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A fundamental problem in quantum thermodynamics is to properly quantify the work extractable from
out-of-equilibrium systems. While for closed systems, maximum quantum work extraction is defined in
terms of the ergotropy functional, this question is unclear in open systems interacting with an environment.
The concept of local ergotropy has been proposed, but it presents several problems, such as it is not
guaranteed to be nonincreasing in time. Here, we introduce the concept of extended local ergotropy by
exploiting the free evolution of the system-environment compound. At variance with the local ergotropy,
the extended local ergotropy is greater, is nonincreasing in time, and activates the potential of work
extraction in many cases. We then concentrate on specific schemes in which we alternate repeated local
unitaries and free system-environment evolution. We provide examples based on the Jaynes-Cummings
model, presenting practical protocols and analytic results that serve as proof of principle for the
aforementioned advantages.
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How much work can be extracted from an out-of-
equilibrium quantum system? For an isolated quantum
system S, described by Hamiltonian HS and state ρS, the
ergotropy functional [1] is commonly accepted as the figure
of merit for the maximum work extractable under cyclic
protocols [2–5]. It is defined as

EðρS; HSÞ ≔ max
US ∈US

tr
�
HSðρS − USρSUS

†Þ�; ð1Þ

where US is the set of unitaries on S. Remarkably, the
optimal unitary has a closed expression in terms of the
eigenvectors of HS and ρS [6].
However, in practical experimental settings, the system

of interest S interacts (weakly or not) with external degrees
of freedom, the environment E, on which we typically have
very limited control. Hence, it becomes crucial to properly
include the environment E and its interaction with the
system S in a work extraction task. Regarding this, a series
of approaches have been proposed so far. Ergotropy
extraction (EE) via thermal operations has been proposed
in Ref. [7]. Thermal operations mimic classical interaction
between S and E, i.e., they keep unchanged the sum of the

local energies of S and E [8]. This construction, however,
requires in general a detailed engineering of the S − E
interaction. One can instead consider all possible quantum
channels, defined by completely positive trace preserving
(CPTP) maps, acting locally on S as allowed operations [9].
Consequently, states whose energy cannot be decreased
by any local CPTP map are named local CP passive,
and semidefinite programming techniques can be used to
characterize them and compute upper bounds on the
extractable energy [10].
However, in this case, the energy extracted is not

unequivocally accepted as work as it typically implies
an entropy change. More recently, in Ref. [11], and in
analogy with ergotropy, the set of allowed operations is
restricted to all unitaries acting locally on the S subsystem.
Such notion of local ergotropy (LE) is defined as

ESðρSE; HSEÞ ≔ max
US ∈US

tr
�
HSEðρSE − USρSEU

†
SÞ
�
; ð2Þ

where ρSE is the joint state of SE,HSE is the full interacting
Hamiltonian

HSE ¼ HS þHE þ VSE; ð3Þ

with local terms HS, HE, and interaction VSE. Eq. (2)
expresses the fact that it is not possible to control the
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environmental degrees of freedom and the interaction
between the systems. Nonetheless, the energy functional
is evaluated with respect to the full interacting Hamiltonian
HSE making SE correlations a resource in several cases.
Both the definitions introduced in [9,11], namely CP
passivity and LE, share a notable operational problem:
they are not guaranteed to be nonincreasing in time. As the
time evolution of the joint system is not local, both
quantities are time-dependent when the state is evolving
under the compound HamiltonianHSE. This leads to exotic
situations, such as having passive states [1] according to
these quantities (that is states with zero extractable work)
evolving into nonpassive ones by the natural SE dynamics
with no active intervention on S (see, e.g., Fig. 1 of
Ref. [11]). A second important element to take into account
is the adiabatic approximation underlying the definitions
of CP- passivity or LE. In order to eventually generate a
local map on S, it is necessary to assume that the local
manipulation is carried out on a much shorter timescale
than the one governing the dynamics of the joint com-
pound SE.
The objective of this work is to introduce the concept of

extended local ergotropy (ELE), a figure of merit for work
extraction in open systems that solves all the previous
issues: (i) it is nonincreasing under the natural SE dynam-
ics, (ii) it does not require any adiabatic approximation, and
(iii) it does not involve any control on the environmental
degrees of freedom. The main point behind our construc-
tion is to take into account the free evolution of the SE
compound and its entangling potential to enlarge the set of
implementable unitary operations.
Extended local ergotropy—To start, we define the set

