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Abstract
We introduce a cyclic quantum battery QB model, based on an interacting bipartite system, weakly
coupled to a thermal bath. The working cycle of the battery consists of four strokes: system
thermalization, disconnection of subsystems, ergotropy extraction, and reconnection. The thermal
bath acts as a charger in the thermalization stroke, while ergotropy extraction is possible because
the ensuing thermal state is no longer passive after the disconnection stroke. Focusing on the case
of two interacting qubits, we show that phase coherence, in the presence of non-trivial correlations
between the qubits, can be exploited to reach working regimes with efficiency higher than 50%
while providing finite ergotropy. Our protocol is illustrated through a simple and feasible circuit
model of a cyclic superconducting QB. Furthermore, we simulate the considered cycle on
superconducting IBM quantum machines. The good agreement between the theoretical and
simulated results strongly suggests that our scheme for cyclic QBs can be successfully realized in
superconducting quantum hardware.

1. Introduction

Phase coherence and entanglement can be harnessed to provide powerful resources to boost the performance
of quantum devices in comparison with their classical counterparts. Indeed, devices that rely on these
phenomena can achieve a substantial advantage over classical machines in a wide range of technological
application including secure data exchange [1, 2], computation [3–7], and simulation of the behavior of
complex systems under controlled conditions [8, 9].

Turning specifically to power generation, the major challenges of nowadays technology concern the
efficient conversion, storage and transport of energy. In this direction, batteries are clearly a promising
solution [10]. However, despite undeniable advantages such as, e.g. high energy density, they suffer from
intrinsic limitations like leakage and deteriorating state of health. For this reason, to overcome the current
limitations new solutions still based on the principles of electrochemistry are actively explored, but another
approach considers quantum mechanics as a new paradigm for energy harvesting, storage, and transfer.
Interestingly, it has gained momentum in the recent years, albeit from a very fundamental and speculative
standpoint. Studies retracing what was done for computation, with due distinctions, in the energetic case,
paved the way a decade ago to the new and rapidly developing field of quantum batteries (QBs) – see [11–21]
and references therein.

A first step towards possible experimental implementation of QBs was done by Ferraro et al [22], who
proposed a scheme for a solid-state QB composed of a collection of two-level systems (TLSs) embedded in a
resonant cavity, playing the role of quantum charger. This model has sparked interest in feasible models of
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QBs. Since then, various proposals of implementations on different platforms have appeared, including
one-dimensional spin-chains [23–27], strongly interacting fermionic systems [28–30], and
micromasers [31–35]. To date, there are very few actual realizations of QB prototypes; these are based on an
organic microcavity [36], a nuclear spin-systems [37], and a superconducting qutrit [38–40].

The theoretical and experimental works cited above mainly considered the energy stored in the QB and
the associated power, namely the energy divided by the charging time [41]. Despite their relevance for the
advancement of the subject, they lack a more complete thermodynamic description of the operating regimes
of these devices. To make progress, an interesting strategy consists in considering the operation of the QB as a
thermodynamic cycle [42, 43]. There, the QB coupled to its charger is first typically initialized in a thermal
state. Then the QB is disconnected from the charger (involving some energy cost). During the next step, the
maximum amount of energy that can be extracted (known as ergotropy) is taken out from the QB through
unitary operations. Note that energy extraction in this configuration is guaranteed by the fact that a
thermalized state for the whole system (QB+charger) is not, in general, a passive thermal state for the QB
only. In the final stage of the cycle, the QB and the charger are connected again (involving an additional
energy cost) and the whole system is finally reinitialized, ready to perform a new cycle. Within this picture,
the efficiency of the QB for each cycle can be defined as the ergotropy divided by the energy spent to carry
out the connection/disconnection operations. In the original proposals [42, 43] the charger was assumed as a
large system playing also the role of thermal bath (reservoir). This can represent an issue in view of possible
implementations of the protocols, since it is not always possible in practice to connect/disconnect a quantum
system from its environment at will. In this regard, it has been recently shown that locally extracting work
from a system in the presence of Hamiltonian couplings, e.g. with an environment, can deliver higher net
work with respect to analogous protocols in which the interaction is switched off [44–47].

Our work proposes a new thermodynamic cycle in which an environment is constantly weakly coupled
with the QB, but with the assumption that the operations are carried out on timescales shorter than those of
thermalization as well as relaxation and dephasing of the QB. This ensures that the only role played by the
bath is to reinitialize the system to the same thermal state at the end of each cycle. Moreover, as QB we
consider a bipartite quantum system (specifically two coupled TLSs). In this setup it is possible to extract
energy by means of local unitary operations on one or both TLSs separately or globally acting on them. We
will show that, even if the ergotropy is larger in the latter case, the overall efficiency of the cycle can be higher
acting with local unitary operations on the two TLSs, provided the same ergotropy. Furthermore, we will
show that there are parameter regions (i.e. low temperature and large enough TLS–TLS coupling strength)
where the local energy extraction can outperform the global one, in terms of a single trade-off parameter
encompassing both the amount of extracted work and the efficiency of the thermodynamic cycle. This
enhancement takes advantage of phase coherence in the presence of non-trivial correlations between the two
TLSs. Since local unitary operations are typically easier to implement than global ones, this theoretical result
opens interesting perspectives for the realization of cyclic QBs. Note that here and in the following we use the
adjective ‘local’ to refer to the extractable work from non-interacting subsystems (condition achieved here
after quenching off their interaction) as opposed to the local ergotropy intended as the extractable work from
a system alone when interacting with an environment [44].

Our study not only offers new theoretical insights into the thermodynamics of a cyclic QB, but also
presents a solid-state experimental proposal and a proof-of-principle simulation by means of real quantum
hardware. Indeed, on the one hand, we present a feasible scheme of a superconducting QB that can
implement the proposed cycle, and we also provide typical experimental values for the circuit elements.
Here, the two TLSs composing the QB are charge qubits coupled by means of an additional superconducting
circuit [48] which allows for externally tuning the interaction. The use of superconducting circuits represents
a major advantage, as they are nowadays a well-established solid-state platform [49, 50] which has already
proved its versatility in various contexts, with applications ranging from quantum information processing
and computing [51] to sensing [52–54], and in the context of hybrid quantum circuits for quantum
technologies [55]. On the other hand, we simulate the considered cycle on superconducting IBM quantum
machines. Here, the most critical point is the realization of the initial thermal state for the system, since only
unitary operations and measurements are available to end users on quantum computers. This problem has
been overcome by using the thermofield-double-state technique, i.e. by considering proper unitary
operations acting on an enlarged Hilbert space and tracing then out the auxiliary degrees of
freedom [56–59]. The good agreement between the ideal and the simulated results, despite the inherent
errors in real quantum devices, strengthens the idea that our model of a cyclic QB can be successfully
implemented in current solid-state experimental platforms.

The paper is organized as follows. In section 2 we discuss the basic aspects of the energy extraction from a
bipartite system. Section 3 is devoted to the description of the thermodynamic cycle applied to the QB. In
section 4 we introduce a model based on coupled superconducting qubits as an example of an experimentally
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feasible setup for the considered cyclic QB. Section 5 is devoted to the numerical results concerning the
ergotropy and the efficiency of the the cycle, which are compared with those obtained from the simulation
carried out on IBM quantum machines. In section 6, we present our main conclusions and outlooks. Details
of the calculations and side remarks are deferred to various Appendices.

2. Basics of ergotropy extraction

2.1. Ergotropy and passive states
Let ϱ=

∑d
k=1λ

↓
k |λ

↓
k ⟩⟨λ

↓
k | be the density matrix describing the state of a finite d-dimensional quantum

system with eigenvalues sorted in descending order, λ↓
k ⩾ λ↓

k+1, and let H=
∑d

k=1 ϵ
↑
k |ϵ

↑
k ⟩⟨ϵ

↑
k | be its

Hamiltonian with eigenvalues sorted in ascending order, ϵ↑k ⩽ ϵ↑k+1. Then, the average energy of this state can
be decomposed as

E(ϱ) = Tr [Hϱ] = E (ϱ)+ E(π) , (1)

where E(ϱ) is the ergotropy of ϱ, i.e. the maximum amount of work that can be extracted via cyclic unitaries
[60, 61]. A cyclic unitary is generated by a time-dependent Hamiltonian which coincides at the initial and
final times. The energy E(π) = Tr[Hπ], not extractable through such unitaries, is associated to the passive
state π of ϱ, which is unitarily related to the latter via

π = U
(
θ⃗
)
ϱU†

(
θ⃗
)
=

d∑
k=1

λ↓
k |ϵ

↑
k ⟩⟨ϵ

↑
k |, (2)

with

U
(
θ⃗
)
=

d∑
k=1

eiθk |ϵ↑k ⟩⟨λ
↓
k |. (3)

The phases θ⃗ = {θk} reflect the arbitrariness in the normalization of the eigenstates, and only d− 1 of them
are relevant (factoring out a global phase) [42, 62]. Such phases are usually neglected because irrelevant for
both the passive state (2) and the ergotropy

E (ϱ) = E(ϱ)− E(π) =
d∑

j,k=1

λ↓
j ϵ

↑
k

(
|⟨λ↓

j |ϵ
↑
k ⟩|

2 − δjk

)
, (4)

which is extracted from the system by the global cyclic unitary (3). The ergotropy is non-negative, E(ϱ)⩾ 0,
and zero if and only if ϱ is passive, E(π) = 0. Therefore, states with vanishing ergotropy, E = 0, are referred
to as passive states [63, 64], and those with finite ergotropy, E > 0, as active states. The class of passive states
comprises all states that commute with the system Hamiltonian and have no population inversions [61, 63,
64]. Therefore, thermal—or, equivalently, Gibbs—states of the form

τβ =
e−βH

Tr [e−βH]
=

d∑
k=1

e−βε↑k

Tr [e−βH]
|ϵ↑k ⟩⟨ϵ

↑
k |, (5)

with β = T−1 being the inverse temperature (throughout the paper we consider units in which kB = h̄= 1),
naturally belong to the class of passive states. Within the latter class, thermal states maximize the entropy for
a given energy and minimize the energy for a given entropy, thus they are the most stable6. Remarkably, work
can be extracted from several independent copies of passive states by acting on them collectively, except for
thermal states [11, 66]. For this reason, a state ϱ, either thermal state or ground state (thermal state at T= 0),
is referred to as a completely passive state, indicating that ϱ⊗n is passive for all n= 1,2, . . . with respect to the
Hamiltonian H(n) =

∑n
k=1Hk, with Hk the kth independent copy of the Hamiltonian H [63, 64].

6 For completeness, we mention that states that maximize the energy for a given entropy and also minimize the entropy for a given energy
can also be identified [65].

3



Quantum Sci. Technol. 10 (2025) 015064 L Razzoli et al

2.2. Extracting ergotropy from the Gibbs state of a bipartite interacting system
Work can be extracted by global cyclic unitaries acting on a collection of multiple copies of a passive state ϱ,
provided it is not thermal. Accordingly, the resulting ergotropy is in general a non-extensive quantity,
E(ϱ⊗n)⩾ nE(ϱ), except when the passive state π of ϱ is thermal, in which case E(ϱ⊗n) = nE(ϱ) is
extensive [66].

