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Analytical Tools used for the 2-body pb in classical GR 
PM=Post-Minkowskian expansion in G/c^2

PN=Post-Newtonian expansion in 1/c^2= G/c^2, v^2/c^2 or c^(-2)d^2/dt^2

MPM= Multipolar post-Minkowskian expansion+ PN-matching

MAE= Matched Asymptotic Expansion

ADM= Arnowitt-Deser-Misner Hamiltonian approach to GR

GSF= Gravitational Self Force: expansion in m1/m2

EOB= Effective One-Body approach

EFT= Effective Field Theory approach

NRGR= Non-Relativistic General Relativity 

TF= Tutti Frutti approach

FWF=  Fokker-Wheeler-Feynman  approach
ACV= Amati-Ciafaloni-Veneziano
BCRSSZ= Bern, Cheung, Roiban, Shen, Solon, Zeng



The GR two-body problem (1) 

1912-1916:  Einstein introduced both the PM, nonlinearity expansion: 
gµ⌫ = ⌘µ⌫ +Gh1µ⌫ +G2h2µ⌫ + · · ·

and the PN expansion:  v/c <<1, T^ij << T^0i << T^00; hence h_0i << h_00,… 
Droste 1912-1916 develops 

the PN expansion, using   
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Droste-Lorentz 1917, Einstein-Infeld-Hoffmann 1938: 
1PN-accurate dynamics (and Lagrangian) of 2-body systems



The GR two-body problem (2)
Higher PN approximations ca.1970 

(Chandrasekhar-Nutku’69, Chandraskhar-Esposito’70,  
Burke’69-70,Thorne’69, Ohta-Okamura-Kimura-Hiida’73)

IR difficulties at 2PN (v^4/c^4) and 2.5PN (v^5/c^5):
incomplete and inconclusive results at 2PN and 2.5PN

Root of IR difficulties: general retarded wave
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Burke (69-70) suggested to use Matched Asymptotic Expansions
to have a well-defined matching between nearzone and wavezone gravitational 

fields, and to derive the Radiation-Reaction force acting on the system. 
However, his implementation was flawed (see Blanchet-TD’84)



The GR two-body problem: PM comes back
September 1974:  Discovery binary pulsar PSR1913+16 (Hulse-Taylor’75)
An observational handle on gravitational radiation-reaction (Wagoner’75)

December 1978: 9th Texas Symposium (Munich):
J. H. Taylor announces that the orbital-period of PSR1913+16 decreases as:
 dP_b/dt = (1.33 +/- 0.25) [dP_b/dt ]_Quadrupole Formula

Unsatisfactory aspects of the then-existing « derivations » of the dynamics
of binary systems in GR (emphasized by J. Ehlers and others):

Divergences appear in the 2.5PN expansion (Chandrasekhar-Esposito’70)
Incomplete treatment of nonlinear effects in the NZ-WZ matching (Burke-Thorne’69)
Inapplicability of weak-field PN to compact objects
No explicit derivation of the (conservative) 2PN eqs dynamics
Lack of clear proof of a balance between system’s mechanical energy loss and GW flux

Motivates a PM-based 
approach to 2-body 
dynamics including
radiation-reaction 
(Rosenblum’78,Westpfahl’79,
Bel-TD-Deruelle-Ibanez-Martin’81)

retarded
propagator



Eclectic approach to the 2-body pb at G^3 and 1/c^5
(TD-Deruelle’81, TD’82, using Bel et al.’81)

First obtention of the 2PN+2.5PN eom
2PN acceleration-dept Lagrangian
Derivation of the observable dP_b/dt
from the dynamics without assuming 
energy balance

Use of PM approximation: G^2 + part of G^3
Eqs of motion (because non conservative)
Followed by PN expansion of PM
Proof that the O(G^2/c^5) mechanical angular momentum 
loss agrees with the radiated ang. mom. (TD-Deruelle’81)
Matched Asymptotic Expansion for compact bodies
Skeletonization + Use of analytic regularization 
(proven to be equivalent to dim.reg)
Introduction of Love number k of compact bodies
Proof that k_BH=0 —> Effacing Property
Presence of a pole in the harmonic-coord metric 
at 4PM-3PN:  G^3 du/dt/epsilon

