (30), in an attempt to understand why the singular

control Ω(t) = 0 appears in the optimal pulse sequence only in the latter case and not

in the former. Since in both cases we effectively deal with a three-level system, we will

use as a basis of su(3) the Gell-Mann matrices given below,

Λ̂0 =
2

3

 1 0 0

0 1 0

0 0 1

 , Λ̂1 =

 0 1 0

1 0 0

0 0 0

 , Λ̂2 =

 0 −i 0

i 0 0

0 0 0

 ,
Λ̂3 =

 1 0 0

0 −1 0

0 0 0

 , Λ̂4 =

 0 0 1

0 0 0

1 0 0

 , Λ̂5 =

 0 0 −i
0 0 0

i 0 0

 ,
Λ̂6 =

 0 0 0

0 0 1

0 1 0

 , Λ̂7 =

 0 0 0

0 0 −i
0 i 0

 , Λ̂8 =
1

3

 1 0 0

0 1 0

0 0 −2

 ,
(40)

where note that we have used capital lambda instead of the usually employed lower

case letters, to avoid the confusion with the adjoint variables. We will use the following

real-valued quantities related to the Gell-Mann matrices (i = 1, 2, . . . , 8)

Λi = ℜ
{
−i ⟨λ|Λ̂i|ψ⟩

}
, (41)

and specifically their time evolution given from the relation

Λ̇i = ℜ
{
⟨λ|

[
Ĥ, Λ̂i

]
|ψ⟩

}
, (42)

which is easily derived using Eqs. (8) and (21) for the state and adjoint vectors. Note

that the commutator
[
Ĥ, Λ̂i

]
generates the dynamical Lie algebra corresponding to

Hamiltonian Ĥ, the Hermitian matrix on the right hand side of Eq. (14) or (30),

depending on the case. We will also use the following notation for the controls

ux (t) =
√
2Ω(t) cosϕ(t), (43a)

uy (t) =
√
2Ω(t) sinϕ(t), (43b)

for better tracking of the equations.
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5.1. Case J > Ωz

We start from the case where the singular control Ω(t) = 0 enters the optimal solution.

The Hamiltonian from Eq. (30) can be expressed in terms of the Gell-Manm matrices

as

Ĥ = ux

(
Λ̂1 + Λ̂6

)
− uy

(
Λ̂2 + Λ̂7

)
+ 2J

(
Λ̂0 + Λ̂3 + Λ̂8

)
(44)

Using this relation in Eq. (42), along with the commutation relations of the Gell-Mann

matrices and definition (41), we obtain the following system for Λi

Λ̇1 = 4JΛ2 − uxΛ5 + uy(2Λ3 − Λ4), (45a)

Λ̇2 = − 4JΛ1 + ux(2Λ3 + Λ4)− uyΛ5, (45b)

Λ̇3 = ux(Λ7 − 2Λ2) + uy(Λ6 − 2Λ1), (45c)

Λ̇4 = 4JΛ5 + ux(Λ7 − Λ2) + uy(Λ1 − Λ6), (45d)

Λ̇5 = − 4JΛ4 + ux(Λ1 − Λ6) + uy(Λ2 − Λ7), (45e)

Λ̇6 = uxΛ5 − uy(Λ3 − Λ4 − 3Λ8), (45f)

Λ̇7 = − ux(Λ3 + Λ4 − 3Λ8) + uyΛ5, (45g)

Λ̇8 = − uxΛ7 − uyΛ6. (45h)

The control Hamiltonian can be expressed as

Hc = ℜ(⟨λ|ψ̇⟩) = ℜ(−i ⟨λ|Ĥ|ψ⟩) = uxB + uyA+ JC, (46)

where

A = − (Λ2 + Λ7), (47a)

B = Λ1 + Λ6, (47b)

C = 2(Λ0 + Λ3 + Λ8). (47c)

From the analysis of section 3 we have that, when A ̸= 0 or B ̸= 0, the optimal

controls are given by the relations

u∗x =
√
2Ω0 cosϕ

∗ =
√
2Ω0

B√
A2 +B2

, (48a)

u∗y =
√
2Ω0 sinϕ

∗ =
√
2Ω0

A√
A2 +B2

. (48b)

In the singular case where A = B = 0 for a finite time interval, it also holds

Ȧ = 4JΛ1 − ux (Λ3 + 3Λ8) = 0, (49a)

Ḃ = 4JΛ2 + uy (Λ3 + 3Λ8) = 0. (49b)

The coefficient Λ3+3Λ8 multiplying both controls in Eqs. (49a), (49b) obeys the equation

Λ̇3 + 3Λ̇8 = −2ux(Λ2 + Λ7)− 2uy(Λ1 + Λ6) = 2(uxA− uyB) (50)

It is not hard to see that the right hand side of Eq. (50) is always zero, trivially when

A = B = 0, while for A ̸= 0 or B ̸= 0 because of Eqs. (48a), (48b). This implies that

Λ3 + 3Λ8 is constant throughout and equal to its value at t = 0

Λ3(t) + 3Λ8(t) = Λ3(0) + 3Λ8(0) = 0, (51)
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where the initial value is zero because Λ̂3 + 3Λ̂8 = diag(2 0 − 2) and the starting state

is |ψ(0)⟩ = |ψ1⟩ = (0, 1, 0)T . Using Eq. (51) in Eqs. (49a), (49b) we get on the singular

interval that Λ1 = Λ2 = 0 and thus

Λ̇1 = (2Λ3 − Λ4)uy − Λ5ux = 0, (52a)

Λ̇2 = (2Λ3 + Λ4)ux − Λ5uy = 0. (52b)

Excluding the special case where Λ2
4 +Λ2

5 = 4Λ2
3, the only solution to the homogeneous

system (52a), (52b) is the trivial one ux = 0, uy = 0, leading to Ω(t) = 0 along the

singular arc. Note that zero singular controls also arise in the time-optimal selective

control of two uncoupled spins-1/2 [67].