ŪexðHSEÞ (or Ūex for compactness) of extended local
unitaries as the closure [12] of the set

UexðHSEÞ≔
�
Us:t:U ¼ T exp

�
−i

Z
tf

0

HSE þHSðtÞdt
��

:

ð4Þ

Here, we do not allow for Hamiltonian control of E, but
only on S. These unitaries have a clear operational
character: they are not strictly local on S, but the non-
locality is provided only by the natural SE dynamics, in
particular, by its interacting term VSE. ELE then reads [13]

EexðρSE; HSEÞ ≔ sup
U∈ Ūex

tr
�
HSEðρSE −UρSEU†Þ�: ð5Þ

When the SE system is finite dimensional, the sup can be
replaced by a max. We notice that, by construction, ELE is
always greater or equal to LE and smaller or equal to the
global ergotropy (GE) EðρSE; HSEÞ of the SE compound
which measures the work extractable when global oper-
ations are granted in the model, i.e.,

ESðρSE; HSEÞ ≤ EexðρSE; HSEÞ ≤ EðρSE; HSEÞ: ð6Þ

Also, the functional (5) is convex in the state ρSE and, in
contrast with local ergotropy, nonincreasing under time
evolution induced by the free Hamiltonian HSE,

EexðρSEðtÞ; HSEÞ ≤ EexðρSEð0Þ; HSEÞ; ∀t ≥ 0: ð7Þ

Indeed, since time evolution is part of the Ūex set, ELE can
only decrease in time, proving (7). This is a property
generically demanded to a quantum resource. For instance,
entanglement is nonincreasing under LOCC operations.
Analogously, ELE is nonincreasing under free SE evolu-
tion. Notably, the equality

EexðρSEðtÞ; HSEÞ ¼ EexðρSEð0Þ; HSEÞ; ∀t ≥ 0; ð8Þ

holds if the HSE is bounded and has discrete spectrum. The
proof [14] relies on the quasirecurrence of unitary evolu-
tions [15,16]. In [17] estimates and upper bounds for such
recurrence time are reported. Nevertheless, these values are
excessively long to be relevant in any realistic scenario.
Consequently, in any practical situation, one should con-
sider ELE as a quantity that strictly decreases over time.
Interestingly, it can also be shown [14] that a continuous
Hamiltonian allows for irreversible flows of energy from S
to E, making ELE strictly decreasing in time.
Bang-bang representation—Bang-bang control proce-

dures are obtained by abruptly alternating between two
different types of Hamiltonian drivings. Such evolu-
tions proved to be very effective in generating optimal
control pulses in different contexts of quantum informa-
tion [18,19]. In our case we can show that, as long as the SE
compound is finite dimensional, all possible elements of
Ūex can be generated via bang-bang sequences formed by
free evolutions of the system and by strong driving pulses
on S [14]. Indeed, if the dimension of the Hilbert of SE
is finite, quantum control theory assesses that Ūex is a
compact and connected Lie group given by the exponential
of the dynamical Lie algebra [20,21]. Accordingly, it
follows that given U∈ Ūex it can be expressed as

U ¼ UðN−1Þ
S U0ðδtN−1Þ…Uð0Þ

S U0ðδt0Þ; ð9Þ

obtained by alternating unitary operations on the system,

Uð0Þ
S ;…; UðN−1Þ

S ∈US with time intervals δt of free-time
evolution, defined by the operatorU0ðδtÞ ≔ expð−iδtHSEÞ.
Further, the number of necessary unitaries N is uniformly
bounded. This result does not always apply to infinite-
dimensional models. For completeness, however, as an
example of the treatment in the infinite-dimensional dis-
crete case, we will analyze the Jaynes-Cummings model.
Systems with continuous spectra, instead, warrant a sep-
arate analysis that goes beyond the scope of this work.
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Saturation of the global entropy—While under general
conditions the gap between ELE and GE is expected to be a
strict one, for some models the two values may coincide.
An example is provided by a 1D chain ofM 1=2-spins with
Heisenberg-like nearest neighbor interaction,

