

Frustrating quantum batteries

A. G. Catalano

ICQE 2025 Padova, 06/06/2025

The MOQS programme has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 955479.

Fabio Franchini

Salvatore Marco Giampaolo

Vittorio Giovannetti

Oliver Morsch

Frustrating quantum batteries, PRX Quantum 5, 030319

- Work reservoirs: quantum mechanical systems used to temporarily store energy that can later be extracted and transferred to a second system in a coherent way¹.
- The simplest example of a thermal machine.
- QBs can achieve more efficient and rapid charging processes compared to classical systems. ^{2,3,4}

A. G. Catalano

¹R. Alicki, M. Fannes, PRE 87, 042123 (2013)

²G. M. Andolina, M. Keck, A. Mari, V. Giovannetti, and M. Polini, PRB 99, 205437 (2019)

³F. C. Binder, S. Vinjanampathy, K. Modi and J. Goold, New J. Phys. 17 075015 (2015)

⁴ F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, and K. Modi, PRL 118, 150601 (2017) C

Open questions:

- stabilization of stored energy⁵.
- Investigation of optimal energy transfer protocols⁶.
- Experimental realization.

• . . .

⁵S. Gherardini, F. Campaioli, F. Caruso, and F. C. Binder, Phys. Rev. Res. 2, 013095 (2020)

⁶S. Tirone, R. Salvia, and V. Giovannetti, Phys. Rev. Lett. 127, 210601 (2021) □ ► < ♂ ► <

We design a complete protocol for the realization of an efficient QB based on a quantum many-body system.

- Charging.
- Stabilization of stored energy against decoherence.
- Work transfer to an ancillary system.

• Our QB is based on a quantum Ising chain in a transverse field.

$$H = J \sum_{j=1}^{N} \sigma_j^x \sigma_{j+1}^x - h \sum_{j=1}^{N} \sigma_j^z$$

• It can be realized on Rydberg atoms platforms.

1. Charging protocol

• We start from the ground-state of the Ising chain with transverse field h_0

$$\rho_{0} = |\epsilon_{0}\rangle \langle \epsilon_{0}|.$$

• To charge the battery we perform a global quantum quench in the magnetic field

• The energy stored in the battery is $E_{in} = \text{Tr}(\rho_B H) - \text{Tr}(\rho_0 H)$.

- An important characterization of a QB is given in terms of the amount of energy that we can extract from it.
- Extraction is performed applying a transformation that brings the battery to a final state with lower energy.

- An important characterization of a QB is given in terms of the amount of energy that we can extract from it.
- Extraction is performed applying a transformation that brings the battery to a final state with lower energy.
- This can be done through a unitary transformation U.
- The amount of energy extracted during the process can be quantified as

$$E_{ex} = \operatorname{Tr}\left(U
ho_B U^{\dagger}H_B
ight) - \operatorname{Tr}(
ho_B H_B).$$

- The goal is to maximize the amount of energy that can be extracted.
- The maximum amount of work extractable with a unitary transformation is called the ergotropy *W*:

$$W = \max_{U} \bigg\{ \operatorname{Tr} \Big(U \rho_B U^{\dagger} H_B \Big) - \operatorname{Tr} (\rho_B H_B) \bigg\}.$$

• In order to perform this maximization, it's useful to consider the spectral decompositions of ρ_B and H_B :

$$\rho_{B} = \sum_{j} r_{j} |r_{j}\rangle \langle r_{j}|,$$
$$H = \sum_{j} \epsilon_{j} |\epsilon_{j}\rangle \langle \epsilon_{j}|$$

with $\epsilon_j \leq \epsilon_{j+1}$ and $r_j \geq r_{j+1}$.

• Since a unitary transformation cannot modify the eigenvalues of the density matrix, the maximum amount of work is extracted by bringing the battery to the final passive, equilibrium state $\sigma = \sum_{i} r_{i} |\epsilon_{j}\rangle \langle \epsilon_{j}|$.

⁷A. E. Allahverdyan, R. Balian and T. M. Nieuwenhuizen, "Maximal work extraction from finite quantum systems", Europhysics letters, **67**, 565 (2004)

• Since a unitary transformation cannot modify the eigenvalues of the density matrix, the maximum amount of work is extracted by bringing the battery to the final passive, equilibrium state $\sigma = \sum_{i} r_{i} |\epsilon_{i}\rangle \langle \epsilon_{j}|$.

• Therefore⁷

$$W = \sum_{j,k} \epsilon_j r_k \left(|\langle \epsilon_j | r_k \rangle |^2 - \delta_{jk} \right).$$

• The ergotropy thus represents a figure of merit that tells us the maximum amount of energy that we can extract from our quantum battery.

⁷A. E. Allahverdyan, R. Balian and T. M. Nieuwenhuizen, "Maximal work extraction from finite quantum systems", Europhysics letters, **67**, 565 (2004)

- For our QB, since the charging protocol is unitary and ρ_B is a pure state, then $W = E_{in}$.
- However, decoherence effects might reduce the purity of the battery and, as a consequence, its ergotropy.