In this work, in a sense, we adopt a complementary approach: since global cyclic unitaries cannot extract
work from the thermal state of a multipartite interacting system, we show that local cyclic unitaries, acting
separately on one of the subsystems after disconnecting the latter, can. This follows from the general
observation that the reduced state of a subsystem of a globally thermal system can be active with respect to its
local Hamiltonian, and hence it may contain extractable work when disconnected from the rest of the
system. We stress that the presence of interactions is a necessary condition for work extraction: If the
multipartite system comprises n non-interacting subsystems, then H=

∑n
k=1Hk, with Hk the Hamiltonian

of the kth subsystem, and the thermal state of the system is just the product state of the thermal states of the

subsystems,
⊗n

k=1 τ
(k)
β . So no local cyclic unitary process can extract work from the subsystems, each of

which being in a thermal (passive) state.
For clarity, we restrict the discussion to a bipartite interacting system of the form

H(t) =HA +HB + γ (t)Hint ≡H0 + γ (t)Hint, (6)

where Hk denotes the local Hamiltonian of the kth subsystem—k= A,B—and Hint the interaction between
the two. The coupling strength γ(t) of the interaction is externally modulated in time and, for our purposes,
we model it as a Heaviside step function, γ(t) = γ0Θ(t ′ − t) with γ0 ̸= 0 a dimensionless parameter so that
the interaction is finite and constant before t′ and zero after t′, modeling an instantaneous switching off
(disconnection of the two subsystems).

The interacting bipartite system is initialized in the thermal state τβ (5) at a time t0 < t ′. The interaction
is then switched off at time t′, γ(t ′) = 0, instantaneously disconnecting the two subsystems. After this
operation, provided that the reduced states ρA(B) = TrB(A)(τβ) are not passive with respect to their local
HamiltonianHA(B), it is possible to extract ergotropy from the subsystems. For each subsystem, we define the

local cyclic unitary Uk(θ⃗k) (3) with k= A,B and introduce

Ul

(
θ⃗A, θ⃗B

)
= UA

(
θ⃗A

)
⊗UB

(
θ⃗B

)
. (7)

The maximum work that can be extracted by a unitary of the form in equation (7) is referred to as local
ergotropy [67–69] and reads

E(l) ≡ Tr
[
(HA +HB)

(
ϱ−πl

(
θ⃗A, θ⃗B

))]
= Tr [HA (ρA −πA)]+Tr [HB (ρB −πB)]

= EA + EB ⩾ 0, (8)

where

πl

(
θ⃗A, θ⃗B

)
= Ul

(
θ⃗A, θ⃗B

)
τβU†

l

(
θ⃗A, θ⃗B

)
. (9)

Denoting by E(g) the global ergotropy extracted by a global unitary Ug acting on the overall system, the
inequality E(l) ⩽ E(g) holds, because the global unitary can extract work also from correlations, while the
local unitaries only from the subsystems.

A few remarks are in order. Although the reduced state of the kth subsystem is passive with respect to Hk,
πA(B) = TrB(A)[πl(θ⃗A, θ⃗B)], the state (9) is not the product state πl ̸= πA ⊗πB, in general, because correlations

are preserved by local unitary transformations. Moreover, the state πl(θ⃗A, θ⃗B) is not necessarily passive with
respect to HA +HB, because ergotropy has been extracted locally, not globally. Indeed, the passive state of τβ
with respect toHA +HB is πg = UgτβU†

g . Furthermore, in contrast to global cyclic unitaries, for which phases
are irrelevant for both ergotropy and final passive state, when ergotropy is extracted from subsystems, the
coherences of the global state (9) are crucially affected by such phases. To be more precise, as will be clearer in
the following, the ergotropy extracted from each subsystem does not depend on the phases, and neither does
their sum. However, if coherences and correlations between subsystems are not erased and further operations
are performed on the system, then the result of the latter operations will depend, in general, on those phases.

Finally, we point out that the problem of optimal local work extraction from interacting subsystems has
been recently addressed in [47], giving rise to the concept of parallel ergotropy. The latter is non-negative
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and upper bounded by the global ergotropy by construction. Therefore, since the global ergotropy vanishes
for a thermal state, we conclude that switching off the interaction between subsystems is a necessary
condition to extract useful work from them when they are prepared in a globally thermal state.

3. Thermodynamic cycle of a bipartite QB

Given an interacting bipartite QB in a thermal state, weakly coupled with an external thermal reservoir,
disconnecting the subsystems within the QB is what makes work extractable by cyclic unitary processes. In
our scheme, the constant presence of a weakly coupled reservoir has a twofold motivation: First, it allows us
to focus on the system Hamiltonian as the leading term, thus neglecting the explicit contribution of the
reservoir during the connection/disconnection and work extraction strokes; Second, it makes unnecessary
fully isolating the battery from the external environment, while still allowing for recharging by
thermalization. Therefore, this assumption appears as well-suited to describe a realistic scenario.

We consider a bipartite system with Hamiltonian (6), where the external drive for the interaction,
γ(t) ∈ {0,γ0 ̸= 0}, is a piecewise constant function which can be instantaneously switched off (0) or on (γ0).
The two subsystems forming the bipartite QB are said to be (dis)connected depending on the the presence
(absence) of interaction between them, γ(t) = γ0 (γ(t) = 0). In the following, we denote by ϱ the state of the
bipartite system and by ρk the reduced state of the kth subsystem, k= A,B. We assume to operate the
working cycle while keeping the QB weakly coupled to a thermal bath at inverse temperature β. In addition,
we will assume all the four strokes of the cycle, except for the thermalization (last one), as instantaneous.
This assumption is justified for weak system-reservoir coupling and fast strokes (see below for concrete
examples, in particular in the framework of superconducting quantum hardware).

Denoting by E(p) the maximum work (ergotropy) extracted by the generic protocol p, we introduce the
following protocols:

Protocol 1 (p= s). The resource consists of a single subsystem, say A. The extractable work E(s) = EA is the
ergotropy of the subsystem A. The process which accomplishes this task is the unitary

Us

(
θ⃗A

)
= UA

(
θ⃗A

)
⊗ IB. (10)

The main reason for processing just one subsystem is the interest in managing energy locally7.

Protocol 2 (p= l). The resource consists of both subsystems, A and B, separately. The extractable work E(l) =
EA + EB is the local ergotropy (8). The process which accomplishes this task is the local unitary Ul(θ⃗A, θ⃗B) in
equation (7).

Protocol 3 (p= g). The resource consists of both subsystems, A and B, including correlations. The extract-
able work E(g) is the global ergotropy (4). The process which accomplishes this task is the global unitary Ug

defined as in equation (3). Note that this is possible because τβ is completely passive with respect to the
Hamiltonian (6) with γ(t) = γ0, but can be active with respect toH0 =HA +HB, which is the Hamiltonian of
the bipartite system after disconnection. In this case, no arbitrary phases are included in the unitary, because
irrelevant.

We now turn to the description of the four strokes of the working cycle of the cyclic QB, whose
performance will depend on the protocol adopted to extract ergotropy. The cycle, e.g. for protocol 2, is
sketched in figure 1. Starting from the bipartite system in a Gibbs state ϱI = τβ (5) with H=H0 + γ0Hint, the
following strokes are performed.

(i→ii) Disconnection of subsystems.—It is accomplished by switching off the interaction. After
disconnection, the system is in the state ϱII = ϱI, since this instantaneous stroke leaves the state unchanged.
Therefore, the energy cost for this stroke reads

Ed =−γ0Tr [HintϱI] , (11)

and is independent of the protocol considered for extracting work.
(ii→iii) Extraction of ergotropy.—It is accomplished by performing a cyclic unitary operation Up on the

state ϱII, leading to ϱ
(p)
III (θ) = Up(θ)ϱIIU†

p (θ), where p= s, l,g refers to protocols (i,ii,iii), respectively, and, for

7 We also mention as a possible reason the case in which the reduced state of subsystem B is already passive with respect to HB,
TrA[τβ ] = πB. This happens, e.g. for two interacting qubits with HamiltonianH=ΩAσz

A +ΩBσz
B + γ0σz

A ⊗σz
B—whereΩB = 2ΩA > 0,

γ0 = 1.5ΩA, and β = 2/ΩA—prepared in the thermal state τβ . The reduced state ρA(B) = TrB(A)[τβ ] is active (passive) with respect to
the local Hamiltonian HA(B).
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Figure 1.Working cycle of the bipartite cyclic QB in which both subsystems are the resource for extracting work (protocol 2) The
bipartite system is initially (i) prepared in a Gibbs state τβ (5) at inverse temperature β. (i→ii) Disconnection of subsystems
(switching off of Hint); (ii→iii) local ergotropy extraction from each subsystem (pictorially represented as an empty battery since

no further work can be extracted from it by a cyclic unitary) via the unitary Ul(θ⃗A, θ⃗B) (7); (iii→iv) connection of subsystems
(switching on of Hint); (iv→i) thermalization to restore the initial Gibbs state and restart the cycle. Throughout the whole cycle,
the bipartite system is weakly coupled to a thermal reservoir at inverse temperature β (pictorially represented by the yellow
shaded area).

conciseness, θ denotes the possible arbitrary phases, if any. The maximum work thus extracted reads

E(p) = Tr
[
(HA +HB)

(
ϱII − ϱ

(p)
III (θ)

)]
, (12)

and does not depend on θ. The amount of extracted work and the associated unitary, hence also the final
state, depend on the chosen protocol: (i) E(s) = EA by Us(θ⃗A) in equation (10); (ii) E(l) by Ul(θ⃗A, θ⃗B) in

equation (7); (iii) E(g) by Ug in equation (3). We point out that the final state ϱ(p=s,l)
III (θ) explicitly depends on

the arbitrary phases, unlike the global passive state ϱ(g)III (2). The possible presence of arbitrary phases will
affect the result of the next stroke.

(iii→iv) Connection of subsystems.—It is accomplished by switching on the interaction. After connection,

the system is in the state ϱ(p)IV (θ) = ϱ
(p)
III (θ), since this instantaneous stroke leaves the state unchanged.

Therefore, the energy cost for this stroke reads

E(p)c (θ) = γ0Tr
[
Hintϱ

(p)
III (θ)

]
. (13)

(iv→i) Thermalization.—The bipartite system is always in contact with an external thermal reservoir
(weak coupling) throughout the whole cycle. During this last stroke, the system is left to naturally thermalize.
This restores the initial thermal state at a vanishing energetic cost. In other words, this stroke can be intended
as the process of recharging of the battery.