HSE ¼
XM−1

n¼1

γ
�
σðnÞx σðnþ1Þ

x þ σðnÞy σðnþ1Þ
y þ ΔσðnÞz σðnþ1Þ

z

	
;

with σðiÞx;y;z describing the Pauli operators of the ith chain
element. In this case, identifying the first spin element with
S and the remaining ones with the environment E, using
the results of quantum control [22], one can show that
EexðρSE; HSEÞ ¼ EðρSE; HSEÞ via appropriate manipula-
tions of the local magnetic field acting on S [14].
Interestingly, for Δ ¼ 0, controlling instead the first two
spins even allows efficient control (i.e., quadratically longer
than for direct control) [23].
A further example of a system for which ELE and

GE can coincide is represented by the case where S is a
two-level (qubit) system interacting with a single electro-
magnetic cavity mode via a Jaynes-Cummings (JC) inter-
action [24]. In this case the Hamiltonian of the SE
compound is given by (setting ℏ ¼ 1)

HJC ≔ ωS
σz þ 1

2
þ ωEa†aþ Ω

2
ðσþ ⊗ aþ σ− ⊗ a†Þ;

ð10Þ

where a† (a) is the bosonic creation (annihilation) operator
of the cavity mode, ωS and ωE are, respectively, the
atom’s gap energy and the cavity’s frequency, and σ� ≔
ðσx � iσyÞ=2. Let Δω ≔ ωS − ωE be the detuning and

ϕn≔ 1
2
arctanð ffiffiffiffiffiffiffiffiffiffi

nþ1
p

Ω=ΔωÞ. For
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω2þΩ2

p
<ðωEþωSÞ,

the Hamiltonian’s ground state is j00iSE with eigenvalue
E0 ¼ 0, where j0iS and j1iS are the eigenstates of σz
corresponding to eigenvalues −1 and 1, and fjniEgn∈N are
bosonic Fock states. The excited states are

jnþi ¼ cosϕnj1iS ⊗ jniE þ sinϕnj0iS ⊗ jnþ 1iE;
jn−i ¼ sinϕnj1iS ⊗ jniE − cosϕnj0iS ⊗ jnþ 1iE; ð11Þ

with corresponding eigenvalues

En;� ¼ ωS=2þ ωEðnþ 1=2Þ � Δωn; ð12Þ

andΔωn ≔ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω2 þ ðnþ 1ÞΩ2

p
. For this model, we have

shown [14] that local controls on the spin degrees of
freedom are enough to have approximate density matrix
controllability on the joint system. More precisely, for each
pair of unitarily equivalent states ρSE, σSE, ∀ ϵ > 0 and for
almost all values of the coupling constant Ω [25–29]:

∃U∈UexðHJCÞ s:t: tr½ðUρSEU† − σSEÞ2� ≤ ϵ: ð13Þ

This means we can always bring the initial state arbitrarily
close to its passive state ρPSE. However, since HJC is
unbounded this does not guarantee that the energy of the
final state can be brought arbitrarily close to tr½HJCρ

P
SE�.

