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The development of fast and efficient quantum batteries is crucial for the prospects of quantum
technologies. We show that both requirements are accomplished in the paradigmatic model of a
harmonic oscillator strongly coupled to a highly non-Markovian thermal reservoir. At short times,
a dynamical blockade of the reservoir prevents the leakage of energy towards its degrees of freedom,
promoting a significant accumulation of energy in the battery with high efficiency. The possibility
of implementing these conditions in LC' quantum circuits opens up new avenues for solid-state

quantum batteries.

The progressive broadening of the horizons of thermo-
dynamics towards individual quantum mechanical sys-
tems out-of-equilibrium opened the way to the new field
of quantum thermodynamics [1-4]. In this context,
the possibility to properly characterize the energetics
of miniaturized thermal machines represented a major
boost for the development of quantum technologies de-
voted to energy storage and manipulation. Among them,
quantum batteries (QBs) are currently assuming a piv-
otal role [5, 6].

After the first appearance of the concept more than
ten years ago [7], these devices have been characterized
by a frantic theoretical investigation [8] followed recently
by the first experimental realizations [9]. The major-
ity of the proposals discussed so far identify the QB as a
collection of two-level systems charged by means of quan-
tum [7, 9-20] or classical [21-24] external sources. How-
ever, in recent years, the possibility to address multilevel
QBs in view of achieving high storage capacity has been
discussed [25, 26].

Indubitably, among multilevel systems the quantum
harmonic oscillator plays a prominent role due to its
versatility. Indeed, a plethora of different physical sys-
tems can be ultimately described in terms of this sim-
ple and universal model. It is therefore not a surprise
that also in the QB domain proposals for implementable
multilevel devices based on quantum harmonic oscilla-
tors have appeared [13, 27-33]. Among the others, inter-
esting schemes have considered the possibility to charge
a harmonic oscillator QB by switching on the coupling
with a reservoir for a suitable period of time [27, 34].
However, in previous investigations the efficiency of these
protocols, defined as the ratio between the maximum ex-
tractable energy through unitary operations (known as
ergotropy [35]) and the energy required to switch on and
off the coupling with the charger, remained very poor.

In this paper, we show that this limitation can be over-
come and that both high efficiency and fast charging can
be achieved, provided that: (i) the reservoir is engineered
in a strongly non-Markovian regime characterized by a
cut-off frequency wp 2 wp, with wp frequency of the oscil-
lator and, counter-intuitively, (ii) the dissipation is very
strong, with intensity vy > wg. In such a regime, at short
enough times, the switch-on coupling energy between QB
and reservoir is almost completely transferred directly
to the QB itself with only marginal dissipation onto the
reservoir degrees of freedom, due to a dynamical blockade
of the reservoir. Consequently, the unit efficiency limit
predicted for a QB and a reservoir initially in a thermal
state [36] can be saturated. We explain this dynamical
blockade in terms of the hybridization between the QB
and the reservoir modes with frequency close to a new
emergent frequency ) = ,/yowp > wg. We point out
that, in this underdamped regime, almost all the energy
accumulated in the QB can be extracted. In addition,
for sufficiently short times the energy oscillates back and
forth in an almost periodic and coherent way between the
coupling energy and the QB, and the robustness of this
effect over various periods of these energy oscillations can
be exploited to mitigate the need for precise fine-tuning
of the charging time. Furthermore, our results are aston-
ishingly robust up to the thermal energies comparable
with AQ.

Due to the robustness of our protocol and the pos-
sibility to experimentally implement it by means of a
quantum LC' circuit, playing the role of the QB, em-
bedded in a dissipative environment, with suitably en-
gineered cut-off frequency and dissipation strength [37—
39], we strognly believe that the present study can open
new and fascinating perspectives towards the realization
of fast and highly efficient energy manipulation in solid-
state devices.



Results

Model of the quantum battery, charger and envi-
ronment

The QB is a quantum harmonic oscillator, strongly cou-
pled to a many-modes reservoir described as a large col-
lection of quantum harmonic oscillators in the framework
of the Caldeira-Leggett model [40-42]. The Hamiltonian
of the system consists of three terms

H® = Hy + Hy +6(t)Ho (1)

where 6(t) = 0 for times ¢t < 0 while §(¢) = 1 for ¢ > 0.
The QB is described by

@?, (2)

with & and p position and momentum operators, and m
and wy respectively its mass and characteristic frequency.
The reservoir Hamiltonian reads

~2 2
A ~ (k p MWy .
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where 7 and p; are the position and momentum of the
k—th mode, with mass m; and characteristic frequencies
wk. The QB and the reservoir are coupled through the
term
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which, as will be shown, plays the role of a quantum
charger. Eq. (4) is composed of two terms: a bilinear
coupling between & and Zjp — with ¢; coupling constants
which will be specified later on — and a counter—term
o« &2, where

2
2= % 5
; mmywi’ (5)

which prevents the renormalization of the static poten-
tial of the QB [40, 41].

The equations of motion for the QB and reservoir posi-
tion operators in the Heisenberg picture read (from now
on, h=kp =1):

B+ @+ 0M2) = Y Fa®). ()
k
Fe(t) + wiin(t) = %@(t). (7)

Eq. (7) can be formally solved considering Z(t) a given
external field, yielding

px(0)

() = 2(0) cos (wit) +
mrWg

sin (wgt)

Ck

+ /0 dt’ sin [wy (t — ] 2(t)). (8)
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Replacing this solution into Eq. (6) one obtains the full
operatorial quantum Langevin equation for the QB [41,
43, 44)

%(t)wgfc(t)Jr/o dt'y(t—t")z(t) +y(t)2(0) = % (9)

where the damping kernel

C2
A(t) = ~0(t) 3"~ cos (wit) (10)
m — Mpwj;

and the reservoir fluctuating noise operator

£t) = ch [ik(O) cos (wit) + Tpif(o) sin (wgt)|  (11)
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have been introduced. thice that the momentum
operator is directly p(t) = maz(t).

The solution of Eq. (9) can always be decomposed into
a transient homogeneous (h) and a non-homogeneous or
thermal part (th):

E(t) = &n(t) + Zen(t). (12)

The first term is independent of the fluctuating field £(t)
and is expressed via the response function x(t) in terms
of the initial conditions at time ¢ = 0 as

an(t) = 2(0)x(t) + 2(0)X(t) - (13)

All the properties of x(t), which satisfies initial conditions
x(0) = 0, x(0) = 1 and ¥(0) = 0, are encoded into its
Laplace transform (defined as 2(\) = [, dte= (1))

1

v\ = ——ir—— 14
V= T 14)
where 4(A) is the Laplace transform of Eq. (10).

The term Zy,(t) in Eq. (12) depends instead on the fluc-
tuating field £(¢) and is given by

The charging/discharging protocol: energy bal-
ance and figures of merit

The charging/discharging protocol is comprised of four
steps:

(I) At ¢ = 0, switching on H¢ the QB and the reservoir
are connected;

(IT) Energy flows for a short amount of time ¢;

(III) Switching off He, the QB and the reservoir are
disconnected;

(IV) The maximum amount of energy is extracted from



the QB, to be employed elsewhere.

A suitably engineered reservoir, especially within the
protocol described above, will prove to be a valuable
resource allowing fast and optimal charging of the QB.
In the following we will introduce the energy exchanges
involved in the protocol and suitable figures of merit to
quantify its performances.

Energy accumulated into the QB and ergotropy. 'To
begin with, let us introduce the energy accumulated into
the QB over the charging time ¢ as [12]

ABg(t) = (Hg(t)) — (Hg(0)) (16)

where (...) = Tr[...(0)] with 5(0) the total initial density
matrix of the system, which will be specified in the
following, and where (Hp(t)) is the energy stored in the
QB at time ¢t. Here and in what follows, all operators
evolve in the Heisenberg picture.