After characterizing this working cycle energetics, we define its efficiency as the ratio of the energy
delivered by the battery to the energy cost to run the cycle [42, 43]

η(p) (θ) =
E(p)

Ed + E(p)c (θ)
, (14)

with 0⩽ η(p)(θ)⩽ 1 and p= s, l,g, denoting the protocol. These bounds are explained as follows. The net

result of the strokes (i→ . . .→iv) is a unitary evolution of the bipartite system, ϱI → ϱ
(p)
IV (θ), and an

associated cyclic change of the total Hamiltonian, H(I) =H(IV) =H0 + γ0Hint and H(II) =H(III) =H0. Hence,

the initial passive state can only increase its average energy, Tr
[
H(ϱ(p)IV (θ)− ϱI)

]
⩾ 0, and this increase must

be equal to the non-negative work Ed −E(p) + E(p)c (θ)⩾ 0 performed on the system during the strokes
(i→ . . .→iv). The bounds on the efficiency follow accordingly, being E(p) ⩾ 0 by definition (ergotropies are

6
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non-negative quantities), and Ed + E(p)c (θ)⩾ E(p). We also note that our scheme differs from the one
proposed in [42, 43], in which connection/disconnection of a quantum system from its environment was
requested. As a final remark here, we point out that protocols 1–3 are standard approaches to work
extraction if compared, e.g. to the possibility of enhancing work extraction by feedback mechanisms [62, 70,
71]. Our purpose is to compare their different performances within a thermodynamic cycle for a QB—i.e.
not restricting the analysis to work extraction alone—without specifically inspecting the contribution to
ergotropy arising from quantum coherence or correlations [72–74]. However, the presence of the latter will
be apparent in the fact that the efficiency depends on the arbitrary phases of the unitary under which work is
extracted, η(p)(θ), as well as in that E(l) ⩽ E(g), protocol 3 having full access to coherences and correlations of
the bipartite system.

In the following, we theoretically describe a system based on superconducting circuits where the working
cycle discussed above can be implemented in practice. Starting from that model, we compare the
performance of the proposed model of cyclic QB depending on the adopted protocols 1–3 described above.
After studying the ideal scenario, we simulate protocol 1—p= s, ergotropy extracted from a single
subsystem—on an IBM quantum computer based on a superconducting qubit technology.

4. Minimal model of cyclic bipartite QB

In this section, we introduce and discuss a minimal example of the proposed model: A two-qubit cyclic QB.
First, for illustrative purposes, we consider a simple feasible setup based on dc superconducting quantum
interference device (SQUID) charge qubits which, under proper conditions, implements an effective model
of two qubits with externally tunable interaction. Then, we elaborate on the thermodynamic cycle for the QB
based on this system.

4.1. Two-interacting-qubit model based on dc-SQUIDs
We consider a setup based on three symmetrical dc-SQUIDs (figure 2), originally proposed in [48] as
quantum storage unit and later as a possible experimental setup for a Maxwell’s demon-assisted quantum
heat engine [75]. The Hamiltonian of the system comprises charging (Coulomb) and Josephson energy
contribution. When the Josephson energy is much weaker than the charging energy the evolution is
approximately confined into the two-dimensional space spanned by the eigenstates of the charge operator,{
|0⟩k , |1⟩k

}
of the kth Cooper pair box (k= 1,2,3). Under the latter condition and the constraint

φ1 +φ2 +φ3 = 0 on the phase differences φk in the kth SQUID, it is possible to derive an effective
(pseudo)-spin Hamiltonian of the form

H=
2∑

k=1

Ωkσ
z
k + E3σ

z
1σ

z
2 −

2∑
k=1

EJ,k cos

(
π
Φ x,k

Φ0

)
σx
k

− EJ,3 cos

(
π
Φ x,3

Φ 0

)(
σx
1σ

x
2 −σ

y
1σ

y
2

)
. (15)

In this setup, the bipartite QB comprises the first two SQUIDs, while the third one plays the role of a tunable
quantum coupler between them [76–78]. In the Hamiltonian (15) EJ,k and Φ x,k are, respectively, the
Josephson energy and the magnetic flux in the kth SQUID, while Φ 0 = h/2e is the superconducting flux
quantum, with h the Planck constant and e the elementary charge. Moreover, Ωk = EC,k

(
ng,k − 1/2

)
+2E3

(
ng,j − 1/2

)
, with j ̸= k, where ng,k = Cg,kVg,k/2e, with Vg,k and Cg,k being respectively the gate voltage

and capacitance in the kth Cooper pair box. The other coefficients are EC,k = 2e2CΣ,j/
(
CΣ,1CΣ,2 −C2

J,3

)
,

with j ̸= k, and E3 = e2CJ,3/2
(
CΣ,1CΣ,2 −C2

J,3

)
, with CΣ,k = CC,k +CC,3 +Cg,k. In equation (15) the Pauli

matrices are represented in the bases {|0⟩k, |1⟩k} spanned by the eigenstates of the number operator of
Cooper pair on the kth box with zero and one Cooper pair, respectively, and read σx

k = |1⟩kk⟨0|+ |0⟩kk⟨1|,
σ
y
k = i(|1⟩kk⟨0| − |0⟩kk⟨1|) and σz

k = |0⟩kk⟨0| − |1⟩kk⟨1|.
One of the key advantages of the proposed basic scheme (figure 2), which relies on dc-SQUID charge

qubits [79, 80] designed to operate in the regime kBT≪ EC [81] and EC ≫ EJ, is its experimental feasibility.
Therefore, we now examine experimentally feasible parameters considering comparable platforms and
setups. Suitable values of the junction capacitance are in the range of femtofarad and below, CC,k ⩽ 1 fF,
while the gate capacitances Cg,k can be even smaller [82] (e.g. Cg,k ∼ 0.6 aF and CC,k ∼ 620 aF [83]). The
dimensionless gate charge usually takes values ng,k ∼ 0− 2 [84, 85]. Charging energies EC,k/h∼ 10− 100
GHz [83] and Josephson energies EJ,k/h∼ 1− 10 GHz fulfilling the condition EC ≫ EJ are consistent with
experimental setups [83]. Regarding the dc-SQUID geometry, an effective area can be estimated in A≈ 4.9
µm2 which, provided a magnetic field Bx ∼ 0.1− 1 mT, results in a magnetic flux threading the SQUID loop
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Figure 2. Schematic circuit of the proposed Josephson QB based on three dc-SQUIDs pierced by externally tunable magnetic
fluxes. Josephson junctions are denoted by a cross and the black circles, labelled by n1 and n2, correspond to the first and second
Cooper pair box, respectively. The three dc-SQUIDs operate under the qubit approximation. The qubit 3, used as a quantum
coupler, mediates an effective interaction between qubits 1 and 2. For the present setup to be used as a cyclic quantum battery we
set CC,3 = 0, so that E3 = 0 in equation (15). Removing the flux-independent interaction between qubits 1 and 2 allows them to
be fully disconnected by the externally-driven magnetic flux.

Φx/Φ0 = BxA/Φ0 ∼ 0.237− 2.37, with Φ0 = 2.067 fWb [86]. Assuming ng,k = 18 and Cg,k = 2 aF, we can
estimate the gate voltage Vg,k = 2eng,k/Cg,k ≈ 160 mV. Finally, a typical temperature is T∼ 30mK
(kBT/h∼ 0.625GHz) [80].

4.2. Cyclic Josephson QB (JQB)
4.2.1. Hamiltonian
Based on the dc SQUIDs setup described in section 4.1, we introduce a JQB with Hamiltonian

H=Ω
2∑

k=1

σz
k − EJ cos

(
π
Φ x

Φ0

)[ 2∑
k=1

σx
k +
(
σx
1σ

x
2 −σ

y
1σ

y
2

)]
, (16)

obtained from equation (15) under the following assumptions: E3 = 0; Φx,k =Φx and EJ,k = EJ for k= 1,2,3;
EC,k = EC and ng,k = ng, from which Ωk =Ω= EC

(
ng − 1/2

)
, for k= 1,2. In addition, the two-level

approximation requires EC ≫ EJ. The assumption of equal magnetic fluxes Φx is motivated by the will of
reducing the number of free parameters, together with the fact that, considering SQUIDs with the same loop
geometry, it is experimentally easier to have an approximately homogeneous magnetic field piercing the
three Cooper pair boxes, instead of strong inhomogeneities at nanoscale [87]. Letting Φx =Φx(t), the
magnetic flux can be regarded to as the external driving which modulates the interaction σx

1σ
x
2 −σ

y
1σ

y
2—in

particular, switches it on or off—but also the single-qubit contributions∝ σx
k , a side effect specific of the

model from which we derived the Hamiltonian. Switching on/off the interaction, however, in general does
not suffice to fully disconnect the two qubits, because of the residual interaction∝ σz

1σ
z
2, independent of the

magnetic flux (see equation (15)). The assumption E3 = 0, accomplished by setting CC,3 = 0, allows us to
discard the interaction∝ σz

1σ
z
2 fully disconnecting qubits through the magnetic flux.

Considering Ω as the reference scale for the energies, we can further simplify the Hamiltonian into

H(t) = σz
A +σz

B − γ (t)
(
σx
A +σx

B +σx
Aσ

x
B −σ

y
Aσ

y
B

)
≡H0 + γ (t)Hint, (17)

where, for later convenience, we have identified the bare Hamiltonian, H0, and the driven one, Hint with
γ(t) ∈ {0,γ0 ̸= 0}. Notice that Hint includes single-qubit terms, in addition to the two-qubit interaction.
(Dis)connecting the two qubits is related to switching on (off) Hint. In the dc-SQUIDs system, after
identifying γ(t)≡ EJ cos(πΦ x(t)/Φ0)/Ω, this is accomplished by tuning the magnetic flux to
Φ(off)

x = (m+ 1/2)Φ0, withm ∈ Z, for full disconnection (γ(t) = 0) and to any other value, Φ(on)
x ̸=Φ(off)

x ,
for a connection at arbitrary coupling strength (γ(t) = γ0 ≡ EJ cos(πΦ (on)

x /Φ0)/Ω). Therefore, for a given
configuration of the setup, γ0 can be externally tuned through the magnetic flux without changing the circuit

8 For later convenience, we require ng,k = ng > 1/2 to ensureΩk =Ω> 0 in equation (16).
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elements and can take negative values depending on the value of the cosine function. Its possible values are

limited to |γ0| ≪
(
ng − 1/2

)−1
due to the condition EC ≫ EJ.

4.2.2. Energetics of the working cycle of the JQB
We study here the cycle described in section 3 for the JQB, for all the three protocols p= s, l,g for extracting
work. We recall that the external driving of our model, ultimately the magnetic flux, not only affects the
interaction between qubits but also the local Hamiltonian of each qubit. To simplify the notation, we denote
by ⟨O⟩ ≡ Tr[OϱI] the expectation value of the generic observable O on the initial Gibbs state ϱI = τβ and we
omit the⊗ symbol and identities when clear from the context. We also recall that the two-qubit state is
denoted by ϱ and the reduced state of the kth qubit by ρk, with k= A,B.