Gret = ⇤�1
ret



Practical Techniques for Computing the Motion of Compact Bodies (NS or BH) 
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Skeletonization :                     point-masses   (Mathisson ’31) (1st level of EFT) 

delta-functions in GR : Infeld ’54, Infeld-Plebanski ’60 

justified by Matched Asymptotic Expansions ( « Effacing Principle » Damour ’83 

possible internal-structure dependence in strong self-gravity objects (NSs, BHs) 

only arise at 5PN= 5-loop level) 

UV divergences linked to self-field effects (loops on external lines) [Dirac, 1938] 

QFT’s analytic (Riesz ’49) or dimensional regularization (Bollini-Giambiagi ’72, 

t’Hooft-Veltman ’72) imported in GR (Damour ’80, Damour-Jaranowski-Schäfer ’01, …) 

Feynman-like diagrams  for iteratively solving Einstein’s eqs; for iteratively computing 

the retarded eqs of motion; and for iteratively computing the FWF-type action 

Gret = ⇤�1
ret

Vertices defined by Einstein’s action
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Reduced Worldline Action in Electrodynamics 
(Fokker 1929; Wheeler-Feynman 1949)
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« Integrate out » the field A_mu in the total (particle+field) action

One-photon-
exchange 
diagram

The effective action S_eff(x_a) was heavily used in the (second) Wheeler-Feynman paper 
(1949) together with similar diagrams to those used by Fokker

+Sgf

time-symmetric Green’s function G.
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Reduced Action in Gravity and its PM Diagrammatic Expansion

Needs gauge-fixed* action and time-symmetric Green function G.
*E.g. Arnowitt-Deser-Misner Hamiltonian formalism or harmonic coordinates.

Perturbatively solving (in dimension D=4 + eps) Einstein’s equations 
to get the equations of motion and the action for the conservative dynamics

PN: Infeld-Plebanski ‘60 
PM:TD-Esposito-Farese ‘96

O(G)= 1PM=
Newtonian 

+ (v/c)^n corrections

O(G^2)=2PM
=1 loop -> 1PN

O(G^3)=3PM
=2 loop-> 2PN

O(G^5)=5PM
=4 loop-> 4PN

time-symmetric 
Green’s function G
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Within the PM approach: one used a PN-expansion of the PM dynamics
to separate conservative and radiation-reaction effects; e.g. at the 2.5PN
(v^5/c^5) accuracy it was explicitly shown that the 2PN dynamics derives
(in harmonic coordinates) from a higher-derivative Lagrangian, while the 

G^2/c^5 + G^3/c^5 EOM terms where causing losses of mechanical E and L 
that agreed with the radiative losses (TD-Deruelle’81,TD’82).

Separating Conservative and Radiation-Reaction Effects

conservative 2PNdissipative

dissipative 
G^2/c^5 + G^3/c^5

acceleration-dependent Lagrangian



Separating Conservative and Radiation-Reaction Effects

Within the ADM approach (Schaefer’85, Jaranowski-Schaefer’97) 

matter dof radiative dof 

Hamiltonian for matter + radiative dof obtained by integrating out the 
potential-mode-interactions by solving the constraints in a Coulomb-like gauge   

gravity analog of 
Coulomb gauge

r ·A = 0 $ @jh
TT
ij = 0

The 2 radiative dof h_ij^TT pi^{ijTT} satisfy wavelike equations:

Poincare
invariance
constraints



MULTIPOLAR POST-MINKOWSKIAN FORMALISM (BLANCHET-DAMOUR-IYER)
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Decomposition of space-time in 
various overlapping regions:

1. near-zone: r << lambda :  PN 
2. exterior zone: r >> r_source:  MPM
3. far wave-zone: Bondi-type expansion

then matching between the zones

in exterior zone, iterative solution of  Einstein’s 
vacuum field equations by means of a double 
expansion in non-linearity and in multipoles, with 
crucial use of analytic continuation (complex B) for 
dealing with formal UV divergences at r=0

g = ⌘ +Gh1 +G2h2 +G3h3 + ...,
⇤h1 = 0,
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The PN-matched MPM formalism has allowed to compute 
the GW emission to very high accuracy (Blanchet et al)
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Nonlocality in time: Tail-transported 
hereditary effects (Blanchet-Damour ’88)

Hereditary (time-dissymetric) modification
of the quadrupolar radiation-damping force,
signalling a breakdown of a basic tenet of
PN expansion at the 4PN level: (v/c)^8 fractional

generates a time-symmetric
nonlocal-in-time 4PN-level action

(Damour-Jaranowski-Schaefer’14)
which was uniquely matched to the 
local-zone metric via the Regge-Wheeler-
Zerilli-Mano-Suzuki-Takasugi- based
work of Bini-Damour’13



potential gravitonslong-wavelength
radiation field: 

omega \sim k  \sim v/r12 

NRGR EFT approach (Goldberger-Rothstein’06…Gilmore-Ross, Foffa-Sturani, Porto, Levi,… )

potential gravitons
with 2-point function

radiation fieldmatter dof

both nearzone expanded 
and time-symmetric ??

Use v<<1

k \sim 1/r12

Then ?

exp(iSe↵ [xa]) =

Z
D¯

h exp[iSNRGR(xa,
¯

h)]

Complex eff. action with Feynman propagator ? (Foffa-Sturani’13)

The EFT approach has brought a new  perspective on some important aspects 
of the 2-body problem (e.g. Goldberger-Ross’10, Foffa-Sturani’13, Cheung-Rothstein-Solon’18,…).
It would be interesting to better delineate the advantages (and disadvantages) wrt the other approaches.



A tale of many Green’s functions
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+ issues of: <in,out>; <in,in>, FWF, Schwinger-Keldysh,…



1:1 map

µ =
m1m2

m1 + m2

Level correspondence 
in the semi-classical limit: 
Bohr-Sommerfeld -> 
identification of  
quantized action variables
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Real 2-body system 
(in the c.o.m. frame) An effective particle of mass mu  in some effective metric

mass-shell constraint

0 = gµ⌫e↵ (X)PµP⌫ + µ2 +Q(X,P )

Crucial energy map

gµ⌫e↵ (X)

E = f(E)

Effective One-Body (EOB) approach: H + Rad-Reac Force
Historically rooted in QM: Brezin-Itzykson-ZinnJustin’70
eikonal scattering amplitude+ Wheeler’s:`Think quantum mechanically’



EOB

PN

NR

PM

SF
LIGO’s bank of EOB search templates

(Taracchini et al.'14, Bohé et al.’17,Ossokine et al.’20, Nagar et al.’20)

v ⌧ c

R � GM/c2

v ⇠ c

R ⇠ GM/c2

R � GM/c2

QFT
perturbation

theory

LISA’s templates
via EOB[SF] ?

STRING
perturbation

theoryQuantum Scattering Amplitudes

m1 ⌧ m2

EOB=  Effective-One-Body
Buonanno-Damour 1999, 2000; 
Damour-Jaranowski-Schaefer 2000;
 Damour 2001

Classical Scattering
Experimental
Mathematics,

Harmonic
Polylogarithms

Bini-TD-Geralico-
Laporta-Mastrolia’20

EFT

MPM



Recent Advances
Tutti Frutti 

(Bini-TD-Geralico): 
combines many tools:
PN,PM,MPM,GSF,EFT,

EOB,Delaunay
determines 5PN and 6PN 
dynamics modulo a few 

undetermined parameters

5PN

a⌫
2
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2

5

Bluemlein-Maier-Marquard-Schaefer  2010.13672
5PN potential contributions from EFT approach



Using classical and/or quantum gravitational scattering

Extracting PN-expanded dynamics from quantum scattering amplitudes:
Corinaldesi ’56 ‘71, Barker-Gupta-Haracz 66, Barker-O’Connell 70, Iwasaki 71, Hiida-
Okamura72,Okamura-Ohta-Kimura-Hiida 73,…,Bjerrum-Bohr-Donoghue-Vanhove 2014,…. 