Clearly, not all the accumulated energy can actually be
extracted from it. The ergotropy is defined as the max-
imum energy that can be extracted from the QB act-
ing only with unitary operations [7, 35]. For a general
setup the evaluation of the ergotropy is only possible via
numerical approaches. However, for Gaussian states a
closed expression is present [31, 34]. To this effect we
notice that the time evolution of the model under con-
sideration maps Gaussian states at ¢ = 0 into Gaussian
states at any later time ¢. Therefore, anticipating our
choice of a Gaussian initial condition, the ergotropy of
the QB at time t is given by

E(t) = (Hp(t)) — wor/det op(t), (17)
where op(t) is the covariance matrix [45] at time ¢.
Work performed by the quantum charger. Switching

on and off of the quantum charger over a time ¢ requires
a finite amount of work

W(t) = Won + Woﬂ(t) 5 (18)
where
Won = (Ho(0)) 5 Wem(t) = —(Hc(t)),  (19)

with <1flc(t)) the coupling term in Eq. (4). Notice that,
using the Langevin equation (6), (Hc(t)) can be ex-
pressed in terms of the QB variables only as

<FIC(t)> _ <JA}2(I‘,)>

mo C24de?

s, @ 2
0 - (w8 + ) @
(20)
In full analogy with what defined in Eq. (16), the total
work can be alternatively written as

12
d<£2

W (t) = - [(Ho(®) - (Ho(0))| = -AEo(®).  (21)

Energy balance and spectral decomposition. Since the
total system is closed, after the switching on, we can
easily write the total energy balance

AEg(t) + AER(t) = W(t) (22)

with a clear meaning: the total work W(t) is distributed
among the accumulated energy of the battery AEg(t)
and the energy exchanged with the reservoir during the
time ¢:

AER(t) = (Hg(t)) — (Hr(0)). (23)

Eq. (22) further underlines the role of Hc as a quantum
charger. In this respect, an efficient charging protocol

FIG. 1: Scheme of operation of H¢ as a quantum
charger. Panel (a) efficient and panel (b) inefficient
charging protocol.

predominantly exchanges energy between the charger
and the QB, see Fig. 1(a), while an inefficient protocol
wastes most of its energy in the reservoir with little
power delivered to the QB, as shown Fig. 1(b). Even
though achieving an efficient charging seems almost
hopeless in this context, given that the reservoir has
a very large number of degrees of freedom which can
collect energy with respect to the single one of the QB,
we will show that this is indeed possible via a careful
engineering of the reservoir spectral density at strong
coupling.

For later convenience we also introduce the contribu-
tions to the charger and to the reservoir energy due to
the k—th mode of the latter, defined as (v = C,R)

AE, (t,wy) = (HP () - (HP(0)) (24)

which satisfy the sum rules

AE,(t) =Y AE,(t,wy). (25)
k



Performances of the charging/discharging protocol.
In order to assess the performances of the charging pro-
cedure, two different efficiencies are usually considered.
The first is

_ &) . woy/detop(t)
O G T w2

the ratio between the ergotropy and the energy stored in
the QB. The second figure of merit, which is the most rel-
evant when energy to connect and disconnect the charger
is paid off (W (t) > 0, see below and Ref. [27] for a dis-
cussion on this condition), is

- (27)

representing the ratio between the maximum work that
can be extracted from the QB and the work paid to
switch on and off the charger.

Engineered reservoir and operating regimes

The response function. To proceed further we need to
specify the couplings ¢ in the charging Hamiltonian Hc.
Among the possible choices, we consider the paradig-
matic case of Ohmic coupling which is the most common
dissipation, especially when the reservoir is represented
by quantum circuits [46]. We have [41, 4749

2yommpA  w?
Cl, = wk\/ - w% fw,% . (28)

Here, ~q is the coupling strength, wp the Drude cut-off,
and wr = kA (k positive integer) with A the constant
level spacing of the modes of the reservoir. The behavior
of the couplings defines the spectral density

™ 62
Jw) =5 > mk’; kﬁ(w —wi) (29)
k

and the damping kernel — see Eq.(10). Letting the num-
ber of modes to infinity, with A — 0, one eventually gets
the continuum limit

w2
J(w) = m’YOWm (30)
_ —wpt . y _ _Yowp
90 = e 00 5 ) = 722 (31)

We can also identify the frequency scale  in Eq. (5) as

Q= \/A0wp (32)

which, as we will see, will play a crucial role on the charg-
ing dynamics of the QB.

As clear from the shape of (t), the reservoir is highly
non—Markovian when wp, the inverse of a memory time
scale, is small wp =~ wp, a regime of particular interest
for this work. Such a regime has in the past drawn

theoretical attention [27, 50-52], and has recently been
shown to be a resource in quantum thermodynamics [53].
It is also important to stress that such a strong non-
Markovian environment can nowadays be experimentally
engineered in the context of quantum circuits [39, 54-56].

We can now explicitly write the Laplace transform of
the response function in Eq. (14) [41]

A+ wp

X()\) - ()\2 + CU%) ()\ + WD) + )\’)’OwD

(33)

which, in the time domain, can be written as
3
X(t) = xe Nt (34)
j=1

Here, A; satisfies
A2 — \2wp 4+ A (wg + 'VOWD) — wpwi =0, (35)

and

1
Xj = (wp = A) H o —n (36)
i
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FIG. 2: Operating regimes. As inferred by the na-
ture of the zeroes of Eq. (35), as a function of vy and
wp (units wp), the red area denotes the overdamped
(OD) regime, while the blue one corresponds to the
underdamped (UD) one. The bottom corner of the

OD regime, marked as a yellow dot, has coordinates

Yo = %wo and wp = 3v3wy. The dash-dotted and

dashed lines denote the boundaries between UD and
OD for wp > wy.

Operating regimes. As clear from Eq. (34), the nature
of the roots A\; — governed by the system parameters —



determines the characteristics of x(¢). From now on, we
will elect wy as a typical energy scale and thus consider
Yo and wp as free parameters. As shown in Fig. 2, due
to the third degree polynomial with real coefficients,
only two regimes can occur:

— a underdamped (UD) regime (blue part), characterized
by one purely real and two complex conjugate roots.

— a overdamped (OD) regime (red part), where three
real solutions occur.

To enter more into the details let us begin discussing
the underdamped regime, by identifying the two repre-
sentative regions. The first is the weakly underdamped
one, with vy < wy,wp, to the left of the OD part. Here,
to leading order in wp, x(t) exhibits oscillations at the
bare frequency wgy, damped by the coupling with the
reservoir [41, 49]

x(t) =~ ie_%ot sin (wot) . (37)

Wo

This regime has already been discussed at large in the
literature also about QBs, typically employing a Lindblad
master equation approach [30, 31, 34, 57]. Due to the
small coupling, the charging performances are here very
poor. Therefore we are not going to investigate it in the
rest of the paper.
The second region is to the right of OD at large cou-
pling 79 > wp,wq: it corresponds to a strongly under-
damped (SUD) case. This region, has seldomly been
discussed [58], however it presents a peculiar behavior
which, as we will see, will play a fundamental role in
the QB dynamics. Here we have (see first part of the
Methods for details)

() ~ ée—%"t sin (QF) (38)

As is clear, in this regime Q = ,/q0wp takes the role of
the new natural frequency of the QB. Notice that since
the strong coupling vg > wp,wq implies Q > wp,wp,
this frequency is strongly renormalized with respect to
the bare one. In addition, its value is outside the band—
width of the reservoir (@ > wp). As we will see, this
point is crucial to achieve the best charging protocol, dis-
cussed in Fig. 1 since the reservoir is dynamically block-
aded around the frequency ) of the QB preventing the
energy absorption. For this reason in the rest of the paper
we will mainly focus on this regime showing that it indeed
produces the best short—time charging performances.

We close commenting on the overdamped regime (red
region), where x(t) displays no oscillations. As a typical
example we remind the leading order behavior in wp,
with 79 > 2wy (dashed-dotted line in the figure) [41, 49]

x(t) ~ msinh [t (70/2)? — wo} . (39)

Here, the dynamics of the QB is damped and, as shown
in Supplementary Note 1, it is not very useful for our

purposes since the reservoir absorbs the main part of
the incoming energy with an inefficient charging protocol
similar to Fig. 1(b).