5.2. Case J < Ωz

Here we examine what is different compared to the previous case and there is no interval

where Ω(t) = 0 in the optimal solution. The Hamiltonian from Eq. (14) can be expressed

in terms of the Gell-Manm matrices as

Ĥ = ux (Λ1 + Λ6)− uy (Λ2 + Λ7)− J (Λ0 − Λ3 + Λ8) , (53)

leading to the following system for Λi

Λ̇1 = 2JΛ2 − uxΛ5 + uy(2Λ3 − Λ4), (54a)

Λ̇2 = − 2JΛ1 + ux(2Λ3 + Λ4)− uyΛ5, (54b)

Λ̇3 = ux(Λ7 − 2Λ2) + uy(Λ6 − 2Λ1), (54c)

Λ̇4 = ux(Λ7 − Λ2) + uy(Λ1 − Λ6), (54d)

Λ̇5 = ux(Λ1 − Λ6) + uy(Λ2 − Λ7), (54e)

Λ̇6 = − 2JΛ7 + uxΛ5 − uy(Λ3 − Λ4 − 3Λ8), (54f)

Λ̇7 = 2JΛ6 − ux(Λ3 + Λ4 − 3Λ8) + uyΛ5, (54g)

Λ̇8 = − uxΛ7 − uyΛ6. (54h)

The control Hamiltonian can be written as in Eq. (46), with A,B given in Eqs. (47a),

(47b), while here

C = −Λ0 + Λ3 − Λ8. (55)

Similarly to the previous case, when A = B = 0 we also get

Ȧ = 2J (Λ1 − Λ6)− ux (Λ3 + 3Λ8) = 0, (56a)

Ḃ = 2J (Λ2 − Λ7) + uy (Λ3 + 3Λ8) = 0. (56b)

The control coefficient Λ3 +3Λ8 obeys Eq. (50) and using the same reasoning as before

it turns out to be constant throughout. The difference compared to the previous case

is that here the starting state is |ψ(0)⟩ = |ψ0⟩ = (1, 0, 0)T , thus we cannot infer that

Λ3(t) + 3Λ8(t) = 0 and apply the arguments used before.



REFERENCES 21

6. Conclusion

We studied a quantum battery consisting of an Ising pair of coupled spins−1/2 in the

standard NMR framework, with constant longitudinal field and a control transverse

field with time-dependent amplitude and phase, using optimal control to find rapid

charging protocols. We investigated two configurations, with the Ising interaction being

weaker and stronger than the longitudinal field. In the first configuration, the spin-down

state has the lowest energy and the corresponding optimal charging protocol specifies a

constant transverse field amplitude equal to its maximum bound, while the minimum

time needed for full charging of the battery tends to zero with increasing bound. In the

second configuration, a maximally entangled Bell state has the lowest energy and the

corresponding optimal charging protocol includes a time interval where the transverse

field amplitude is zero and its phase is irrelevant, connected to singular control. In this

configuration, higher levels of stored energy can be reached, while the minimum time for

full charging attains a nonzero limiting value proportional to the inverse Ising coupling,

with increasing maximum bound of the control amplitude. We examined intuitively and

quantitatively the dissimilar behavior in the two configurations and furthermore used

the dynamical Lie algebra of the quantum system to better understand the presence

of a singular arc in the optimal pulse-sequence in the second situation. The interplay

found between the quantum system parameters, the stored energy and the minimum

charging duration, provides many possibilities for optimizing the operation of quantum

battery under various constraints. We thus expect the present work to find applications

in this emerging field of modern quantum science and technology, and we work towards

extending it to larger spin chains.
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janampathy S and Modi K 2017 Phys. Rev. Lett. 118(15) 150601 URL

https://link.aps.org/doi/10.1103/PhysRevLett.118.150601

[7] Gyhm J Y and Fischer U R 2024 AVS Quan-

tum Science 6 012001 ISSN 2639-0213 (Preprint

https://pubs.aip.org/avs/aqs/article-pdf/doi/10.1116/5.0184903/18703178/012001 1 5.0184903.pdf)

URL https://doi.org/10.1116/5.0184903

[8] Andolina G M, Farina D, Mari A, Pellegrini V, Giovan-

netti V and Polini M 2018 Phys. Rev. B 98(20) 205423 URL

https://link.aps.org/doi/10.1103/PhysRevB.98.205423

[9] Le T P, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys. Rev. A 97(2)

022106 URL https://link.aps.org/doi/10.1103/PhysRevA.97.022106

[10] Zhang Y Y, Yang T R, Fu L and Wang X 2019 Phys. Rev. E 99(5) 052106 URL

https://link.aps.org/doi/10.1103/PhysRevE.99.052106

[11] Barra F 2019 Phys. Rev. Lett. 122(21) 210601 URL

https://link.aps.org/doi/10.1103/PhysRevLett.122.210601
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[63] Stojanović V M and Nauth J K 2023 Phys. Rev. A 108(1) 012608 URL

https://link.aps.org/doi/10.1103/PhysRevA.108.012608

[64] Unanyan R G, Vitanov N V and Bergmann K 2001 Phys. Rev. Lett. 87(13) 137902

URL https://link.aps.org/doi/10.1103/PhysRevLett.87.137902

[65] Stefanatos D and Paspalakis E 2020 Phys. Rev. A 102(5) 052618 URL

https://link.aps.org/doi/10.1103/PhysRevA.102.052618

[66] Ansel Q, Dionis E, Arrouas F, Peaudecerf B, Guérin S, Guéry-Odelin D and Sugny
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