First, we discuss the extraction of ergotropy from one qubit, as it is the building block for the working
cycles with local unitaries. After the instantaneous disconnection, the local Hamiltonian of the kth qubit is
just Hk = σz

k. The reduced state of the qubit is ρA(B),II = TrB(A)[τβ ]. Notice that, since the two qubits are
identical and the thermal state τβ is symmetric under exchange of the two qubits (symmetry inherited from
the Hamiltonian (17)), the reduced states of the qubits are equal, ρk,II ≡ ρII. A qubit state can be represented
in the Bloch sphere as a point of coordinates (x,y,z), where a= Tr[σaρII] with a= x,y,z, and
r=
√
x2 + y2 + z2 (see appendix A for more details). To extract ergotropy from the battery, we apply the

unitary operation (see appendix B)

U(θ) =

(
eiθ cosα eiθ sinα

−e−iθ sinα e−iθ cosα

)
= eiθσzeiασy , (18)

where 0⩽ θ < π is an independent arbitrary phase and α= arctan[−(r+ z)/x], with r=
√
x2 + z2, is

determined by the qubit state. Notice that here we have explicitly taken into account that y= 0 due to the fact
that the Gibbs state, and so ρII, is a real density matrix. The passive state of the qubit with respect to σz, the
spectrum of the latter being non-degenerate, is unique ρIII = U(θ)ρIIU†(θ) = 1

2 (1− rσz), independent of θ,
and thermal—being it a TLS [61]—at an effective inverse temperature βeff = arctanh(r). A unitary
transformation preserves the purity of a state, thus both ρII and ρIII have the same r (see appendix A). From
this qubit, the ergotropy extracted by the unitary (18) is

E = z+ r= ⟨σz
A⟩+

√
⟨σx

A⟩2 + ⟨σz
A⟩2. (19)

Now, we analytically inspect the energetics of the strokes in the working cycle based on the extraction of
the ergotropy E(s) from the single qubit (protocol 1), of the local ergotropy E(l) from both the qubits
(protocol 2), and of the global ergotropy E(g) (protocol 3) from both the qubits, including correlations.
Given the thermal state τβ , we recall that work is extracted with respect to H0. Deferring all the details to
appendix C, here we quote the final results. For all three considered scenarios, the energy cost for
disconnection is

Ed = γ0
(
2⟨σx

A⟩+ ⟨σx
Aσ

x
B⟩− ⟨σy

Aσ
y
B⟩
)
. (20)

The work, instead, differs: E(s) = E (19) extracted by Us(θ) (10), and E(l) = 2E by Ul(θA,θB) (7), where the
single-qubit unitary is given in equation (18). The global ergotropy is extracted by Ug, as per definition (3),
and reads

E(g) = 2⟨σz
A⟩+

2

Z

(
e−βϵ↑1 − e−βϵ↑4

)
⩾ E(l), (21)

where Z= Tr[e−βH] =
∑4

k=1 e
−βϵ↑k is the partition function and ϵ↑1 and ϵ↑4 are, respectively, the lowest and

the highest energy level ofH (17) with γ(t) = γ0 (see appendix D for their analytical expression). The state at
the end of the stroke (ii→iii) clearly depends on the chosen protocol, and so does the energy cost for
connection

E(s)c (θ) =− γ0{⟨σx
A⟩+ cos(2θ) [cos(2α)(⟨σx

A⟩+ ⟨σx
Aσ

x
B⟩)

−⟨σy
Aσ

y
B⟩− sin(2α)(⟨σz

A⟩+ ⟨σz
Aσ

x
B⟩)]}, (22)

where θ is the arbitrary phase of the unitary (18) acting on the single qubit,

E(l)c (θ) =− γ0 cos(2θ)(cos
2 (2α)⟨σx

Aσ
x
B⟩− ⟨σy

Aσ
y
B⟩

+ sin2 (2α)⟨σz
Aσ

z
B⟩− sin(4α)⟨σx

Aσ
z
B⟩), (23)
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where θ ≡ θA + θB is the sum of the arbitrary phases θk of each local unitary Uk(θk) acting on the kth qubit,

and E(g)c ≡ 0. Note that in the l-JQB, although the local ergotropy is separately extracted from each qubit,
there is only one independent effective parameter.

As a result, the efficiency of the cycle η(p)(θ) = E(p)/[Ed + E(p)c (θ)], with p= s, l, takes distinct values only
for 0⩽ θ ⩽ π/2, and its extreme values are attained at θ = 0,π/2. The exact correspondence between
θ = 0,π/2 and the minimum or maximum value of the efficiency depends on the sign of the quantity within
brackets, multiplying cos(2θ) in (22) and (23). Instead, in the case of global extraction of ergotropy, the
efficiency reads η(g) = E(g)/Ed.

5. Results

In this section, we investigate the performance of the proposed JQB described by the Hamiltonian (17). First,
we discuss the ideal performance of the working cycle of the p-JQB, then we simulate the case of the s-JQB on
actual IBM superconducting quantum machines.

5.1. Ideal performance
The energetics of the working cycle of the p-JQB, operated under the protocol p for extracting work, is

summarized by the (E(p),Ed,E
(p)
c (θ)), which refers to the extracted work and the energy cost of

disconnection and connection, respectively. Here, we compare the performance of the following three
working protocols p= s, l,g introduced and described in section 3:

(i) s-JQB: (E(s) = E ,Ed,E(s)c (θ)), with extraction of ergotropy from a single qubit;

(ii) l-JQB: (E(l) = 2E ,Ed,E(l)c (θ)), with local extraction of ergotropy from both qubits;

(iii) g-JQB: (E(g),Ed,E
(g)
c = 0), with global extraction of ergotropy from both qubits, including correlations;

where E is the ergotropy (19) extracted from one qubit, E(g) is the global ergotropy (21), Ed—the energy of

disconnection (11)—is the same in all the three protocols, and E(s,l)c (θ) is the energy of connection of the
(s, l)-JQB, see equations (22)–(23).

The performance of the three JQBs described above is summarized in figure 3, where the extracted work
E(p) with corresponding efficiency of the cycle η(p)(θ) is shown varying γ0 at fixed temperature T= 0.5Ω
(upper panels) or varying T at fixed γ0 = 0.8 (lower panels). First, the efficiency of the (s, l)-JQB is
maximum for θ= 0, and minimum for θ = π/2 (panels (a)–(d)). Looking for the optimal trade-off (Pareto
front) between E(p) and η(p)(θ), i.e. the conditions (γ0,θ) under which we cannot further improve one
quantity without degrading the other, we conclude that the optimal performance is obtained for θ= 0 with
γ0 > 0. Second, E(l) = 2E(s) = 2E , trivially, but, remarkably, the local extraction of ergotropy from both
qubits also enhances the efficiency (panels (a)–(d)). Third, the most striking result is the presence of
parameter regions where, at parity of extracted work, the l-JQB is more efficient than the g-JQB (panels
(c)–(f)). A few remarks are in order to clarify this point. The protocols considered in this working cycle,
i.e. the unitaries in the stroke (ii→iii), aim at maximizing the work extractable by cyclic unitary processes
(ergotropy), not the efficiency of the cycle. Then, a constrained optimization of the efficiency is performed
with respect to the arbitrary phases of the unitary, if any. The constraint is that the unitary must extract
ergotropy and, for the g-JQB, phases are irrelevant. When the optimization target is the ergotropy, which is
the present case, clearly E(g) ⩾ E(l). Limited to the regime in which both the l- and the g-JQB extract the
same amount of work, there exist a set of parameters under which η(l) > η(g).

There is another point to stress in order to get an intuitive reason of why, provided the same extracted
work, the efficiency of the l-JQB can exceed that of the g-JQB9. One could naively expect η(g) ⩾ η(l)(θ),

because of E(g)c = 0. However, the fact is that E(l)c (θ) is not necessarily an energy cost, positive, because, as

shown in equation (23), the magnitude and sign of the latter depend on θ as E(l)c (θ)∝ cos(2θ). Whenever the
chosen parameter regions for the l- and g-JQB allow for the same ergotropy extraction and the total energy
cost for disconnection/connection in the l-JQB is lower than the energy cost of disconnection in the g-JQB,
we observe that η(l) > η(g) (panel (e) of figure 3) – see also equation (14).

Concerning the role of temperature at given γ0 = 0.8 (figures 3(b),(d) and (f)), we observe that the lower
the temperature, the higher the extracted work. The dependence of the efficiency on the T is weak or even
negligible in the s- and in the g-JQB, respectively, while it is more pronounced in the l-JQB. For the l-JQB,
higher (lower) values of ergotropy and efficiency are attained at lower (higher) T.

9 Note that, in general, at a given temperature the l-JQB provides the same ergotropy as that of the g-JQB for different values of γ0, which,
in turn, also results in different values of Ed (20).
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Figure 3. Performance of the p-JQB operated under different protocols p in terms of efficiency η(p) vs extracted work E(p): (a),
(b) s-JQB (single ergotropy, one qubit as a resource); (c), (d) l-JQB (local ergotropy, both qubits as a resource); and (e), (f) g-JQB
(global ergotropy, both qubits and correlations as a resource). (a), (c), (e) Parametric plot of η(p) vs E(p) for 0 ⩽ θ ⩽ π/2 and
−10 ⩽ γ0 ⩽ 10 at T= 0.5Ω. (b), (d), (f) Same as in (a), (c), (e) but for 0 ⩽ T ⩽ 10Ω at γ0 = 0.8. (a)–(d) Optimal tradeoff
between η and E (Pareto front) is obtained at θ= 0 with γ0 > 0. (e), (f) Results do not depend on arbitrary phases, since
ergotropy is extracted by a global cyclic unitary. In panels (c) and (d), as references, we have reported the results for the case in
which disconnection also erases correlations between the two qubits (dark gray dots). In panels (e) and (f), as references, we have
reported the best results achieved in panels (c) and (d) respectively (gray dots). As a benchmark for the ergotropy, we indicate
here that the energy-level spacing of the qubit is 2Ω—see appendix B. For sake of completeness, we have considered values of γ0

and of T in a range wider than the typical values admissible for the specific superconducting setup discussed in section 4.1.

Both the l-JQB and the g-JQB extract work from both the qubits, but the global unitary in the g-JQB has
also access to the correlations between qubits. This additional resource for ergotropy extraction results in
E(g) ≥ E(l). This concept is nicely captured by the notion of ergotropic gap,∆EG ≡ E(g) −E(l). This quantity
is always nonvanishing in the presence of quantum correlations [67–69]. Vice versa, instead, a nonzero
ergotropic gap does not necessarily imply the presence of quantum correlations. Restricting ourselves to the
entanglement of formation, we have explored how the latter depends on the parameters of the model,
showing the beneficial role of the coupling strength γ0 and the detrimental one of the temperature T when
they increase. In the s-JQB, ergotropy can be extracted also at high temperature, in the absence of
entanglement, and the behavior of the ergotropic gap is consistent with the expected one. For further details,
please refer to appendix E.

Focusing on the l-JQB, we can consider the case in which the instantaneous disconnection also erases the
correlations between the qubits, i.e. ϱII = ρA ⊗ ρB with ρA = TrA[τβ ] = ρB (because of the symmetry of τβ).
The energy cost of disconnection Ed = Tr[(HA +HB)ρA ⊗ ρB]−Tr[Hτβ ] turns out to be equal to
equation (20). By construction, the ergotropy is the same as E(l). After ergotropy extraction, the system is in
the state ϱIII =

1
4 (1− rσz

A)⊗ (1− rσz
B), which is diagonal in the computational basis, {|00⟩, |01⟩, |10⟩, |11⟩},

and so the energy cost of connection is zero (the proof is analogous to that of E(g)c in appendix C.2).

Therefore, the efficiency of this cycle reads η(l)uncorr = E(l)/Ed = η(l)(π/4), since E(l)c (π/4) = 0, see
equation (23). This result highlights the relevance of phase coherence in the presence of correlations in our
model. Indeed, as shown in figures 3(c) and (d), with a suitable choice of the angle θ the performance of the
correlated l-JQB can be consistently improved with respect to the uncorrelated case. The latter, instead,
cannot benefit from phase-coherence because once correlations are erased, the state after ergotropy
extraction is independent of the phases introduced by the unitary (3).