Main achievements

Relevant quantities. To study in details the charging
dynamics we start by specifying the initial conditions.
We assume that, prior to the charge phase, the QB
and the reservoir are disconnected. In addition, we con-
sider an initial Gaussian state with the QB in its ground
state |g) (i.e. a completely depleted battery) and the
reservoir in its thermal equilibrium at temperature 7.
This corresponds to a factorized initial density matrix

5(0) = pu(0) © pr(0) with (8 = 1/T):

e—BHR(0)

p(0) = lg){gl 5 pr(0) = T {ern0}

(40)

With this choice, the averages of position and momen-
tum of both the QB and the reservoir variables are zero
at t = 0, while the second moments are (2(0)) = 2mlwg,

(p*(0)) = o ({2(0),p(0)}) = 0, for the QB and
{2k (0)21(0)) = 555, coth (Bwi/2) O, (Pr(0)pr (0)) =
Lmuwy, coth (Bwy/2) 6k, and ({2 (0),pr (0)}) = 0 for
the reservoir. Due to these conditions the fluctuating
noise £(¢) in Eq.(11) has zero average (£(t)) = 0 and
time—translational invariant autocorrelation function [41]

fon “dw einwt Bw
Eion=[ ) S5 [eom () <)
(41)
Since the initial density is Gaussian, all previous con-
siderations about the ergotropy hold true. All relevant

quantities can be then evaluated from the covariance ma-
trix op(t), given here by

wold?(t)) 5 (2% (t)
op(t) =m . (42)
sar(@ () oo (@)

53

Much like the decomposition of Z(t) into a homogeneous
and thermal part, given in Eq. (12), the same holds for
the covariance matrix: og(t) = opn(t) + op,tn(t) where
the h (th) term only contains the homogeneous (thermal)
contributions to (#2(t)) and (22 (t)).

The homogeneous terms are easily written in terms of
the response function

o (CO\ [P0
= % ) + 2mw B . (43)
(f(8)) X2 (t) 0 \()

More cumbersome are the thermal contributions, which



can be written in the compact form

J(w) coth (’%‘")

th 757

XX [1 — et = (tiw)t e*(AjJrAjf)t] } . (44)

Details are presented in the second part of the Methods
and in Supplementary Note 2.

Concerning the efficiencies in Egs. (26-27) we can de-
duce their constraints. For np it follows directly that
np(t) < 1. Moreover, in the considered case, one also has
nw(t) <1 as can be seen reasoning as follows. Starting
from Eqgs. (17) and (22) one can write

W(t)—E(t) = [wO\/W+ <FIR(t>>]

— [tmO) + ()], @)
where the first line on the right hand side represents
the total energy of QB+reservoir after the disconnection
and the ergotropy extraction, while the second one is
the initial internal energy. Assuming, consistently with
what done in Eq. (40), a passive initial state for the
system and taking into account the fact that all the
considered operations (time evolution of the system and
ergotropy extraction) are unitary the internal energy
can only increase or at most remain constant [36]. Since
E(t) > 0, one has W(t) > £(t) > 0 finally proving the
bound on nw(t).

Finally, the (initial) work required to switch on the
interaction (see Eq. 19) is

w 02
W, = YowWD

=—. 46
4w0 4OJ0 ( )

The underdamped strong coupling regime. We can
now study the charging/discharging protocol, at short
times in the underdamped strong coupling regime, which
— as will be shown — provides the best performances. All
results are obtained numerically. However, we will also
provide analytical expressions to support our results.
In addition, we will focus on custom tailored reservoirs
with quite small wp 2 wy, i.e. with a narrow band and
thus strongly non—Markovian, as this choice is one of the
keys to obtain the best short—time performances among
all the operating regimes.

To begin our discussion, Fig. 3(a) shows the en-
ergy accumulated in the QB AFg(t) (blue line), the
energy delivered by the charger AEc(t) = —W(?)
(red line) and the energy dissipated into the reservoir
AER(t) (green line) as a function of time, in the quantum

(#,0) L ey
(32 (1)) :Z; A\ /_oo 2m? { (Aj — tw)(Njr + iw)

150
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FIG. 3: Energetics and efficiency in the SUD
regime. Panel (a) plot of AE,(¢) (units wg) with

v = B (blue curve), v = C (red curve) and v = R (green
curve) as a function of Qt/m; panel (b) plot of n,(t)
with g = B (blue curve), and g = W (red curve) as a
function of Qt/7. Parameters are wp = 2wg, 70 = 300w
(corresponding to Q =~ 24.5wg) and T' = 0.1wyp.

regime T' = 0.1w for parameters within the SUD regime.

As is clear AFg(t) shows oscillations with a period
w/Q, damped over a time scale w517 and is locally
maximum at times ¢, =~ % + n%, with n > 0 an
integer. Notice that this energy is large: in particular,
the maximum amount accumulated in the QB, occurring
at the shortest time t = to ~ 7/2, is almost equal
to Won = Q2?/4wg. These are already hints of a fast
and extremely effective charging protocol. Notice that
the oscillations of AEg(t) are strikingly synchronized
in phase opposition with respect to AE¢(t), suggesting
that at short times the charger and the QB almost
perfectly exchange energy in lockstep. As a consequence,
and as confirmed by the behaviour of AEg(t), during
the first oscillations only a small fraction of energy is
dissipated in the reservoir, whose dynamics seems to
show an effective blockade at short times. We will turn
back to this interpretation shortly.

The extreme effectiveness of the protocol is definitively
confirmed by the behaviour of the efficiencies ng(t) and
nw (t), shown in panel (b). Except around the minima
of AFEg(t) we find np(t) ~ 1 which implies the best
ergotropy £(t): almost equal to the energy stored in the



QB. This in turns implies that almost all the energy
accumulated in the QB can be effectively retrieved to
produce useful work. Most importantly, however, nvwy ()
— the ratio between the ergotropy and the switch on/off
work — is excellent: around the first maximum it is
very close to the best attainable performance exceeding
0.85 (recall that in our case nw(t) < 1), and it is still
very good around the fourth maximum where it reaches
values above 0.5.

These results are indeed striking, especially in
comparison with other similar charging-discharging
protocols [27] that achieve significantly smaller values
of nw(t). In this respect, one common critique of a
fast charging/discharging protocol — such as the one
shown here — is the difficulty to fine-tune parameters in
order to achieve the best performances [27]. However,
in our scenario the almost perfect periodicity of all the
quantities constitutes a key advantage: one is not forced
to disconnect the QB from the charger at one peculiar
time. Instead, the sequence of optimal times ¢,, is highly
predictable with charging energies and, as we have seen
and as will be shown later on, performances remaining
remarkable (and thus, stable) over several oscillation
periods.

To close this part, we turn back to interpret this opti-
mal charging protocol in terms of a dynamical blockade
of the reservoir. We remind that the reservoir is heav-
ily structured with a small band—width (wp < 2): this
means that only the modes with wr < wp <K 2 have
a significant weight in the spectral density J(w) — see
Egs. (29) and (28). However, these modes are completely
off resonance with the QB and then we expect that they
can hardly absorb energy, thus allowing a back and forth
energy transfer between QB and charger.

To demonstrate this scenario we inspect the spec-
tral contributions of the reservoir AFER(t,wy) defined in
Eq. (24) — see Supplementary Note 3 for details. Fig-
ure 4(a) shows a density plot of AER(t,wy), the dashed
line represents the time window of Fig. 3. During the
initial times the reservoir absorbs very little energy at
all, due to the small value of the cut—off wp <« . This
allows the important process of energy exchange between
the QB and the charger with anti-phase synchronization.
This oscillating dynamics is clearly visible in the spectral
contribution AF¢(t,wy) of the charger — shown in panel
(b) — that oscillates between positive and negative values
around wg = 2. In particular the positive values sig-
nal that energy back—flows from the QB to the charger,
since the energy in the reservoir slowly increases mono-
tonically. On the other hand, away from the resonance
AFE¢ (t,wk) < 0.

As time goes by, however, a sizeable amount of
energy eventually accumulates into the reservoir: in-
deed the the latter starts to respond revealing a clear
resonance precisely around the modes with w, =~ Q.
As already pointed out, modes at such frequencies

Wk
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AEc(t, wy)

1
—
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0 Ot/n 24

FIG. 4: Spectral decomposition of the reservoir
and coupling energies in the SUD regime. Den-
sity plots of (a) AER(¢t,wx) and (b) AE¢(t,ws), both
in units A, as a function of Qt/7 and wy (units Q).
The dashed line represents the time window consid-
ered in previous Figures. Here wp = 2wq, 7o = 300wq
(Q = 24.5wp) and T = 0.1wp.

have a very small weight in J(w) but still succeed to
open a narrow ’energy pathway” into the reservoir —
albeit a slow one. In this time window the reservoir
absorbs energy mainly at these frequencies, with all the
other modes, including those at wy < wp, contributing
sensibly less. Ultimately, the fact that energy flows
considerably into the reservoir only for times ¢t > &,
and essentially only via this narrow channel, strongly
slows down damping which in turns boosts the charging
performances, promoting the back—and—forth exchange
of energy between the charger and the QB at short times.