Despite this, for any finite-dimensional approximation

of the compound, we have EðρSE;HðNÞ
SE Þ¼ EexðρSE;HðNÞ

SE Þ,
where HðNÞ

SE is a truncation of HJC obtained by only
allowing up to N photons in the cavity. However, it is
not clear how to construct such a unitary, if there exist
upper bounds on the number of operations or on the time
needed to implement it. For this reason, in the next section
we show for different classes of initial states the amount of
work that can be extracted with minimal protocols, involv-
ing a small number of operations.
Practical protocols for the JC model—As a first exam-

ple, we consider the case where the two-level system of the
JC model is in the ground state j0i and the cavity mode is in
a Fock state jnþ 1i. Here, for zero detuning Δω ≔ 0, we
can alternate work extraction unitaries on the system (bit
flips) with free time evolutions to reexcite the atom and
extract one by one all the photons stored in the cavity. This
makes the bang-bang protocol saturating the ELE and the

GE of SE. Let δtn ≔ ðπ=2ΔωnÞ and UðbfÞ
S be the bit-flip on

qubit S, then [14]

UðbfÞ
S U0ðδt0ÞUðbfÞ

S …UðbfÞ
S U0ðδtnÞjψ iniSE ¼ j00iSE: ð14Þ

This implies

Eexðj0iS ⊗ jnþ 1iEÞ ¼ Eðj0iS ⊗ jnþ 1iEÞ ¼ ðnþ 1ÞωS;

ð15Þ

proving that ELE can saturate the ergotropy of SE. We
remark that, instead, for any n and value of the detuning,
the LE is zero, ESðj0iSjniEÞ ¼ 0. All this is depicted in
Fig. 1 where we plot the work extracted in terms of the
number of stepsN in the bang-bang protocol for input state
j0; ni. ELE reaches the GE value for N ¼ n. For com-
pleteness, we report work extracted with a generalization of
the protocol described in Eq. (14) [14] for different input
states. We consider qubit in the ground state and cavity in a
coherent state j0; αi and the eigenstate of the Hamiltonian
of SE, jmþi, with initial parameters (n, α, andm) such that
initial states have approximately the same GE [30]. Also for
these two examples, the final value of the ELE is consid-
erably high, despite not reaching GE performances.
Thermal states—We now move on to the case in which

the qubit and the cavity of the JC model are in a tensor
product of two thermal states. We then set

ρin ¼ γβS ⊗ γβE ; ð16Þ
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where the two thermal states refer to the respective local
Hamiltonians and βX ≔ 1=ðkBTXÞ are the inverse temper-
atures. First of all, as for the Fock initial state, we have zero
LE, ESðγβS ⊗ γβE ; HSEÞ ¼ 0 [31]. This means that any
observed nonzero ELE implies an advantage with respect
to LE. In this context it is also natural to compare ELE
performances with respect to the ergotropic extraction
framework defined in Ref. [7] which is based on thermal
operations.
In order to fairly make comparisons with the latter, we

will suppose that we can neglect the interaction when
evaluating the energy functionals, this makes the energy
functional depending only on the local states. However, this
does not mean that the existence of the interaction is not
important. Indeed, the set of allowed unitary operations
UexðHSEÞ is independent of the strength of the inter-
action [32]. Moreover, it is important to note that there
is, in general, no trivial ordering between the optimal
protocols of the ELE and EE settings, because the set of
unitary energy-preserving maps on SE is neither bigger nor
smaller than ŪexðHSEÞ.
For the considered JC model, we show in Fig. 2 that ELE

exceeds for large intervals of temperatures the extracted
ergotropy even for simple suboptimal protocols. We plot as
a function of the qubit temperature TS the work extracted
with an appropriate unitary operation UbbðTS; TEÞ∈ Ūex
(with fixed cavity temperature TE). In the inset we plot the
work extracted by Ubbð0; TEÞ∈ Ūex as a function of the
cavity temperature TE, while TS ¼ 0. The unitaries