So far we have discussed the performance of the p-JQB by referring to the parametric plots in figure 3,
which are useful for identifying the optimal trade-off between efficiency and extracted work for each
protocol but are less suited for comparing the different protocols under the same working conditions, (γ0,T),
in which case E(g) ⩾ E(l). For such a comparison, we introduce the product of the efficiency, η(p)(θ), and the
extracted work, E(p), as a figure of merit encompassing both quantities in a single trade-off quantity. In terms
of the latter—that we call efficient extracted work, similarly to the efficient power in heat engines [88,
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Figure 4. Efficient extracted work η(p)E(p) (a) as a function of γ0 at T= 0.5Ω (see also figure 3(a), (c), (e)) and as a function of T
(b) at γ0 = 0.8 (see also 3(b), (d), (f)) and (c) at γ0 = 2. Results for the s- and l-JQB are shown for θ= 0 (maximum efficiency).

89]—we observe that the local extraction can outperform the global one for sufficiently large coupling
strength, γ0, and low temperature (figure 4).

Finally, we elaborate on admissible configurations of the specific superconducting setup discussed in
section 4 in relation to our assumptions and to the results discussed above. First, we provide a possible
estimate of the timescale over which ergotropy is extracted from the single qubit in the s-JQB. The
unitary (18) which accomplishes this task is the product of two rotations Ra(ϕ) = eiϕσa/2, with a= x,y,z,
one about the y-axis (responsible for extracting ergotropy) and one about the z-axis (which does not affect
the ergotropy). Therefore, assuming θ= 0, we can ultimately focus on Ry(2α), which can be decomposed in
terms of rotations only about the x- and z-axis, Ry(2α) = Rz(3π)Rx(π/2)Rz(π+ 2α)Rx(π/2), each of which
can be realized using finite duration voltage bias pulses [90], with corresponding frequencies νx = EJ/h and
νz = EC(ng − 1/2)/h. Considering pulses of duration of the order∼100 ps, to account for possible
experimental constraints on the shortest duration of a pulse [91], we can estimate the timescale of extraction
of ergotropy as∼1 ns, much shorter than the typical longitudinal and transverse relaxation times of
superconducting charge qubits T1 ∼ 1− 10 µs and T2 ∼ 0.1− 1 µs [92], respectively. Since thermalization
involves relaxation processes, our assumption that the only role played by the reservoir is to thermalize the
system at the end of every cycle is consistent with the time scales estimated above. This assumption works
when the temperature is sufficiently low. For the superconducting setup introduced in section 4.1, this is the
case when kBT≪ EC, being a typical temperature kBT/h∼ 0.625GHz [80] and EC/h∼ 10− 100GHz. In
this regard, we want to stress that the results in figure 3, and in the following, are expressed in units of
Ω= EC

(
ng − 1/2

)
. Therefore, the fact that Ω depends also on the dimensionless gate charge ng , whose value

can be tuned through the gate voltage of the Cooper pair boxes [84], allows for investigating regimes not
limited to kBT≪ Ω, while keeping kBT≪ EC (the low temperature regime).

A possible experimental scenario consistent with figure 3(a) at fixed T= 0.5Ω/kB = 30 mK [80] is
obtained for CJ = 900 aF, Cg = 1.65 aF, Vg = 100 mV, resulting in ng ≈ 0.515, EC/h≈ 86 GHz and
Ω/h= 1.28 GHz. These values, for EJ/h∼ 10 GHz, allow to explore the range |γ0|⩽ 7.8 while fulfilling
EJ,kBT≪ EC. On the other hand, the same set of parameters provides γ0 ≈ 0.78 for EJ/h≈ 1 GHz,
consistently with γ0 = 0.8 in figure 3(b), where T⩽ 10Ω still fulfills kBT≪ EC.

5.2. Simulation on superconducting quantum computers
After theoretically investigating the performance of the JQB in ideal conditions, we have simulated its
functioning on a quantum computer. In order to do so, we have used the quantum simulator
aer_simulator, without noise on the gates, and the quantum machines ibm_cairo10 (with restrained
access), which is one of the IBM Quantum Falcon processors with 27 qubits, and ibm_brisbane (with open
access), which is one of the IBM Quantum Eagle processors with 127 qubits. All these platforms are
accessible via the Qiskit package [93]. These platforms, although based on superconducting qubits, differ
from the one we propose in section 4 for our cyclic QB. Therefore, it is worth commenting preliminarily
about the different setups and outlining how the simulation is carried out.

10 This device was officially retired by IBM on April 30, 2024.
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The minimal model for a cyclic QB in figure 2 is based on dc-SQUID charge qubits, designed to operate
in the regime EJ ≪ EC. These charge qubits, however, are not suited for quantum computing, because
environmental charge noise strongly limits their coherence times [50]. For this reason many
superconducting quantum computing platforms, including IBM quantum hardwares, are currently based on
transmons, an evolution of superconducting charge qubit which leverages the regime EJ ≫ EC, achieved by
shunting the Josephson junction with an additional large capacitor [94], to improve coherence times by
reducing the sensitivity to charge noise. Although transmons and dc-SQUID charge qubits differ in their
specific design, they are akin in their superconducting nature. Therefore, we opted for a transmon-based
quantum hardware over other available quantum computing hardwares (e.g. photonic [95] or trapped-ion
based [96] ones) because we think it provides a more suitable and meaningful platform to simulate the
proposed superconducting QB.

Unless one has access to low-level controls on the hardware, the operations one can perform on a
quantum computer are limited to unitaries and measurements. Considering this constraint and the different
setup of IBM quantum processors with respect to ours, simulating the proposed thermodynamic cycle does
not consist in rigorously performing each stroke, e.g, connection and disconnection, but rather in preparing
the two-qubit states required to assess the energetics of the cycle. The simulation is thus carried out as a
two-step process: (i) The initial Gibbs state is prepared in the quantum register and a quantum state
tomography (QST) is performed; (ii) The initial Gibbs state is prepared again from scratch, it undergoes the
unitary work extraction, and then a QST is performed. The QSTs are required to reconstruct the states that
are actually implemented in the quantum register before and after work extraction. Such states, in turn, allow
us to determine the proper unitary for work extraction and the energetics of the cycle, upon computing the
expectation values of the Hamiltonian after each stroke as per section 3.

In this framework, the parameters characterizing the QB, i.e. the temperature T and the coupling
strength γ0, are thus implicitly encoded in the preparation of the initial Gibbs state.

5.2.1. Generation of the initial Gibbs state
The first, and most critical, step needed to simulate a thermodynamic cycle like the one discussed above, is
the preparation of the initial Gibbs state τβ . Indeed, quantum computers are specifically designed to perform
reversible unitary quantum operations and measurements [3]. Therefore, it is not straightforward for an end
user to realize mixed states using them. A possible way to overcome this issue is to rely on the so called
thermofield double (TFD) states [56–59]. The idea behind this approach is to generate a pure state (the TFD
state) in an enlarged system made up of two identical copies of the quantum system under investigation in
such a way that tracing out the degrees of freedom of one of the two copies the other is described by the
desired Gibbs state. In the following, we will use the notation introduced above for the system under
investigation S and we will add a prime index to distinguish the ancillary system S′.

To proceed further in this direction, we consider the Hamiltonian H in equation (17), defined in the
Hilbert space of the system S, and a formally identical Hamiltonian H′ defined in the Hilbert space of the
ancillary system S′. The TFD state is then defined on the enlarged Hilbert space and can be written as

|TFD(β)⟩=
d∑

k=1

e−
βε

↑
k

2√
Tr [e−βH]

|ϵ↑k ⟩S|ϵ
′
k↑⟩S′ . (24)

As can be expected, by tracing out the degrees of freedom of the ancillary system S′, one recovers the Gibbs
state τβ for the system S introduced in equation (5). Moreover, in the specific case under investigation we
have d= 4.

To realize the state in equation (24) we first apply two Hadamard gates (H) and two CNOT gates (blue
region in the scheme of figure 5) to initialize the enlarged system in the state

|TFD(0)⟩=1

2
(|0⟩A |0⟩A′ + |1⟩A |1⟩A′)

⊗ (|0⟩B |0⟩B′ + |1⟩B |1⟩B′) . (25)

We then use a variational scheme with an ansatz motivated by quantum-approximate optimization
algorithms [97] where intra-system and inter-system unitary operations are alternated. The former class of
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Figure 5. Quantum circuit associated to a single-step of the protocol that determines the optimal parameters to initialize the
system S in the Gibbs state. Blue area: preparation of the state |TFD(0)⟩ in equation (25); green area: unitary operation acting
separately on the system S and S′; red area: unitary operation coupling the system S and S′; yellow area: quantum state

tomography to determine the state of the system S. Here, we have used the gates RJ
i(θ) = e−i θ

2
σi

J and RJK
ii (θ) = e−i θ

2
(σi

J⊗σi
K) with

i = x,y,z and J,K= A,A ′,B,B ′ to implement the unitaries introduced in the main text.

unitaries (green region in figure 5) acts separately to S and S′ and can be written as

Uintra

(
ξ⃗
)
= e−i ξ42 (σ

y
A⊗σ

y
B+σ

y

A′⊗σ
y

B′)× e−i
ξ3
2 (σ

x
A⊗σx

B+σx
A′⊗σx

B′)

× e−i
ξ2
2 (σ

z
A+σz

B+σz
A′+σz

B′)

× e−i
ξ1
2 (σ

x
A+σx

B+σx
A′+σx

B′), (26)

while the latter (red region in figure 5) couples S and S′ and reads

Uinter

(
ζ⃗
)
= e−i

ζ3
2 (σ

z
A⊗σz

A′+σz
B⊗σz

B′)× e−i
ζ2
2 (σ

y
A⊗σ

y

A′+σ
y
B⊗σ

y

B′)

× e−i
ζ1
2 (σ

x
A⊗σx

A′+σx
B⊗σx

B′). (27)

Notice that the form of equation (26) is motivated by the single- and two-qubit terms appearing in the
Hamiltonian in equation (17), while equation (27) is built extending the same idea to include coupling
among the S and S′ [57, 58].

Altogether they lead to the unitary

UTFD

(
ξ⃗, ζ⃗
)
= Uinter

(
ζ⃗
)
Uintra

(
ξ⃗
)
, (28)

where the variational parameters ξ⃗ = (ξ1, ξ2, ξ3, ξ4) and ζ⃗ = (ζ1, ζ2, ζ3) need to be optimized to generate the
closest state to the target state |TFD(β)⟩ according to a given cost function. The variational parameters
implicitly encode the temperature T and the coupling strength γ0 of the QB. In the present case, we have
chosen as cost function the infidelity with respect to the target Gibbs state defined as 1− F(τ̃(ξ⃗, ζ⃗), τβ) with

τ̃
(
ξ⃗, ζ⃗
)
= TrS′

[
UTFD

(
ξ⃗, ζ⃗
)
|TFD(0)⟩⟨TFD(0)|U†

TFD

(
ξ⃗, ζ⃗
)]

(29)

and where

F(ρ,σ) = Tr

[√√
ρσ

√
ρ

]
(30)

is the conventional definition of the fidelity for two arbitrary density matrices ρ and σ [98]. For
completeness, we have also tested other cost functions such as the free energy and weighted sums of the
infidelity with various normalized energy components (not shown). However, the latter approaches were not
as good in estimating the extracted work and the efficiency of the considered system as the approach based
only on the infidelity.