We will now study the stability of the above results
with respect to variations of €2 and T, showing that very
good performances are achieved even if we choose less
extreme parameters.

We begin by varying 2, which we achieve by tuning g
at fixed wp. Figure 5 shows the results for wp = 2w and
low temperature T' = 0.1wg. As can be seen, the qualita-
tive behaviour is essentially unchanged within this wide
range of 2, and the best charging performances always
occur at shortest times. As shown in panels (a) and (c),
the energy accumulated in the QB and ng(t) increase for
increasing . This implies that at strong(er) coupling
more useful energy (ng — 1) is stored in the QB. The
almost out—of-phase behaviour of AEg(t) and AE¢(t)
is also confirmed — see Panel (b). Also the efficiency
nw (t), shown in Panel (d), increases around the maxima
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FIG. 5: Effects of Q. Plot of (a) AEg(¢) (units wp),
(b) AEc(t) (units wp), (c) ne(t), and (d) nw(t) as a
function of Qt/7 for wp = 2wy and different values of
~o: from black to color vy = 25w (2 & 7.1wyp), 50wy
(Q = 10wp), 100wy (2 =~ 14.1wy), 300wy (2 = 24.5wy),
600wp (2 =~ 34.6wp) and 900wy (2 ~ 42.4wg). The
dashed arrow marks the increasing direction of 2. In all
panels T' = 0.1wy.

for increasing coupling. It is even more important to ob-
serve, though, that even for the smallest value Q0 ~ Twq
considered here, very good performances around the first
maximum are achieved with a very good maximum for
nw (t) of about 0.6.

Concerning the effects of temperature, we show in
Fig. 6 the results for the same parameters of Fig. 3
(SUD regime), for temperatures ranging from very low
to high ones. As can be seen, the behaviour of all the
quantities of interest is essentially independent of the
temperature and only when T > 2 deviations are found.
In particular, notice that even though at the largest
temperatures considered here np(t) slightly decreases,
its value around the maxima still is 2 0.8, which means
that a high ergotropy can be retrieved from the QB
even in this regime. Also, when T' > 2 the oscillations
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FIG. 6: Effects of T. Plots of (a) AEg(t) (units wy),
(b) AEq(t) (units wyp), (c) ne(t), and (d) nw(t) as a
function of Q¢/m for different values of T: from black to
color T = 0.1wp (T ~ 4-1073Q), wo (T =~ 4 -1072Q),
10wy (T ~ 4 - 1071Q), 102w, (T ~ 49), and 103wg

(T ~ 409). The dashed arrow marks the increasing
direction of T'. In all panels wp = 2wy and vy = 300wy.

of nw(t) tend to become slightly less pronounced as T
increases, although we stress that the first maximum
exhibits an exceptional resilience.

These results show a strong stability with respect
to Q and T. This leads to the important conclusion
that our fast charge protocol is within reach of state
of the art experimental platforms, without requiring
exceedingly fast control or exceedingly low temperatures,
see discussion about experimental feasibility below.

In the SUD regime, when € > wp,wp and in the
short times limit ¢ < nn/Q (with n > 1 an integer
of order unity), analytic expressions for (Hg(t)), the
ergotropy and for the total work W (t) can be obtained,
that support our findings. Deferring all derivations to
Supplementary Note 2, here we just quote the main



results valid near the local mazima of AEg(t).

At low temperature all quantities are dominated by ho-
mogeneous terms and one finds, to leading order in €2,
that

(Hg(t)) ~ (H(t))n ; E(t) ~ (Hp(t))n ; W(t) ~ Wi(t),
with

(Hp(t))n = 3706_th sin?(Qt) . (47)

Notice that in this regime the ergotropy is optimal, since

it essentially matches the energy stored in the QB. One
also has

QQ

Wh(t) = Ty

[1—e Pt cosz(Qt)] , (48)

which allows to obtain a closed expression for the effi-
ciency

e~“rtsin?(Qt)

t) = . 49

mw (t) 1 — e=wpt cos?(Ot) (49)

These equations provide results in excellent agreement
with the numerical ones (see Supplementary Note 2).

Conversely at high temperature (T' > wp) the energy
of the QB, the ergotropy and the work acquire ther-
mal contributions in addition to the homogeneous ones
in Eqgs. (47) and (48). We find (Hg(t)) = (Hp(t))n +
<HB (t)>th> with

(H (1))t = %[e*w sin?(Q) + (1= ™) |, (50)

Concerning the total work W (t) = Wy (t) + Win(t) we
have

T 02 202 wpt
W)= [t sie) + 5y (1- e )

2 Wi

(51)
Comparing the additional thermal parts with respect to
the homogeneous ones we see how the former become
effectively dominant only for 7" > €). The situation is
slightly more complicated for the ergotropy £(¢), since
at high temperatures its expression deviates from that of
(Hg(t))n — see Fig. 6(c) — signalling that the contribution
of the covariance matrix becomes non negligible — see
Eq. (17). One can still obtain an analytical expression
for this quantity by evaluating the corrections due to
the latter term starting from the approximated form
of the variances reported in Eqgs. (S1) and (S16) of the
Supplementary Note 2. The final form is however too
cumbersome to be reported.
All the above expressions are in excellent agreement
with our numerical results (see Supplementary Note 2).

To close this Section, it is interesting to answer the
question: what would happen, in the SUD regime, if
one would defer the disconnection of the charger to
very long times ¢ — +00? Notice that in this regime
the reduced density matrix of the QB is given by the

. ~ —BH
trace over the reservoir [41] pp(+o0) = TrR{e - },

where Z = Tr {e‘Bﬁ } Leaving all analytical details to
Supplementary Note 2, here we quote the main results
for both low and the high temperatures.

At low temperatures one finds (Hg(+00)) ~ £ ~ &

4
and W (+o0) ~ %. Charging is still possible, and the
ergotropy remains comparable with the energy stored
in the QB. Observe however that in this case the latter
quantity is o €2, while in the quick charge protocol
outlined above the QB energy and ergotropy are of the
order of 02, see Eq. (47). Thus, in this case much less
energy can be effectively stored and retrieved. FEven
more importantly, in this regime charging requires a
very large work so that one has nw(+00) = wo/Q? < 1
and thus a much poorer efficiency with respect to the
short—time performances.

In the high temperature regime (7' > ), dominated
by energy equipartition, the situation is even worse.
Indeed one finds (Hg(+00)) ~ T but, crucially, & oc 71
— implying nw(4+00) — 0. This means that no useful
work can be extracted from the QB: the charging is
useless.

Even more, also for other parameters the long—time
performances never come even close to those obtained
at short times in the SUD regime.

Considerations about experimental feasibility. We
conclude this part commenting about the fact that the
ideal platform to test the functioning of the discussed
device is represented by a quantum LC' circuit, playing
the role of the QB, embedded in an dissipative envi-
ronment. In particular, considering for example values
of L ~ 500 nH for the inductance and C = 500 pF for
the capacity this circuit can be described as a quan-
tum harmonic oscillator with characteristic frequency
wo/2m =~ 10 MHz (with wy = 1/v/LC) [37, 38]. Focusing
on this frequency regime, which is typically smaller
with respect to what usually considered in circuit QED
experiments [59], has the practical advantage to allow a
control of the device on a time scale in the nanosecond
range which is compatible with the discussed features of
the figures of merits (the first maximum of 7w occurring
at tg ~ 1 ns assuming for example 79 = 300wy and
wp = 2wy as in Fig. 3). The possibility to observe
the discussed phenomenology is also assured by its
great stability with respect to thermal effect as long
as kT < hQ) (see Fig. 6). Within the discussed range
of parameters this leads to the threshold temperature
T ~ 12 mK compatible with the cryogenic temperatures



typically reached in quantum transport and quantum
computing experiments carried out in solid-state devices.