UbbðTS; TEÞ of Fig. 2 where obtained via a bang-bang
protocol of the form (9). Here, time steps δtk are aimed to
maximize the ergotropy EðρS; HSÞ of the subsystem S via

free SE evolution given by U0ðδtkÞ. Local terms UðkÞ
S

implement either the corresponding local unitary that
maximizes (local) work extraction or a random energy-
preserving local unitary. The latter is implemented only in
case free evolution did not act (or equivalently acted with a
δtk ¼ 0) because it could not enhance the ergotropy of the
subsystem S on the given input state [14]. We emphasize
that unitaries UbbðTS; TEÞ are not optimal, meaning that
the red lines in Fig. 2 represent a lower bound for
EexðγβS ⊗ γβEÞ. In this setting, GE (and hence ELE)
becomes zero when the system and the bath reach the same
temperature. This comes as a consequence of the weak-
coupling assumption and from the passivity of the com-
pound thermal state with respect to the noninteracting
Hamiltonian HS þHE. At lower temperatures TS, the main
plot in Fig. 2 shows how ELE is greater than EE for a
considerable temperature interval. Furthermore, we notice
that in the assumed weak-coupling regime, we can define
work and heat as follows. Given a certain protocol for
energy extraction, i.e., given a U∈ Ūex, the work extracted
is W ¼ tr½HSEðρin −UρinU†Þ� and the heat is the energy
difference of the thermal bath Q ¼ tr½HEðρin −UρinU†Þ�.
Protocols implemented in Fig. 2 are also characterized by
considerably highW=Q ratio (in our caseW andQ are both
positive). Indeed, the final local state ρout;S ≔ trEðUρinU†Þ

FIG. 2. WorkW extracted via UbbðTS; TEÞ (red) and maximum
extractable ergotropy, as defined in Eq. (52) of Ref. [7] (green
dashed) for a qubit at temperature TS and bath at temperature TE.
Both curves are computed for varying T, while we fixed TE to the
value corresponding to 12 average photons. Inset: work extracted
via Ubbð0; TEÞ (red) and maximum extractable ergotropy (green
dashed) for a qubit in the ground state as a function of TE. The
work extracted via the considered bang-bang protocols (red
curves) represents a lower bound for ELE. We also report GE
values (black dotted). We have set kB ¼ 1 and ωS ¼ ωE ¼ 1,
Ω ¼ 0.1. Each UbbðTS; TEÞ requires less than 100 local
operations.

FIG. 1. Lower boundW for extended local ergotropy in the case
of the Jaynes-Cummings model, obtained using a slight gener-
alization of the bang-bang unitary of Eq. (14) (see [14] for
details). We plot the ratio betweenW and the GE, as a function of
the number of steps N . We consider different input states: j0; ni,
qubit in the ground state and cavity in a Fock state (red); j0; αi,
qubit in the ground state and cavity in a coherent state (green
dash-dotted); eigenstate jmþi of the Hamiltonian of SE (blue
dashed). Initial resources are such that initial states have
approximately the same GE [30]. With input j0; ni the bang-
bang protocol is optimal even in saturating the GE bound. We
have set n ¼ jαj2 ¼ 12, m ¼ 11, ωS ¼ ωE ¼ 1, Ω ¼ 0.1.
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is a (completely) passive state, which implies trðρout;SHSÞ ≤
ωS=2. This means that the heat exchanged is always smaller
than W þ ωS=2. For example, we get W=Q ≥ 0.763 for a
cavity temperature corresponding to 12 photons on average
and the qubit initially in the ground state (last point in the
inset of Fig. 2).
Discussion—We have investigated maximal work extrac-

tion from a system interacting with an environment via
manipulation of the local Hamiltonian on S. We introduced
an extended version of local ergotropy that exploits the free
evolution of the SE compound. We showed that extended
local ergotropy has conceptual and practical advantages
with respect to local ergotropy [11] and ergotropy extrac-
tion via thermal operations [7]. Most notably, it is not
increasing under free time evolution and rules out arbitrary
control of the environment or its interaction with the
system. We then quantified the performances and efficiency
of extended local ergotropy in the Jaynes-Cummings
model, using both analytical tools from quantum control
theory and numerical calculations on practical suboptimal
protocols.
Finally, we notice that our work leaves open questions

addressable via quantum control methods, such as identi-
fying the shortest amount of time or number of local
unitaries needed to perform the optimal protocol or those
Hamiltonians for which ELE saturates the global ergotropy.
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λ ≠ 0, see [14].
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