To evaluate the fidelity, we perform a QST (yellow region in the scheme of figure 5) [98]. This is an
experimental procedure that allows to reconstruct the density matrix of a quantum state. It consists in
preparing the system in the same state many times and measuring it in a tomographically complete basis of
measurement operators. That is, the measured operators must form an operator basis on the Hilbert space of
the system.

To obtain the best estimation of the variational parameters ξ⃗ and ζ⃗ , the steps discussed above and
illustrated in figure 5 were implemented using the simulator without noise with number of shots equal to
1000. After every QST the optimization of the parameters was performed via a Bayesian optimisation [99,
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Figure 6. Scheme of the variational algorithm used to prepare the TFD state. In each iteration (j) the quantum circuit in figure 5 is

executed to determine the fidelity F between the state τ̃( j) ≡ τ̃(ξ⃗( j), ζ⃗( j)) and the target Gibbs state, τβ (blue part). The infidelity
(1− F) is then minimized via a Bayesian optimization, performed on a classical computer (green part), in order to update the

circuit parameters in (ξ⃗( j+1), ζ⃗( j+1)) (orange part) and start a new iteration, ( j+ 1). This procedure is iterated until the

algorithm converges, yielding the optimal parameters (ξ⃗(opt), ζ⃗(opt)) (violet part).

Figure 7. Performance of the simulated s-JQB at T= 0.5Ω and θ= 0. (a) Extracted work E(s) = E and (b) efficiency η(s) as a
function of 0< γ0 ⩽ 2 for the ideal cycle starting with a Gibbs state (gray curve) and for the cycles starting with a thermofield
double state (markers) simulated on (aer_simulator) and actual quantum hardwares (ibm_cairo and ibm_brisbane).

100], an approach which is particularly convenient when the cost function to optimize is a black box for
which no closed form is known (nor its gradients), is computationally expensive to evaluate and noisy. These
conditions perfectly fit the case under investigation. The achieved parameters were then fed back into the
quantum circuit of figure 5 starting another round of optimization. This procedure was iterated for a
number of times sufficient to reach a convergence of the results for the density matrix of S (typically
400–600). In figure 6 we report a scheme of the whole optimization algorithm.

5.2.2. Simulation of the thermodynamic cycle
Once the parameters leading to the best approximation of the thermal state for S were obtained, we moved
on to the simulation of the whole thermodynamic cycle, both using the simulator and the two real devices
mentioned above. One purpose of this simulation is to perform a feasibility test of the protocols based on the
extraction of local ergotropries. Since the principle is equivalent for both the s- and the l-JQB—ergotropy is
locally extracted from each qubit by single-qubit gates, which can be eventually executed in parallel—,
without loss of generality we restrict the discussion to the s-JQB. Note that during strokes (i→ii) and
(iii→iv) the density matrix of the bipartite system does not change. This means that we do not have to
perform any operation on the qubits to simulate these strokes.

Here, the extraction of ergotropy from the single qubit is straightforwardly implemented on the quantum
computer as the product of two single-qubit rotation gates, see equation (18). For the simulation, we
consider the regime where the best performance is ideally expected, i.e. γ0 > 0 with θ= 0 (figure 3(a) and
(b)). The latter assumption further simplifies the unitary (18) to a single-qubit rotation about the y-axis. In
this regard, the parameter α was directly evaluated from the coordinates on the Bloch sphere of the density
matrix achieved after the thermalization. Figure 7 shows the performance of the simulated s-JQB in terms of
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Figure 8.Qubit connectivity map of (a) ibm_cairo and (b) ibm_brisbane, with the qubits used for the simulations highlighted
in orange and blue, respectively.

the extracted work E(s) (panel (a)) and of the efficiency η(s) (panel (b)) at a given temperature (T= 0.5Ω)
and for different values of the coupling γ0 ∈ [0.4,2]. We focused our analysis on this region of parameters to
achieve a good signal-to-noise ratio, as indicated by the ideal results shown in figure 3(a, b). For γ0 < 0.4, we
expect very small values of ergotropy, whereas for γ0 > 2, we expect low cycle efficiencies, making the
measurement of these quantities more challenging. Moreover, for T> Ω, we observed issues with the
convergence of the variational algorithm when preparing the initial Gibbs state. Conversely, for T< Ω we do
not expect a strong dependence of the ergotropy and the efficiency on T, therefore, we have fixed T= 0.5Ω.
Despite these limitations in the choice of viable parameters for the simulation, we point out that those we
considered are consistent with the experimentally admissible configuration of the dc-SQUID setup discussed
at the end of section 5.1 in relation to figure 3(a). The simulator data were generated by using 1000 shots and
averaging over 30 runs. In contrast, the data from the real machine were obtained from a single run with
4000 shots. Note that reproducing the circuit in figure 5 requires 4 qubits with a square connection, which is
not available in the devices we have used. To minimize the necessary SWAP gates, we utilized 4 qubits
connected in a linear configuration (the mapping of qubits [A,B,A ′,B ′] is [18,24,21,23] for ibm_cairo and
[32,17,31,30] for ibm_brisbane, see figure 8).

For both the ergotropy and the efficiency the agreement between the data obtained from the simulator
and the two considered real quantum devices and the theoretical curves is good. We observe, however, that
the agreement for the ergotropy (panel (a)) is better than that for efficiency (panel (b)). The reason of this
can be traced back to the definitions of the considered quantities. Indeed, after performing the QST to obtain
the density matrix of the system S before and after the ergotropy extraction, accomplished by applying the
rotation in equation (18), the extracted work E(s) is numerically evaluated in a unique step. Instead, assessing

the efficiency η(s) requires multiple steps. First, it requires the separate calculation of E(s), E(s)c , and Ed. These
quantities are then combined to construct η(s) as in equation (14). When performing calculations with
quantities affected by errors, these errors propagate through each step, consequently, the individual errors

from E(s), E(s)c , and Ed combine and potentially accumulate, leading to a greater overall error in the final
calculation of η(s).

In this regard, errors have different possible origins. One source of error is associated to the parameter
optimization required to simulate the initial Gibbs state τβ . In the cases shown here, the fidelity between the
ideal Gibbs state and the one obtained following the optimization procedure ranges between 0.95 and 0.98.
This error affects all data at a given γ0 in the same way, since the parameter optimization is performed once
for each value of γ0 using the aer_simulator. The other main sources of error are: (i) the intrinsic noise of
the quantum computers (gates, readout, and qubit decoherence) and (ii) the probabilistic nature of the
measurements, performed in a finite number. For the considered IBM quantum devices the qubit state
stability is of the order of 100µs, the gates acting on the qubits have median single-qubit gate error∼10−4,
while the median two-qubit gate error and the median readout error are∼10−2 [93]. As regard the
probabilistic nature of the measurements we recall that we have performed 1000 shots repeated for 30 runs
on the simulator and 4000 shots for a single run on the real devices.

As it clearly emerges from this brief description, the sources of error affecting the simulation are
numerous and of various nature. For this reason, estimating the error affecting the data reported in figure 7
starting from these sources is very challenging. We can, however, estimate the magnitude of such errors
starting from another observation. As already mentioned, the fidelity between the ideal Gibbs state and the
one obtained on the simulator ranges from 0.95 to 0.98 (average 0.97). Similarly, we have that the fidelity
between the ideal Gibbs state and the one obtained on real machines ranges from 0.85 to 0.97 (average 0.91).
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In the first case, the deviation from 1 of the fidelity is attributed to the error in determining the parameters to
construct the initial state, while in the second case all the errors described above combine. At this point, it
seems reasonable to assume the parameter 1− F, with F the fidelity, as the relative error on each QST, thus
on the determination of each density matrix. This will therefore be of the order of 3% for the simulators and
of 10% for the real devices. Note that the argumentation has been made on the state before the extraction of
ergotropy, but it is legitimate to extend it also to the state after the extraction of ergotropy since the difference
associated to the σy rotation (corresponding to 4 native single-qubit gates) on the entire process can be safely
neglected. Propagating the errors through the usual rules, we can estimate a relative error of about 20% for
the ergotropy and of about 40% for the efficiency. This estimation appears reasonable when compared with
the obtained results (see figure 7).

Finally, it is possible to estimate the extraction power associated to the considered quantum machines.
The time required to perform the σy rotation, associated with the extraction of ergotropy, is on the order of
100 ns. In these devices, the qubits have a typical frequency of 5 GHz, which corresponds to a typical energy
level spacing∼20.6µeV. In passing, we notice that this value is of the same order of magnitude of what
estimated for the JQB in section 4.2. From figure 7, it emerges that the extracted energy spans in the range
0.2− 0.6 Ω, with 2Ω being the energy level spacing of the qubit. Combining these data, it follows that the
extracted power is on the order of 10−2 fW. As a final remark, we point out that the typical longitudinal, T1,
and transverse, T2, relaxation times of the transmon superconducting qubits of the considered quantum
machines are of the order∼100 µs, much longer than the time it takes to extract ergotropy (∼100 ns).

6. Conclusion

We studied the concept of a cyclic QB operating according to a given thermodynamic cycle. During the
whole cycle, the setup is weakly interacting with a thermal bath, while the operations are carried out on
timescales shorter than those of the thermalization. This guarantees that the only role played by the reservoir
is to reinitialize the system to the same thermal state at the end of every cycle. Such state is no longer passive
after switching off the interaction internal to the battery and therefore ergotropy extraction is possible.

Our proposal for a QB is based on two connected qubits, whose non-trivial correlations, together with
phase coherence, can be exploited to improve the performance of the device. Indeed, it is possible to apply
local unitary operations on one or two qubits separately or acting globally on them to get useful energy.
Hence, a key outcome of our work is that the efficiency of the setup in the case of parallel energy extraction
from two qubits can exceed that where global operations are performed. Since local unitary operations are
typically easier to implement than global ones, this result provides fertile ground for future implementations
of such a kind of QB.

To support future experimental realizations of the discussed QB, we provided a minimal feasible scheme
for a superconducting QB based on coupled charged qubits which can be recharged following the proposed
thermodynamic cycle. The major advantage of experimental schemes of this type, based on Josephson
junctions, is their scalability, which leads to an enhancement of the overall storage capacity of the device. One
could further develop this work by analyzing the impact of many-body correlations emerging by increasing
the circuit size.

Additionally, and this is a significant outcome of the present work, we simulated the proposed
thermodynamic cycle on an IBM quantum hardware. The simulation on a quantum computer required to
overcome several technical challenges, such as the realization of a given initial thermal state for the QB and
error mitigation. While the former was tackled with the introduction of TFD states, a Bayesian optimization
procedure was needed to deal with the latter. Despite unavoidable errors, mainly caused by the intrinsic noise
in the device and by the probabilistic nature of the measurements, the obtained results foster the
implementation of a cyclic QB using solid-state platforms.