Concerning the properties of the reservoir, a simple
lumped parameters model comprises a resistive part Rg
and a capacitive part Cg [39]. At small frequencies < wp,
the resistive part dominates and one is left with a simple
series RLC circuit. From the equation of motion for the
charge @ of such a circuit

.~ Rp - I
Q+7Q+ﬁ =0, (52)

comparing to the homogeneous part of Eq. (9) it is pos-
sible to identify the charge @ with Z as frequently done
in the framework of the quantum circuits [40]. Then,
Eq. (52) allows to deduce that

Rg =~y L. (53)

With the parameters considered above, this leads to
R =~ 10*Q which is of the same order of magnitude of
the resistance quantum usually appearing in solid-state
devices. The simple model outlined above breaks down
at higher frequencies 2 wp, when the capacitive effects of
the environment become relevant. They induce a typical
cut-off frequency [39] of the order of (RgCg) ™!, which we
identify with wp. The parameters considered in this text
allow to estimate Cr ~ 1 pF. To conclude we note that
quantum couplers can be used to realize a fast control of
the coupling between the QB and the charger [60-62].

Conclusions

In this paper we have proposed a scheme for a quan-
tum battery based on a quantum harmonic oscillator,
strongly coupled to a non—Markovian reservoir via a
quantum charger. The considered procedure relies on the
transient dynamics which occurs right after the battery
is connected to the quantum charger, thus ensuring
a quick charging protocol. We have shown that the
evolution of the energy stored in the battery is almost
periodic, which allows to avoid a too precise fine-tuning
of the time at which the battery need to be disconnected
from the charge. Moreover, we have shown that this
protocol is very efficient, allowing in principle to extract
through unitary operations practically all the energy
stored in the quantum battery, with a ratio between the
energy that can be extracted and the work done by the
charger which approaches the ideal unit limit. These
outstanding features are due to two key ingredients,
namely the non-Markovianity due to a reservoir with
a spectral density with a cut-off of the order of the
oscillator frequency, and a peculiar — and as yet almost
unexplored — working regime in the underdamped regime
at strong coupling. Crucially, these result in a dynamical
blockade of the reservoir dynamics, which allows an
almost coherent exchange of energy between the charger
and the quantum battery at short enough times.

Such a protocol may be envisioned with a quantum
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LC circuit playing the role of the battery and with
the required environment being suitably engineered
via state—of-the—art quantum circuits, and thus may
genuinely contribute to a significant advancement in
the field of quantum energy storage in solid state devices.

This work will pave the way for new developments in
the field of quantum energy routing and management,
opening for instance the possibility to study the charging
of, and energy transfer between, two or more quantum
batteries strongly coupled to a highly non—Markovian
reservoir acting as a energy bus or energy router.

Methods

The response function x(¢) in the strong under-
damped regime

In this part we give some details on the behavior of the
response function x(t).

The cubic equation in Eq. (35)
A2 = AZup + A (wg + 'yowD) — wag =0 (54)

yields the general Vieta’s relations

At +X2+ A3 = wp, (55)
Az + XAz + Aeds = Wi +Yowp (56)
)\1)\2)\3 = wag . (57)

We remind that, for finite damping, all roots have positive
real parts. In addition, in the underdamped regime two roots
are complex and one is real, so they can be written as

)\1,2 =1+ il/, A3 € R, (58)

where I', v € R. Using Eqgs. (55) and (57) we have

2
wp — A3 2 2 WDWq
—, I"4rv° = .

I =
2 A3

(59)

According to this, the x; defined in Eq. (36) are

i 2V—|—i()\3 +UJD)
2v |2v+i(3X3 —wp) |’
wD 7)\3

= 4 . 61
X3 (Wp — 3X3)2 + 4v2 (61)

X1 = X2 = X1 (60)

We now derive analytic expressions at strong coupling with
Yo > wp,wo, that is Q = \/Aowp > wo,wp. Here, to leading
order in €, the real the solution of Eq. (54) is

2
wWHwD
A3 A~ ?)2 (62)
Inserting this results in Egs. (59) one has
I~ %D v Q. (63)

Concerning x; we find



This leads to the following expression for the response func-

tion x(t) = 32, xje "
einDt wp — “fwp t
x(t) =~ [sm (Qt) — ﬁ cos (Qt)] ke 2z ", (65)
whose leading order expansion is
_“Dy
x(t) =~ & g sin () (66)

as quoted in Eq. (38).

Explicit expression for QB variances

In this part we give details on how to get the general ex-
pressions of the variances (x?(t)) and (#2(t)) quoted in the
main text — see Egs. (43) and (44).
We start by recalling that the solution of the Langevin equa-
tion (9) can be decomposed as & (t) = &n(t) + £n(¢): this will
be the building block for evaluating the above quantities. The
homogeneous part is given by

n(t) = 2(0)x(t) + 2(0)x(1) , (67)
while the thermal one is

Bon(t) = dix(t — W, (68)

0

which, due to the initial condition x(0) = 0 implies also

. tdy R
zan(t) = | —x(t—t)E(t). (69)
0

Here, the dot represents the derivative with respect to the
first argument.
On a very general ground, given initial decoupled conditions
and (£(t)) = (&(t)) = 0, (&(t)) = 0, the homogeneous and
thermal terms factorize as

(@) = (@) + (@),
(@) = (@n(0) + (@h(0) - (70)

These matrix elements completely define the contributions to
the covariance matrix og(t) = op,n(t) + oBtn(t) given by

wo(®h/en (1)) 555 (@ /en (1))
OB h/tn(t) =m R . (T
3 3@ m®) o5 (@ wm()

We now observe that the homogeneous part is independent
of the temperature and can be easily written in term of the
response function x(t). Taking into account the initial condi-
tions and using Eq. (67) one straightforwardly arrives to the
expressions

wo

(@2(1))
@y, ™ \ee

As expected, op,n(t = 00) = 0.

X2 (t) L [(X®

meo XQ (t)

(72)

Concerning the thermal contributions we need a more care-
ful manipulation of Egs. (68) and (69). In the following we
describe how to explicitly write (22, (t)).
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Using Eq. (68) we have

m / ity / dtax(t — )X (t — t2) (E(t1)E(E))

(73)
Since the integrand is symmetric under exchange of t» with
t1, only the symmetric part of the correlation function
(&(t1)&(t2)) contributes. We call it [63, 64]

Ls(t1 —t2) :AM%J(w) coth <ﬂ7w) cos [w(t1 —t2)], (74)
see Eq. (41), with Fourier transform
L.(w) = J(w) coth (”32“’) . (75)

Inserting now the general expression of x(¢), given in Eq. (34),
and integrating over time one finally obtains

oo dw Ls(w)
(#n(t Zl o /700 2rm? (A — iw) (A + iw)
33
[1 . ef(Ajfiw)t . ef(kj/+iw)t + ef(/\j+>\j,)t} ) (76)

The last term to be evaluated is (22 (t)). This follows
straightforwardly by inserting the expression in Eq. (69)
which gives

#0) = — / dt / dax(t — )Xt — ta)(E(t)E(E2))

(77)
Following similar steps as done for (27,(t)) a form similar
to Eq. (76) is found, except for the substitutions x; - x;; —

AjXj - Ajrx; — see also Eq. (44)
oo dw Ls(w)
A
(@2, (t Zl IXG A X [ o 2mm? (A — iw) (A7 + iw)
3.3
[1 e byl )] ©

We close this part by commenting on the long time limit.
For ¢ — 400 only the first term in the squared brackets of
(#2,(t)) and (22,(t)) survives (see Eqs. (76) and (78)) since
Re{A;} > 0. Then, after some manipulations, we arrive to

the form
+oo d
A2 _ w ,BUJ ~ .
@hroo) = [ g com (52 ) o= -],
- o0 dw Bw
2 _ Y = —9
@troo) = [ geitootn (57 ) mf(r = —iw)]
(79)
In addition, we can easily see from Eq. (76) that
lim 42 =0 80
Jim = & () =0. (80)

This confirms the expected fluctuation-dissipation theo-
rem [41].

