Journal Club

Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS

Europe/Rome
0/0-3 - Sala Rosino (Dipartimento di Fisica e Astronomia - Edificio ex-Rizzato)

0/0-3 - Sala Rosino

Dipartimento di Fisica e Astronomia - Edificio ex-Rizzato

56
Show room on map
Description

Speakers: Giorgia Girardi (Università degli Studi di Padova)

Lyman Break Galaxy (LBG) candidates at z>10 are rapidly being identified in JWST/NIRCam observations. Due to the (redshifted) break produced by neutral hydrogen absorption of rest-frame UV photons, these sources are expected to drop out in the bluer filters while being well detected in redder filters. However, here we show that dust-enshrouded star-forming galaxies at lower redshifts (z<7) may also mimic the near-infrared (near-IR) colors of z>10 LBGs, representing potential contaminants in LBG candidate samples. First, we analyze CEERS-DSFG-1, a NIRCam dropout undetected in the F115W and F150W filters but detected at longer wavelengths. Combining the JWST data with (sub)millimeter constraints, including deep NOEMA interferometric observations, we show that this source is a dusty star-forming galaxy (DSFG) at z~5.1. We also present a tentative 2.6sigma SCUBA-2 detection at 850um around a recently identified z~16 LBG candidate in the same field and show that, if the emission is real and associated with this candidate, the available photometry is consistent with a z~5 dusty galaxy with strong nebular emission lines despite its blue near-IR colors. Further observations on this candidate are imperative to mitigate the low confidence of this tentative submillimeter emission and its positional uncertainty. Our analysis shows that robust (sub)millimeter detections of NIRCam dropout galaxies likely imply z=4-6 redshift solutions, where the observed near-IR break would be the result of a strong rest-frame optical Balmer break combined with high dust attenuation and strong nebular line emission, rather than the rest-frame UV Lyman break. This provides evidence that DSFGs may contaminate searches for ultra high-redshift LBG candidates from JWST observations.