The reason why superconducting quantum hardware appears to provide a very suitable ground for
developing our cyclic QBs scheme is two-fold. First, the coupling to the environment is weak, in that the
qubit longitudinal and transverse relaxation times are much longer than the ergotropy extraction time; next,
entangling quantum gates could be used to exploit the quantum advantage in the charging time of QBs. The
present work therefore opens up new perspectives in the field of QBs and more generally provides a wider
spectrum of possibilities for the study of energy and information manipulation in superconducting quantum
circuits.
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Appendix A. Pauli matrices and qubit states

In this appendix we recall some basics of the mathematical description of a qubit. To begin, we provide the
conventional expressions for the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (A.1)

which are Hermitian, involutory, and unitary operators (σa = σ†
a = σ−1

a , with a= x,y,z). Their
commutation, [σa,σb] = 2iεabcσc, and anticommutation relations, {σa,σb}= 2δabI with I being the identity
in C2×2, combine in

σaσb = δabI+ iεabcσc. (A.2)

Letting σ⃗ ≡ (σx,σy,σz), the following property applies,

eiϕ n̂·σ⃗ = Icosϕ + i (n̂ · σ⃗) sinϕ (A.3)

with n̂ ∈ R3, |n̂|= 1, and ϕ ∈ R.
The more general state of a qubit is represented by the density matrix [3]

ρ=
1

2
(I+ r⃗ · σ⃗) = 1

2

(
1+ z x− i y
x+ i y 1− z

)
, (A.4)

with r⃗= (x,y,z) ∈ R3 where

x= Tr [σxρ] , y= Tr
[
σyρ
]
, z= Tr [σzρ] (A.5)

are the coordinates of the state ρ in the Bloch sphere. The radius r≡ |⃗r|=
√
x2 + y2 + z2 is related to the

purity of the state Tr[ρ2] = 1
2 (1+ r2), ranging from r= 0 (maximally mixed state) to r= 1 (pure state). Note

that, for a real state ρ, one has y= 0. The eigenvalues of ρ are λ± = 1
2 (1± r) and the corresponding

eigenstates are

|λ±⟩=N±

(
x− i y

±r− z
|0⟩+ |1⟩

)
, (A.6)

withN± being a proper normalization constant. Since λ− ⩽ λ+, as 0⩽ r⩽ 1, the eigenstate |λ−⟩ is the least
populated, and |λ+⟩ the most populated.
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Appendix B. Proof of equation (18)

In this appendix we prove that in the case the initial state of a qubit is described by a real density matrix, the
unitary operator for ergotropy extraction U(θ) has the form given in equation (18). The proof below is based
on [42].

For ease of notation, we omit the subscripts and denote by H= σz and ρ the local Hamiltonian HA and
the reduced state of the qubit ρA,II = TrB[τβ ], respectively (recall ϱII = ϱI = τβ). In the unitary (3) a global
phase can be factored out, and hence for a (d= 2)-level system, there is only one independent phase. The
latter, say the relative phase 0⩽ (θA − θB)≡ 2θ < 2π, is conveniently included in the unitary as follows

U(θ) = e−iθ|ϵ↑1 ⟩⟨λ
↓
1 |+ eiθ|ϵ↑2 ⟩⟨λ

↓
2 |, (B.1)

with 0⩽ θ < π. Recalling the convention on the sorting of the eigenvalues, the eigensystem of H is
{|ϵ↑1 =−1⟩= |1⟩, |ϵ↑2 =+1⟩= |0⟩}, and that of ρ is {|λ↓

1 =
1
2 (1+ r)⟩= |λ+⟩, |λ↓

2 =
1
2 (1− r)⟩= |λ−⟩} with

0⩽ r⩽ 1 (see appendix A). Note that the energy level spacing of the single qubit is ϵ↑2 − ϵ↑1 = 2Ω, upon
restoring Ω> 0 as the energy unit.

Now we focus on the eigensystem of ρ. The density matrix ρ is obtained as the reduced state of a Gibbs
state. A Gibbs state (5) is by definition a real symmetric matrix. As a result, reduced states obtained from a
Gibbs state are in turn real and symmetric. Therefore, ρ is a 2× 2 real symmetric matrix, and the
eigenvectors of such a matrix can be expressed in the form α|0⟩+β|1⟩ and−β|0⟩+α|1⟩, with α,β ∈ R.
Accordingly, we can rewrite the eigenstates (A.6) as

|λ↓
2 ⟩ ≡ |λ−⟩= cosα|0⟩+ sinα|1⟩,

|λ↓
1 ⟩ ≡ |λ+⟩=− sinα|0⟩+ cosα|1⟩, (B.2)

with

cosα=− x√
2r(r+ z)

, sinα=
r+ z√
2r(r+ z)

, (B.3)

where r=
√
x2 + z2 (recall that y= 0, being ρ real), from which tanα=−(r+ z)/x. Note that r+ z⩾ 0

always. Then, we can write the unitary operator (B.1) as

U(θ) = eiθ cosα|0⟩⟨0|+ eiθ sinα|0⟩⟨1|
− e−iθ sinα|1⟩⟨0|+ e−iθ cosα|1⟩⟨1|, (B.4)

from which the matrix representation in the first equality of equation (18) follows. Using the property (A.3),
it is possible to rewrite it in terms of

eiθσz =

(
eiθ 0
0 e−iθ

)
, eiασy =

(
cosα sinα
− sinα cosα

)
, (B.5)

from which the second equality of equation (18) can be easily verified, concluding the proof.

Appendix C. Details on the energetics of the working cycle of the JQB

In this appendix, we provide the analytical derivation of the results presented in section 4.2.2, regarding the
energetics of the p-JQB for the different Protocols 1–3, p= s, l,g, respectively. First, we focus on the
energetics of the protocols p= s, l, in which ergotropy is locally extracted from qubits. We then address the
energetics of the protocol p= g, which requires an extended discussion due to the presence of a degenerate
energy level in the bare Hamiltonian H0 =HA +HB, from which the global ergotropy is extracted.

In the following, we denote by ⟨O⟩ ≡ Tr[OϱI] the expectation value of the generic observable O on the
initial Gibbs state ϱI = τβ with Hamiltonian H=H0 + γ0Hint, and, for conciseness, we omit identities and
the⊗ symbol when there is no ambiguity from the context. We observe that ⟨σa

A⟩= ⟨σa
B⟩ and

⟨σa
Aσ

b
B⟩= ⟨σb

Aσ
a
B⟩ with a,b= x,y,z, since the Hamiltonian (17), hence the Gibbs state, is symmetric under

exchange of the two qubits. Accordingly, the results that follow will be expressed in terms of ⟨σa
A⟩ and ⟨σa

Aσ
b
B⟩.

Note that the disconnection energy (20) is simply computed from definition (11), and, as such, remains
the same for all the considered protocols. Hence, it will not be addressed in the following Sections.
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C.1. Energetics of the (p = s, l)-JQB
The ergotropy E (19) extracted from the single qubit is given by (4), recalling that the passive state of a qubit
with respect to σz is π = 1

2 (1− rσz), and x,z, r are defined in equation (A.5). Hence, E(s) = E and E(l) = 2E
(8) trivially follows.

The connection energy (13) for the s-JQB reads (identifying UA(θA)≡ U(θ) for notational convenience)

E(s)c (θ) =− γ0(⟨U† (θ)σx
AU(θ)⟩+ ⟨σx

B⟩
+ ⟨U† (θ)σx

AU(θ)⊗σx
B⟩− ⟨U† (θ)σ

y
AU(θ)⊗σ

y
B⟩), (C.1)

where the cyclic property of the trace has been used. Therefore, we have to compute U†(θ)σa
AU(θ), with

a= x,y and U(θ) in equation (18). Using equation (A.3), and the property (A.2), by direct inspection it is
possible to prove that

U† (θ)σx
AU(θ) = cos(2θ)cos(2α)σx

A + sin(2θ)σy
A

− cos(2θ) sin(2α)σz
A, (C.2)

U† (θ)σ
y
AU(θ) =− sin(2θ)cos(2α)σx

A + cos(2θ)σy
A

+ sin(2θ) sin(2α)σz
A, (C.3)

U† (θ)σz
AU(θ) = sin(2α)σx

A + cos(2α)σz
A, (C.4)

where the latter is reported for completeness. For a real state ϱI (as a Gibbs state is), ⟨σy
A⟩= ⟨σy

Aσ
x
B⟩

= ⟨σy
Aσ

z
B⟩= 0. Combining all previous results, equation (22) follows.

Analogously, we can compute the connection energy for the l-JQB, recalling that the two-qubit unitary is
Ul(θA,θB) = UA(θA)⊗UB(θB) with Uk(θk) in equation (18),

E(l)c (θA,θB) =− γ0{(cos(2θA)+cos(2θB))(cos(2α)⟨σx
A⟩

− sin(2α)⟨σz
A⟩)+ cos [2(θA + θB)](cos

2 (2α)⟨σx
Aσ

x
B⟩

− ⟨σy
Aσ

y
B⟩+ sin2 (2α)⟨σz

Aσ
z
B⟩− sin(4α)⟨σx

Aσ
z
B⟩)}. (C.5)

Note that, in principle, such a unitary depends on two independent arbitrary phases. Now, we observe that
cos(2α)⟨σx

A⟩− sin(2α)⟨σz
A⟩= 0, which can be easily proved by using equation (A.5) and, provided that

α ̸= π
2 + kπ with k ∈ Z,

cos(2α) =
1−tan2α

1+ tan2α
=− z

r
,

sin(2α) =
2tanα

1+ tan2α
=−x

r
, (C.6)

because α= arctan[−(r+ z)/x] with y= 0. Therefore, E(l)c (θA,θB) = E(l)c (θA + θB) is a function of a single
effective parameter. This concludes the proof of equation (23).

C.2. Energetics of the g-JQB
In the g-JQB, the resource for extracting work comprises both the subsystems and the correlations. The state
from which the global ergotropy E(g) is extracted is the thermal state ϱII = ϱI = τβ with Hamiltonian
H=H0 + γ0Hint (17). The purpose of this protocol is to extract E(g) with respect to the bare Hamiltonian
H0 = σz

A +σz
B. Indeed, τβ is passive with respect to H=H0 + γ0Hint but can be active with respect to H0.

Therefore, disconnecting the qubits is still a necessary condition for the working cycle based on this protocol.
When ergotropy is globally extracted from a system, the passive state is not unique if there are degeneracies
in the energy spectrum [61].