Data availability
All data is available in the manuscript and in the Supple-
mentary Information.
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Supplementary Note 1: The overdamped regime

This part is devoted to study the QB performance in the overdamped regime. The most relevant physical difference
with respect to the SUD regime, discussed in the main text, is that here the reservoir has a band-width wp larger than
the damping g, i.e. there are many more modes of the environment sizably coupled to the charger in comparison
with the previous regime. This in turns leads to a marked deterioration of the charging performances. To make a fair
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FIG. 1: Energetics and efficiency in the OD regime. Plots of (a) AE,(t) with v = B (blue curve), v = C (red
curve) and v = R (green curve) as a function of Qt/m; (b) n,(t) with ¢ = B (blue curve), and p = W (red curve)
as a function of Qt/7. In panel (a) AE,(t) is given in units wy, parameters for all panels are wp = 60wy, vo = 10wq
and T = 0.1wg.

comparison, in Fig. 1 we show the same quantities as in Fig. 3 in the main textwith the same value of 2 ~ 24.5wy -
equal initial work W, - but for wp = 60wy and 7y = 10wy, well within the OD regime.

The differences are striking. Inspecting panel (a) no quantity oscillates as expected, and AFg(t) reaches a maximum
of only ~ W, /6, a worse performance with respect to the SUD case. Even more strikingly, AFq(t) and AFER(¢)
proceed in almost perfect anti-phase, implying a massive leakage of energy from the charger to the reservoir — see
Fig. 1(b) in the main text.



This has a direct impact on the charging performance. The ratio 7np(t) remains large, although worse than in the
SUD regime, but in striking comparison to the latter case now nw(t) < 0.1 as shown in panel (b), in accordance with
the fact that most of the work done by the charger is dissipated into the reservoir. Instead, in contrast to the SUD
regime, it is now the dynamics of the QB to be essentially blocked. As a consequence, for fixed 7y the QB essentially
absorbs the same amount of energy regardless how large is wp and this implies that more and more energy is wasted
into the reservoir.
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FIG. 2: Spectral decomposition of the reservoir and coupling energies in the OD regime. Density plots
of (a) AER(t,wy) and (b) AE¢(t,wy), both in units A, as a function of Qt/7 and wy (units ). The dashed line
represents the time window considered in previous Figures. Parameters are the same as in Fig. 1.

To support these conclusions, Fig. 2 shows the spectral decompositions AFg(t,wy) and AEq(t,wg). Panel (a)
confirms that no resonance is found in the modes of the reservoir. Instead, the latter receives energy over a very wide
spectrum of energies, up to wp > ): a positive inflow of energy to the reservoir is found which is matched, as shown
in panel (b), by the global outflow of energy from the charger — the majority of which is directly dissipated into the

reservoir.

0.1

‘Uw(t)‘

0 Ot/n 4
FIG. 3: Effects of 2 in the OD regime. Plot of nw(t) as a function of Qt /7 for 79 = 6wp and different values of

wp: from black to color wp = 30wq, 50wy, 100wq, 150wy, 200wy. The dashed arrow marks the increasing direction of
Q). Here T' = 0.1wyg.

Figure 3 further supports the fact that in the OD regime there is a blockade of the QB dynamics. Here, nw(¢) is



shown for fixed 79 = 6wy and different values of wp. As 2 is increased the charging efficiency gets worse and worse,
in accordance with the fact that more and more energy is routed towards the reservoir.

Supplementary Note 2: Analytic results at strong underdamped coupling regime

In this part we discuss the analytic results obtained in the strong underdamped regime (2 = |/owp > wo,wp),
both at short and long times.

a. Short times
We start by considering the contributions to (x2(t)) and (i%(¢)) of the homogeneous part, quoted in Eq. (73) of the
main text. As one can see, everything depends on the response function x(¢), which we will now discuss in the strong
underdamped regime. Inserting Eq. (67) of the main text and taking the leading order contributions in 2, we arrive
to these dominant terms for each component

GOy (RO) et [ .
<3}ﬁ(t)> 2o X2(t) 2o 02 sin” (Qt) |

As clear, both variances oscillate with frequency 2 and are weakly damped (wp < ). For large Q, (502 (t)) dominates
over (z2(t)) (at least away from its minima).

As already said, these terms are independent on temperature and decay to zero at long times ¢ — oco. However, as
shown in the main text, they play a dominant role at short times . To discuss this point in details we need to estimate
also the thermal contributions.

We start by considering Egs. (74) and (78) of the main text at short times: namely Qt < nw/2 (with n integer of order
unity), which represent the time interval of the first QB oscillations. We now rewrite the symmetric kernel L(t) in
a compact form, to extract the scaling in §2. Using the Drude spectral function — see Egs. (75) and (30) of the main
text

£ = "2 F () (52)
where
ooz odx
Fls) = /O H—idx coth (2.7 cos(as) ($3)

We can now write the variances (2 (¢)) and (2, (t)) by rescaling the variables according to z; = Qt; (i = 1,2) and
introducing Eq. (S2) for £,(t). We have

(@5(1)) X (8) x (%)
) d:cl / dng Q—xl)} . (S4)
(23, (1)) Pahx (8) amx ()

Notice that x1 2 are at most of order unity, since we consider short times Qt ~ O(1), and then wp(ze — x1)/ < 1.
We now discuss the two opposite limits of low and high temperatures.

— Low temperatures (T < wp)

In this regime coth (;’—;i:r) — 1 and we have

1
~ PSTi(—
s) ~ 5 péﬂ eP*Ei(—ps), (Sh)

which in the regime wpt < 1 (namely, s < 1), considered here, becomes

F(s) ~ —[C + 1n(\sm , (S6)



with C the Euler constant. Now, in order to estimate how the integrals (S4) scales with 2 we exploit the dominant
“D

2 tsin(Qt) /. As can be seen, the leading scaling in €2 is given by

GRON o oy 1
ct x m§22 n <WD) QZ ’ (87)

where the proportionality factor is at best of order one. This behavior is definitely less dominant than the one obtained
for the homogeneous part given by (see Egs.(S1))

behavior of x(t) ~ e~

CHO N .
xX —— . 8
@) "0\ g

These results demonstrate that, at low temperatures, the homogeneous part alone well describes the behavior of the
two variances and then of the quantities of interest.

We close this discussion by summarizing the expected behaviors of the different figures of merits in the strong coupling
regime and at low temperatures. As of the energy stored in the QB the first maxima are given by

R 2

(1)) ~ (H(t)n = ~—

Ton e “rlsin?(QOt). (S9)

Concerning the ergotropy £(t) = (Hg(t)) —wo+/det op(t), we notice that o (t) = oppn(t) +0p,m(t), defined in Eq. (72)
of the main text, is never dominant at large 2. Then, around the maxima of the QB, we have

E(t) ~ (Hp(t)n - (S10)
Now we consider the total work W (t) = Wo, + Wog(t), where we remind that (see Eq. (46)) in the main text

Q2

= qoot Wen(t) = =(fic(t). (S11)

Won = <]:IC (0)>
The switching off part can be evaluated considering Eq. (20) in the main text for (He(t)):
: 1 d? 02
Y P TP B S LR WO
—@0) - 5@ 0) - (G4 5 ) @) (s12)
evaluated with the homogeneous contributions (S1). Thus,

Q2

Wo(t) = Wogn(t) = ———e “Pfcos? () . (513)
4w0
This allows to write the final expression of the total work
Q2
W(t) = — [1—e “Prcos®()] . (S14)
4(.()0

These equations provide very accurate result, as shown in Fig. 4 which shows a comparison between numerical (solid
lines) and analytical (dashed lines) results. Both AEg(t) and AEc(t) (panel a), the ergotropy £(t) as well as nw (%)
display an excellent agreement.

— High temperatures (T > wp)

. . w oT . .
In this regime coth (42z) — 705 and the function F(s) in Eq. (S3) becomes

F(s)~ —e Il (S15)
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FIG. 4: Comparison between numerical and analytical results. Panels (a-c) show respectively the plot of
AE,(t) with v = B (blue curve), v = C (red curve), of £(t) and of nw(t) as a function of Qt/w for the case T' =
0.1wp ~ 4 - 1073Q. Panels (d-e) show the same quantities but for ' = 250wy ~ 10Q. In all panels the solid line
represents the numerical results, while the dashed line represents the analytical ones. All energies are given in units

wp, other parameters are wp = 2wy, 9 = 300wy.