• To take these effects into account we consider a situation in which after the quench the battery state converges to the diagonal ensemble⁸:

$$\rho_B = \sum_n p_n \ket{\epsilon_n} \langle \epsilon_n | \, .$$

• For a diagonal battery state $\rho_B = \sum_n p_n |\epsilon_n\rangle \langle \epsilon_n|$ the ergotropy is given by

$$W = \mathrm{Tr}\{\rho_B H\} - \sum_n r_n \epsilon_n,$$

where the $\{r_n\}$ is a rearrangement of $\{p_n\}$ such that $r_n \ge r_{n+1}$.

⁸G. J. Milburn, "Intrinsic decoherence in quantum mechanics", Physical Review A; 44, 5401 (1991) + (= + = -) 🤉 🖓 🔍

2. Stabilization of the stored energy

• We measure the fraction of energy available as ergotropy $\eta = \frac{W}{E_{in}}$.

- η increases as we get close to the critical point $h_0 = h^* = |J| = 1$.
- Gap vanishes ⇒ closer energy levels ⇒ higher ergotropy!
- Idea: use topologically frustrated chain!

Topologically frustrated quantum Ising chain

• Same model, but different boundary conditions.

$$H = J \sum_{j=1}^{N} \sigma_j^x \sigma_{j+1}^x - h \sum_{j=1}^{N} \sigma_j^z$$

- Dominant antiferromagnetic (AFM) interactions (J > 0);
- Frustrated boundary conditions (FBCs):
 - odd number of spins N;
 - periodic boundary conditions (PBCs).

Frustration closes the gap

• Gap closing as N^{-2} in the frustrated model⁹ ¹⁰.

• Potential to increase the ergotropy!

A. G. Catalano

⁹V. Marić, S. M. Giampaolo and F. Franchini, "Quantum phase transition induced by topological frustration", Communications Physics 3, 220 (2020)

¹⁰ A. G. Catalano, D. Brtan, F. Franchini and S. M. Giampaolo, "Simulating continuous symmetry models with discrete ones", Physical Review B, **106**, 125145 (2022)

Frustrated vs Unfrustrated: Robustness to decoherence

 η_{max} vs h_0 for $N=25, \ \Delta h=0.01.$

- Frustrated and unfrustrated system are comparable at $h_0 = h^*$;
- frustrated system much more resistent moving towards the classical point: higher η than the critical system.

Frustrated vs Unfrustrated: Robustness to decoherence

This is valid also for different system's sizes and quench amplitudes.

Left: η_{max} vs N for h0 = 0.751 and h1 = 0.7. Right: η_{max} vs Δh for $h_0 = 0.001$ and N = 25.

3. Energy transfer to an ancillary qubit

• We connect the charged battery to an ancillary spin through a single-link interaction:

$$\begin{split} H &= J \sum_{j=1}^{N} \sigma_{j}^{x} \sigma_{j+1}^{x} - h \sum_{j=1}^{N} \sigma_{j}^{z} + \lambda H_{int} + \omega \sigma_{S}^{z}, \\ H_{int} &= \sigma_{1}^{+} \sigma_{S}^{-} + \sigma_{1}^{-} \sigma_{S}^{+}. \end{split}$$

Ergotropy of the ancillary spin

• We measure the fraction of its maximal ergotropy acquired by the ancillary spin:

$$\kappa = \frac{W_S}{2\omega}$$

- $\kappa = 0$ for the unfrustrated system \Rightarrow only heat transfer;
- $\kappa > 0$ for the frustrated battery \Rightarrow work transfer!

- New charging protocol based on global quantum quench of the external field: easy and efficient.
- Topological frustration enhances the performance of quantum batteries:
 - Robustness to decoherence;
 - higher ergotropy transfer.
- Possibility of realization with Rydberg atoms.

Outlook:

- Other quench protocols even more efficient.
- Beyond quantum battery: other technological applications.

Frustrated vs Unfrustrated: charging time

- We consider as the charging time of the battery the time τ* needed by the ergotropy to reach its first local maximum.
- Even though τ^* is comparable for frustrated and unfrustrated systems, the former have a higher value of η and W.

- If charging is not fast enough, we cannot neglect decoherence effects during the quench protocol.
- We implemented Milburn model¹¹ for decoherence to the diagonal ensemble in the charging protocol ⇒ modified Schrödinger dynamics:

$$\dot{
ho} = -\imath [H_1,
ho] - rac{1}{2
u} [H_1, [H_1,
ho]],$$

with $H_1 = H_B + \Delta h \sum_j \sigma_j^z$.

¹ G. J. Milburn, "Intrinsic decoherence in quantum mechanics", Physical Review A7 44, 5401 (1991) > 🕢 🛓 👘 🚊 👘 🔍 🤇

Effects of decoherence on the charging protocol

 η_{max} vs Δh for different values of the decoherence frequency: $\nu = 10, 1, 0.1, 0$ (squares, triangles, circles, dashed line). Data are obtained for a chain of N = 15 spins, for $h_0 = 0.001$.

Energy transfer

• We work at $\omega = |J| = 1$, h = 0.02 and $\lambda = 0.01$. In this way, even though H_{int} does not commute with the rest of the hamiltonian, energy transfer from the battery to the spin is possible without the interaction absorbing / giving a relevant amount of energy.

ICQE 2025 Padova, 06/06/2025 20 / 20