In the present case, ergotropy is extracted from τβ with respect to H0 = diag(2,0,0,−2), diagonal in the
two-qubit computational basis, {|00⟩, |01⟩, |10⟩, |11⟩}. The two eigenstates associated with the degenerate
zero-energy level are |01⟩ and |10⟩. The presence of a degenerate eigenvalue makes the eigendecomposition
of H0 not unique (arbitrariness in choosing orthonormal states in the degenerate subspace), which, in turn,
results in ambiguity in the definition of the unitary Ug in equation (3) by means of which one would like to
extract the global ergotropy E(g). Below, we show that this ambiguity does not affect the global ergotropy E(g)

and that, in the present model (g-JQB), E(g)c ≡ 0.
The aforementioned arbitrariness can be encoded in a unitary operator u, such that [H0,u] = 0, which

effectively acts only on the degenerate subspace of H0 spanned by {|01⟩, |10⟩}, and so that u|00⟩= |00⟩ and
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u|11⟩= |11⟩. In the computational basis, this operator can be represented by

u=


1 0 0 0
0 u01,01 u01,10 0
0 u10,01 u10,10 0
0 0 0 1

 , (C.7)

with uu† = u†u= I. Accordingly, we introduce the unitary (see equation (3))

Ug;u = u
4∑

k=1

|ϵ(0)↑k ⟩⟨λ↓
k | ≡ uUg, (C.8)

where the eigenstates of H0, {|ϵ(0)↑k ⟩}k with associated eigenvalues {ϵ(0)↑k }= {−2,0,0,2}, are the
computational basis states sorted in reverse order (from the lowest energy state |ϵ(0)↑1 ⟩= |11⟩ to the highest
one |ϵ(0)↑4 ⟩= |00⟩), {|λ↓

k ⟩}k the eigenstates of τβ . By construction, the unitary (C.8) is expected to extract the
global ergotropy, but its definition depends on u. Starting from the orthonormal eigenstates |01⟩ and |10⟩,
the effective purpose of u is to span orthonormal pairs of states—a unitary transformation preserves norm

and inner product—from the degenerate subspace associated with ϵ
(0)↑
2 = ϵ

(0)↑
3 = 0, without affecting |00⟩

and |11⟩.
The arbitrariness of Ug;u (C.8) results in an ambiguity in the passive state πg;u = uπgu†, where

πg = diag(λ↓
4 ,λ

↓
3 ,λ

↓
2 ,λ

↓
1 ) is the diagonal state obtained by using the identity in place of u. In the

computational basis, the passive state is of the form

πu =


λ↓
4 0 0 0
0 (πu)01,01 (πu)01,10 0
0 (πu)10,01 (πu)10,10 0

0 0 0 λ↓
1

 . (C.9)

The global ergotropy E(g)(τβ)≡ Tr[H0τβ ]−Tr[H0πg] turns out to be independent of u, because
Tr[H0πu] = Tr[H0πg] since [H0,u] = 0. In particular, it reads

E(g) = Tr [(σz
A +σz

B)τβ ]−
4∑

k=1

λ↓
k ϵ

(0)↑
k

= 2⟨σz
A⟩− 2

(
λ↓
4 −λ↓

1

)
, (C.10)

where λ↓
1 = e−βϵ↑1 /Z and λ↓

4 = e−βϵ↑4 /Z. In the derivation, we have used Ug in equation (C.8),

H0 =
∑4

k=1 ϵ
(0)↑
k |ϵ(0)↑k ⟩⟨ϵ(0)↑k | with {ϵ(0)↑k }= {−2,0,0,2}, and τβ =

∑4
k=1λ

↓
k |λ

↓
k ⟩⟨λ

↓
k |, whose eigenvalues

λ↓
k = e−βϵ↑k /Z involve the partition function Z= Tr[e−βH] of the Hamiltonian H=H0 + γ0Hint, whose

eigenvalues {ϵ↑k}k are given in appendix D. This concludes the proof of E(g) in equation (21).

Now, we prove that E(g)c = γ0Tr[Hintπu]≡ 0, see equation (13). In the computational basis,
Hint =−(σx

A +σx
B +σx

Aσ
x
B −σ

y
Aσ

y
B) is of the form

Hint =


0 h00,01 h00,10 h00,11

h01,00 0 0 h01,11
h10,00 0 0 h10,11
h11,00 h11,01 h11,10 0

 . (C.11)

By direct inspection, regardless of the detailed definition of the matrix elements, we observe that the diagonal

elements of the matrix Hintπu are identically null, which trivially proves that E
(g)
c = Tr[Hintπu] = 0.

In conclusion, considering the above results, for the g-JQB we simply use Ug, since we can neglect u in
equation (C.8) as well as the arbitrary phases of equation (3), the ergotropy being extracted globally.
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Figure D1. Spectrum (D.3) of the two-qubit Hamiltonian (17).

Appendix D. Energy spectrum of the two-qubit Hamiltonian (17)

In the computational basis, the matrix representation of the Hamiltonian (17) is

H=


2 −γ0 −γ0 −2γ0

−γ0 0 0 −γ0
−γ0 0 0 −γ0
−2γ0 −γ0 −γ0 −2

 , (D.1)

whose characteristic polynomial reads

pH (ϵ) = det(H− ϵI) = ϵ
[
ϵ3 − 4

(
1+ 2γ2

0

)
ϵ+ 8γ3

0

]
. (D.2)

Therefore, the (unsorted) energy levels are

{ϵk}k=1,...,4 =

{
0,
4
√
1+ 2γ2

0√
3

cos

[
ϕ+ 2πn

3

]}
(D.3)

with n= 0,1,2 and

ϕ = arccos

[
− 3

√
3γ3

0

2(1+ 2γ2
0)

3/2

]
. (D.4)

The three real roots of the depressed cubic equation, ϵ3 − 4(1+ 2γ2
0)ϵ+ 8γ3

0 = 0, are obtained via a
trigonometric approach [101]. Note that the lowest, ϵ↑1 , and the highest, ϵ

↑
4 , energy levels are respectively

associated with n= 1 and n= 0, see figure D1. Notice that the determination of the analytical expression of
the eigenstates of H is hindered by the cumbersome expression of the eigenvalues.

Appendix E. Entanglement and ergotropic gap

In the main text, we have shown that the possibility of enhancing the performance of the QB is related to the
value of the relative phase in the local unitary (18)—revealing the role of coherence—together with the fact
that strokes (i→ . . .→iv) preserve quantum correlations between the qubits when ergotropy is extracted by
local unitaries (p= s, l). In this appendix, we analyze the role of entanglement. After introducing and
reviewing the quantities of interest, we review how entanglement depends on the parameters of the model,
(γ0,T), and, we relate it with the ergotropy locally extracted from a single qubit and with the ergotropic gap
[67], which is the difference between the global and the local ergotropy.

E.1. Definitions
For a two-qubit state ϱ, the entanglement of formation can be measured as [102]

EF (ϱ) = h

(
1+

√
1−C2 (ϱ)

2

)
, (E.1)
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where h(x) =−x log2 x− (1− x) log2(1− x) is the binary Shannon entropy associated with the probability

distribution {x,1− x}. The quantity C(ϱ) =max{0,µ↓
1 −µ↓

2 −µ↓
3 −µ↓

3} is the concurrence of the state ϱ,
where {µ↓

k} are the square roots of the eigenvalues, in descending order, of the Hermitian matrix R=
√
ϱϱ̃

√
ϱ

(or equivalently of the non-Hermitian matrix R ′ = ϱϱ̃). Here, ϱ̃= (σy ⊗σy)ϱ
∗(σy ⊗σy) denotes the

spin-flipped state and the complex conjugation is taken in the computational basis of the two-qubits. Each
µ↓
k is a non-negative real number. The measure EF(ϱ) is a monotonically increasing function of C(ϱ) and

ranges from 0 (no entanglement) to 1 (maximum entanglement) as C(ϱ) goes from 0 to 1.
In a multipartite scenario, the presence of quantum correlations (including but not limited to

entanglement) is always associated to a nonvanishing ergotropic gap [67–69], defined as the difference
between the global and the local ergotropy

∆EG ≡ E(g) −E(l). (E.2)

The converse, however, does not necessarily hold, meaning that a nonzero ergotropic gap does not imply the
presence of quantum correlations: There exist indeed classically correlated states for which∆EG ̸= 0 [67]. In
detail, letting ϱ be the state of a multipartite system with Hamiltonian H=

∑
kHk, where each local

Hamiltonian Hk acts on the kth subsystem with reduced state ρk, the global and the local ergotropy that can
be extracted from ϱ with respect to H are, respectively,

E(g) = Tr [Hϱ]−min
Ug

Tr
[
HUgϱU†

g

]
, (E.3)

E(l) = Tr [Hϱ]−min
Ul

Tr
[
HUlϱU†

l

]
, (E.4)

where Ul =
⊗

kUk is the tensor product of local unitaries each of which acts on a single subsystem. Then, the
ergotropic gap reads∆EG =

∑
kTr[Hkπk]−Tr[Hπg], where πg = UgϱU†

g is the passive state of ϱ with respect

to H and πk = UkρkU
†
k is the passive state of ρk with respect to Hk. The ergotropic gap is nonnegative,

∆EG ⩾ 0, because local unitaries can extract work from subsystems only, while the global unitary, in
addition, can extract it from correlations [67].

In this work, we consider a two-qubit system with Hamiltonian (17), given in an initial thermal state.
After disconnecting the two qubits (γ(t) = 0), the purpose is to extract the local ergotropy E(l) = 2E , see
equation (19), or the global ergotropy E(g) (21) from the two-qubit thermal state with respect to the bare
Hamiltonian H0 =HA +HB, where the local Hamiltonians are Hk = σz

k, with k= A,B. In this context, the
ergotropic gap reads

∆EG =
2

Z

(
e−βϵ↑1 − e−βϵ↑4

)
− 2r, (E.5)

where r=
√
x2 + y2 + z2 (see equation (A.5) and recall y= 0 for real states), Z= Tr[e−βH] is the partition

function and the eigenvalues {ϵ↑k} of H=H0 + γ0Hint are given in appendix D. The lowest, ϵ↑1 , and the

highest, ϵ↑4 , energy eigenvalues are respectively associated with n= 1 and n= 0 in equation (D.3).

E.2. Discussion
The entanglement of the state before work extraction is the same as that of the initial thermal state, EF(τβ),
regardless of the protocol for work extraction, because the thermal state is preserved through the
instantaneous disconnection stroke (i→ii). Our purpose is to investigate how such initial entanglement
depends on the parameters of the system, γ0 and T, and then to relate it with the ergotropy locally extracted
from the single qubit and the ergotropic gap. Here, we focus on γ0 > 0, the regime in which the QB performs
better (see figure 3).

In the regime of interest, entanglement is a non-decreasing function of γ0, which is the coupling strength
of the interaction (figure E1(a)). At low temperature, small values of γ0 suffice to establish entanglement,
while at higher temperature, larger values are required and entanglement reaches the asymptotic value
EF ≈ 0.3 for γ0 ≫ 1. The inset shows that for each value of γ0, there exists a critical temperature T̃ above
which the entanglement of formation vanishes. Except for γ0 ≪ 1, T̃ linearly depends on γ0.

Focusing on the extractable work, finite ergotropy is locally extracted from the single qubit in the
presence of entanglement at low temperature, as well as at high temperature in the absence of entanglement
(figure E1(b)).

The study of the ergotropic gap is consistent with the expected behavior: at T= 0 the thermal state—the
ground state of H—shows finite entanglement (purely quantum correlation) and non-vanishing∆EG; for
T> 0, we can observe non-vanishing∆EG in the absence of entanglement (figure E1(b)). Finally, recalling
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Figure E1. (a) Entanglement of formation EF (E.1) of the two-qubit state before work extraction as a function of γ0. The inset
shows, for each value of 0 ⩽ γ0 ⩽ 2, the threshold temperature T̃ above which entanglement vanishes, EF = 0 for T> T̃. (b)
Ergotropy E(s) extracted from a single qubit in the s-JQB and (c) ergotropy gap∆EG = E(g) −E(l) (E.5) as a function of EF.
Results are reported for different temperatures.

that entanglement is a non-decreasing function of γ0, we observe that larger values of entanglement are
accompanied by larger values of the ergotropic gap.
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