Inserting this expression in Eq. (S4) with x(¢) given in Eq. (66) of the main text, after some manipulations it is
possible to explicitly evaluate the integrals over ;1 and x5. Below we quote the result to leading order in Q > wp, wyq,
valid for time Qt up to the first local maxima of the QB which are at Ot = nw/2 with n a small integer. We have

2T 1 02 2,02
.2 _ et _—wpt/2 ] L _wpt 7( _ —2wpwit/Q )}
(T4, (2) mQQ{[l e cos(2t) 5¢ sin?(Qt) + 22 1—e o
9 T _
(z5,(8)) = —{1 — e “Plcos (Qt)} (S16)
m
Notice that, in the regime of large  considered here, the variance (¢, (t)) is always dominant with respect to (22, (t))
This implies (Hg(t))n ~ %(ifh( )), then considering also the homogeneous contribution, written in Eq. (S9), the
total energy of the QB is
. 0 T T
= Z |1 — p—wnt
(Ag(t)) = e=“Pt sin?(Qt) <4wO + 2) +35 [1 e } . (S17)

Concerning the total work, written in Eq. (S11), we see that the switching on work does not have thermal contributions

while the switching off ones is
Woff (t) - Woff,h(t> + Woff,th (t) ) (818)

with the homogeneous part, written in Eq. (S13) and the thermal contribution Wog ¢ (t) = —( (t))th. This last
d (22 (t)). We then

term can be directly evaluated inserting in the expression (S12) the above results for (&2, (t)) an

have, to leading order in

T 0?2 2ufupt
Woff th(t) 5 e_th SIHQ(QIJ)) + P (1 —e ?22]3 >:| . (819)
0



Putting all together we obtain the expression for the total work

Q2 —wpt .2 T ot . 2 02 _ 20fwpt
W(t) = —AEc(t) = — [1 — e “Plcos® ()] + = [ “Plsin®(Q) + — (1 — e a2 . (S20)
4wq 2 wg

We close by commenting on the ergotropy £(t). Differently from the low temperature case, at very high T > Q
the contribution of the covariance matrix becomes relevant and cannot be disregarded. The analytical evaluation of
det [oB,n(t) + oB,tn(t)] can be directly obtained using the final expressions for the homogeneous variances — Eq.(S1)
— and for the thermal ones — Eq.(S16). The final expressions are too lengthy to be reported here.

Panels (d-f) of Fig. 4 confirm that also in the high temperature case the accordance between numerical and analyti-
cal results, which is excellent for both AEg(t) and for the ergotropy and very good for AE¢(t) and the efficiency nw ().

b. Long times
This part is devoted to determine the long time (¢ — +00) behavior of the figures of merit. First, we remind that at
long times the homogeneous contributions die out and only the thermal ones survive. In addition, as shown in Eq. (81)
of the main text, we have (&, (+00)(+00)) = 0, then only (2 (+00)) = (#2(+00)) and (22 (+00)) = (#2(+00))
survive. This implies that the ergotropy, see Eq. (17) in the main text , is

E(+ V mwo (E2(400)) m{22(400) /wo} , (S21)

while for the total work we have

W(eo) = 1o~ (Aoloo)) (522
(@200} = m (4 ) (#2().
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g
|

In order to evaluate the above quantities we use the general results derived in Ref. [1] for a Drude spectral density.
We have

(@ (+00) =

Cmm ZXﬂ/} ( ) ’ (#%(+00)) = wi (3, (+00)) + K (S23)

mwd

02 A\
— ;kﬂz; (1 + M) : (S24)

K

with
Aj

k- = —mmm> - -
! Hj’;éj ()‘j’ - /\j)

(S25)

and where 9(z) is the digamma function.

Our task will be to study these relations in the strong underdamped regime (€ > wq,wp). Here, the roots \; and
the corresponding weight x; were obtained in Egs. (63) - (65) of the main text.We will confine the discussion below
to the two limiting cases of low or high temperatures.

— Low temperatures (T < \;)
In this case one has 1 (1 + %) In ( ) + O(T/);), this leads to the leading contribution

(22 (400 ——ZXJ In (2 T) mZX] In(};) , (S26)

where in the last equation we use 22:1 X; =0. Inserting the expressions for \; and x; we obtain the leading behavior
inQforT—0

(@2 (+00)) = (S27)

2m”



To determine (i:%(+00)) we start by considering the contribution K in Eq. (S24) for T — 0. We have
0?3 by
K~—) kiln(—L 2
ij; ! n<27rT) (528)

Now we use the constraint Z?Zl k; = 0. This follows from the equality

WD

By ==X+ T
’ ! Hj’;éj ()‘j’ - >‘j)

(529)

3

recalling Z?Zl X; = 0 and observing that > i1 m

= 0. We are then left with the following expression

2 3

Q
Kr~— ; kiln () . (S30)

Inserting the leading behavior in © of A; and x; we have

~ & (S31)

2m

This implies, using Eqs. (S23), (S27) and (S31), that the leading behavior in Q for (i2(+00)) is
a Q
&2 N —. 532
(#%(+00)) & o — (S32)

Regarding the different figure of merit we then have

(p(+o0)) ~ T (E(too) = 7 (833)

and therefore np(+00) ~ 1. Inspecting Eq. (S22) we see that the work done to switch on the interaction Wy, =
02 /(4wp) dominates with respect to the work required to switch off the coupling. Indeed, the latter is (see Eq (S22))

Weg = —(ﬂc(oo» ~ —(/4. Then the total work is

QZ
N — 4
W (400) o (S34)
which leads to a very small efficiency
nw (+00) ~ % 0. (S35)

— High temperatures (T > \;) In this regime we consider the high temperature expansion of all terms containing
the psi function: (1 + %) =¢(1)+0 (’\T’) Inserting this behavior in Eq. (524) we can see that the K term is
not dominant (K o 1/7T). Indeed, we have

(#2(+00)) = —— [1+ O(T)], (F*(+00)) = —

— ~[1+0(Y/T)]. (936)

This result is no more then the energy equipartition. In this regime one then has
(Hg(+00)) = T E(+00) o< 1/T (S37)

and therefore ng(+o00) — 0.
We conclude addressing the total work W (¢). Inserting Eq. (S36) in Eq. (S22) we obtain
T0?
0

which leads to nw(400) — 0.



Supplementary Note 3: Details on the spectral decomposition of the reservoir and
coupling energies

Let us begin observing that Hc in Eq. (4) in the main text can be rewritten as

b1 s G o] g
He = 3 Xk: [—ck (T2 + 212) + mkwix } = zk:HC , (S39)
whence
2
(k) A A Ck 2
(1) =~ 500 + 5ot (600 (540)

where (AB), = %({A, B}) is the symmetrized average. Let us focus on the first term (2(t), & (t))s, since the quantity
(#2(t)) has already been evaluated — see Eqs. (43) and (44) in the main text. Also in the case of this correlation
function, the homogeneous and thermal contributions are separated, leading to

(@(t), 2k (t))s = (2n(t), 2k n(t)s + (Zen(t), Zran(t))s (541)

where @y, () and Z4,(¢) have been given in Egs. (13) and (15) of the main text, while from Eq. (8) we have

Zrn(t) = & (t) + — / dt’'sin [wy, (t = t")] Zen(t') (S42)
with
Eu(t) = 2 (0) cos (wt) + 22O Gin (wet), and 2 — / d sin [wp (£ — )] En(t). (843)
MWk mrpWwk Jo

We recall here that the QB is initialized from its ground state, with

1 .
2muwy’

(#(0)) = 525 (#(0)(0))s = 0, (544)

(#%(0)) =

while the reservoir has thermal initial conditions

(6000 0) = 5o oot (T2 ) (pu0)ue0)) = mancorh (%) {000 =0, (319

2mpwg

To evaluate the homogeneous term (& (¢)Zx n(¢))s in Eq. (S41) using Eq. (S43) one needs the correlator (& (¢)Zn (t))s,
which can be easily obtained using Eq. (13) in the main text with the initial conditions (S44). One has
1

(En(t)in(t'))s = ST

[wox (E)x (') + x(E)x ()] - (S46)

Inserting this expression in Eq. (S41) one obtains

()\LJr)\j)t (/\j+iwk)t _ 1 ()\jfiwk)t _ 1
{e ¢ (S47)

. ) wo Ck AL
(nOan(t): = gt 3w (1+23)