Extracting PM-expanded dynamics from classical and/or quantum scattering:
TD’16,18,19; CheungRothsteinSolon’18; BCRSSZ’19;….

Several aspects: 

dictionary classical scattering  <—> Hamiltonian
dictionary quantum scattering <—> Hamiltonian

using either PN-expansion or PM-expansion
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PM Perturbation Theory for Classical Gravitational Scattering
Bel-Martin ’75-’81, Portilla ’79, Westpfahl ’85, Damour’16’18,…,Kälin-Porto’20
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Simple Map: Scattering angle <->  EOB dynamics
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Application to the ACV eikonal scattering phase
(massless or ultra-relativistic scattering)
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Amati-Ciafaloni-Veneziano’90+ Ciafaloni-Colferai’14+ Bern et al’20+ DiVecchia et al’20

valid in the HE limit
gamma-> infty
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Using the  chi—> Q dictionary 
this corresponds to the HE limits:
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i.e. an HE limit for the EOB 
mass-shell  condition (TD’18)
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3PM computation (Bern-Cheung-Roiban-Shen-Solon-Zeng’19) 
using a combination of techniques:  generalized unitarity; BCJ double-copy; 2-loop amplitude of 

quasi-classical diagrams; EFT transcription (Cheung-Rothstein-Solon’18); 
resummation of PN-expanded integrals for potential-gravitons
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puzzling HE limits when compared to ACV and Akcay et al’12

instead of qACV
3 ⇡ +1�2

confirmations: 5PN (Bini-TD-Geralico’19); 6PN (Blümlein-Maier-Marquard-Schäfer’20,

             Bini-TD-Geralico’20); 3PM (Cheung-Solon’20, Kälin-Porto'20)



Suggested resolutions of these puzzles: 
non commutative limits?

h—> 0 
h—> infty

G—>0
[1/c —>0]

gamma—> infty
q=hbar/b—>0

mass—>0
nu—> 0

Bohr 1948: 
The domain of validity of the 
Born-Feynman expansion is  
GE_1 E_2/(hbar v) << 1, while
the domain of validity of the 
classical scattering is  
GE_1 E_2/(hbar v) >> 1! 

(BCRSSZ’19,TD’19,…)

Recently DiVecchia et al. brought a new light on this puzzle
by emphasizing (using two different approaches) the

crucial role of radiative effects for recovering HE finiteness
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Conservative vs Radiation-reacted 
Classical Gravitational Scattering

Studied analytically in Bini-TD’12; 
and numerically in TD-Guercilena-Hinder-Hopper-Nagar-Rezzolla’14
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Radiation-Reaction Contribution to the
Classical Scattering Angle (TD 2010.01641)

�tot = �cons + �rad

where, to first order in Rad-Reac, one has (Bini-TD’12)

O(G^3) O(G^2)  [TD-Deruelle’81]chi^cons=O(G^1)
O(G^3)

O(G^4)

enough to compute J^rad  in PM at O(G^2). Waveform:
DeWitt’71, Thorne’80

a priori need the 2PM, O(G^2)-accurate waveform (Kovacs-Thorne’77, Bel et al’81, Westpfahl’85) 
[though one can simplify the computation TD’20]
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Low-velocity limit agrees with Bini-TD’12

HE 
(or massless)

limit 1
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contains the same arctanh as ch^{BCRSSZ} but with opposite coefficient when v—>1
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Summary
�pµ =

Gsym = P
1

k2

Gret = P
1

k2
+ i⇡sign(k0)�(k2)

GF = P
1

k2
+ i⇡�(k2)

ṗ = �@H(q, p)

@q
+ FRR

F^RR is small, O(G^2/c^5),
and << F^cons at low-velocities,
but is crucially important at  HE

to ensure the existence of a massless limit

Quantum vs classical ?
Which action? 

FWF, Schw-Keldysh,
log <vac-vac>

Non-commutativity of 
G—>0 and HE limits
must also play a role