2m mwy Aj + iwg Aj — wy

Let us now turn to the evaluation of the term (& (t)Zk n(t))s in Eq. (S41). Inspecting Eq. (S42) one figures out
that it consists of two contributions

(@en(D)pn(1))s = (Een(B)E4(1))s + —

/0 dt' sin [wg (t — )] (Zen () Zen(t))s - (S48)

mrWg

Starting from the first term on the right hand side and substituting the solution for & (t) — see Eq. (15) in the main
text — one has

&)= [ Dnie—) LGOS (849)

0



Taking into account Eq. (S43) and the initial conditions (S45) one finds

2 2 Ok b Bwi,
ot = : h({— —t)] .
(&1 (t)ER(1))s ST cot ( 5 ) cos [wi (t—t1)] (S50)
Plugging Eq. (S50) into Eq. (S49) with the general expression x(t) = Zj xje Nt after some algebraic steps we have
A . 1 Ch B Wi 1— ef(x\jfiwk)t 1— ef()\jJriwk)t
t t)s = — coth ] ; ; . S51
(Een(t)e (1)) m 4mkwk ( 2 > %:Xg [ Aj — Wy + Aj +iwg (851)
As for the last term in Eq. (S48) we need the following correlator
1t t
(T (t)Em(t'))s = 32 drix(t —71) / drox(t' — 12)Ls(T1 — T2) (S52)
0 0

where Ly(7) = (£(1)€(0))s is given in Eq. (S2) and where we have employed Eq. (15) in the main text. Using again
the general form of x(t) quoted above and performing the integrations in Eq. (S52) we get

dw Buw ewt _ o=t efiwt' _ efkjt’
Ten (T = — -coth | — . S53
<$t} ( )xth m2 ZXZX‘] / 2 ( ) co < 2 ) )\l + W )\J —w ( )

This last correlator must be inserted back into the integral to the right hand side of Eq. (S48). After some algebraic
rearrangement, its last term finally reads

1 Ch © dw 5&) eiwt _ e—klt e—iwkt _ e—iwt eiwkt _ e—iwt
— ; —J th (| =— —
2m2 mywy ZEJ:XZX] /_OO 2 (w) o ( 2 ) (N Hiw) (A —iw) W — Wy W+ wg +

twrpt —>\jt —twit _ —>\jt
+iS c i < . (S54)
Aj +iwy Aj — Wy

To summarize, the term (Z(¢)Zx(¢))s is given by the sum of Eqgs. (S47), (S51) and (S54). This expression is to be
inserted in Eq. (S40) to finally obtain <fIék) (t)) and thus AEc(t,w) in Eq. (24) of the main text.

Let us now evaluate the k—th contribution to the reservoir energy

() = Sl 0) + 5 #0), (555)

again given by homogeneous and thermal contributions
(i (1)) = (B O + (HR (), (856)
where

o (k 1 . 1 .
(i h = Smi(@ (1)) + Smii (#u ()

N 1 5 1 .
(Y = 5@ (0) + 3maed (8 (1)) (857)

Begin with (f[ék) (t))n, inserting Eq. (S43) and its derivative to obtain

o = (G2 [an [ mtaeomi) N DR

w3 cos [wy, (t — 71)] cos [w (t — 72)]

(@%u(t)

)

MW

Inserting the solution in Eq. (S46) in Eq. (S58), after some steps one finds
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. /\lA 1— e—()\l—i-iwk)t 1— e—(Aj—iwk)t
HP (1)), = i 1 . S59
(i (1)) = dmy m ZXZXJ " wh AL+ twg Aj — dwg (859)

We are left with the evaluation of (ngk)(t)ﬁh given in Eq. (S57). To this end we need to rewrite <£i’th(t)> and
(23 (1)) using Egs. (S42)- (S43). Let us begin with (& ,, (¢)) which, after inserting Eq. (S42), becomes

) = @)+ 2 [ atsimfon - ) Gia + (72) [N [ i)
X sin [wk (t — ’7'2)] <§7th(7—1)i'th(7—2)>s . (860)

In analogy, concerning (i‘ith(t» we have

(B (0) = €0) + 22 [t cosln (0~ )] G0 (0), +(mk) [ an [ dncostia e - m)
x cos [wy, (T — 72)] (Een (71)Ben(72))s - (S61)

After inserting Egs. (S60) and (S61), Eq. (S57) decomposes as

(Y Oy = 167 + 17 () + 17 @), (562)
where
1§ = Smid€0) + g (E0) (563)
L7 () = e / dt' {cos . (¢ — )] (€ () (¢)s + eop sin [ (¢ — )] (Ex(®)Fm ()5} (S64)
and
1) = - / dry / dry cos [y (71— 7)] (Een(71)En (7)) - (65)

Substituting Eq. (S43) in Eq. (S63) and keeping in mind the initial conditions (S45) we get
7k _ W Buw,
0o = ? coth T s (866)

which is independent of ¢ as one should expect being independent of c¢;. To evaluate I fk)(t) in Eq (S64) we need

(€x ()& (t'))s, which can be obtained recalling Eq. (15) in the main text and the correlator in Eq. (S50). Doing so
one gets

(€8 (t))s = s—— coth (52’“) i de(t —7) cos [wk(t — )] . (S67)

2mpwg m

Note that to obtain (£ (t)2wm('))s one simply needs to take the derivative of Eq. (S67) with respect to ¢. Inserting
these quantities into Eq. (S64) we obtain

2 B 2wyt 1 — e_()‘j+iwk)t 1 _ e—(Aj—iwk)t
1 Cth( k)ZXJ 2 - 5 t1 — — ! —5 . (S68)
Mk J + Wi ()‘j + Zwk) ()\] — 'ka)

Note here the presence of a secular term, which in a minute we will show to perfectly cancel out for ¢ — oo with

another secular term appearing in I, (k) (t). As for this last term, it is easy to evaluate inserting Eq. (S53) for the
correlator (Zyn(71)ZTen(72))s. After a blt of algebra we get
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—i(w—wg)t _ 1 —Xj—twg)t _ 1
0= [ ren(F) mron—m | R LA
2mk m? 2 ) (N+iw) (A —iw) W — wg Aj — iwy
i(w—wg)t _ 1 =X\ tiwg)t _
x [e +iS : ] (S69)
W — W A+ iwg

To summarize, <ﬁék)(t)> is given by the sum of the terms in Eq. (S59), (S66), (S68) and (S69).
To close this Section let us show that for ¢ — oo a secular term emerges in 12(1@) (t) which exactly cancels out the

secular term in Il(k) (t). To extract these terms we consider limy ;o I {kg (t), the sum of them should cancel out. We
have '

2
0 __CkWE B Xj
A L () = 2mmy, coth ( 2 ) ; A twp (870)
Notice that
zwt s — 1
= [ e = 0= ). (571)
and that Y(A = —iw) turns out to be the Fourier transform of the retarded response function x,(t) = 6(t)x(¢):
Xr(w) = X(A = —iw) — see Eq. (14) in the main text. Therefore, Eq. (S70) becomes
2
)y Ck Bwrk\
Jim 7900 = - .ot (225 ) (). (572)

where XV (wy) denotes the imaginary part of x;(wy). Consider now

- (k) dw Bw J(w) 2sin [(w — wg) t]
lim I = — coth [ ==
2 (t) 2m,, m2 ZX[XJ / 2 cot ( 2 ) (A +iw) (A —iw) W — Wk
e—i(w w)t ez(w wk)t
A+ iwg + /\j — iwk] } ’ (873)

and introduce the auxiliary variable = (w — wy)t and let ¢ — oo in the integral of the above expression. The only
surviving term reads

o 1 Buwr Xi X
lim £7(6) = <5 coth J I S74
tiglo 2 ( ) ka m2 2 <Wk) ; )\l + iwk /\j — iwk ( )
Exploiting Eq. (S71) we rewrite Eq. (S74) as
i J(wr)
lim (1) = — % coth | 2% (W)X (—wi)
Jim (1) = 5 coth (=7 ) = X ()X (—wk) (S75)
From the properties of x,(w) and J(w) it is known that [2]
J(w) . -
2O 3P = 3w (576)

Substituting this result in Eq. (S75) and inspecting Eq. (S72) one can finally recognize that
Jim [jf’“)(t) + Iék)(t)} ~0. (S77)
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