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EFT methods

for


vortex-sound interactions
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Hydrodynamics
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zero T super-fluid vs. ordinary fluid

Hydrodynamics
 Hydrodynamics

compressional (sound) sector

transverse (vortex) sector

Hard (gapped)
 Soft (gapless)

⇥⇥� ⇥v = 0

⇥⇤� ⇥v ⇥= 0
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Phenomenology
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For vortex lines

~v(~x) = � �

4⇡

Z
(~x� ~x 0)

|~x� ~x 0|3 ⇥ d~x 0 1st order EOM!

Vortex dynamics (incompressible limit)

� =

I
~v · d~̀ $ I

~v $ ~B

Biot-Savart:

~r · ~v = 0 ~! = ~r⇥ ~v
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Unlike m~a = ~Fext

No room for “forces”

No free initial 

condition for v

Instantaneous v 
determined by 


geometry
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For vortex rings

Far away:

~v =
�

4⇡R
log(R/a) n̂

with ~µ = (⇡R2)� n̂~v(~x) = ~Bdipole



Excitations: Kelvin waves

Two modes overall (         )6= 2 + 2

!± =
�

2⇡
k2 log(1/ka)

fewer modes than 2-derivative eom


``non-local’’ dispersion relation
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(Thomson 1880)
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U. of Chicago



How to make sense of  
their dynamics?
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“Light” degrees of freedom 


Symmetries


Derivative expansion
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� � `UV

! ⌧ !UV

(⇤UV · ⌅�)n , (1/�UV · ⇥t)n

� ! G[�]

L = f(�, �)

Our approach: Effective field theory

�



Lagrangian vs. eom

More economical yet more complete


Automatically conserves energy


Straightforward to couple to other 
systems (gravity, EM, etc.)


Symmetries = conservation laws


Allows canonical quantization


...
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Spontaneously broken Q 


Finite density for Q


Symmetries: Poincaré + shift 


Bulk action:

For superfluids
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(same classical eom as fluids)

light Goldstone �(x)

�(x) = µt+ ⇡(x)

phonon

S =

Z
d4xP (X) + . . .

�(x) ! �(x) + a

X ⌘ (@µ�)
2

eq. of state
(Son 2002)



14

Phonon-phonon scattering

d�

d⌦
=

p6

c2s⇢
2
f(cos ✓)

Figure 2: Lowest order contributions to phonon-phonon scattering in the P (X) theory.

in perfect agreement with (44).
Consider now a slightly more complicated process: elastic hard phonon-soft phonon scat-

tering. To simplify the algebra somewhat, let’s assume that we have an head-on collision4,
i.e. k̂ = �p̂.

For the P (X) theory, the relevant diagrams are those of Fig. 2, and we need the expansion
of the action up to quartic order. In addition to the terms in (41), we have

Z
d
4
x
⇢

c2
s

⇢
g4

4!c4
s

⇡̇
4 � 1

4c2
s

⇡̇
2(~r⇡)2 +

1

4!
(~r⇡)4

�
. (58)

The tree-level scattering amplitude is

iM =
2ic2

s

⇢
⇥ 1� g3 � g

2
3 + g4 � (1 + g3) cos ✓

1� cos ✓
⇥ p

2
k
2
, (59)

where k is the incoming soft momentum, p is the incoming hard momentum, and ✓ is the angle
between the momentum of the hard phonon and that of the outgoing soft one. We have also
used that, by conservation of energy and momentum, the outgoing soft momentum is equal
to

k
0 ' 2k

(1� cos ✓)
(60)

in the limit of small k and k
0 (compared to p).

On the other hand, for the point-particle theory, if we treat again the hard phonon as
an external source, the diagrams are those in Fig. 3, with the understanding that there is
no propagator associated with the straight double lines. The third diagram arises because
of a technical subtlety: even in the k ⌧ p limit, it is incorrect to treat the hard phonon as
an external source as far as intermediate states are concerned. This is because in the point-
particle theory expanded about the unperturbed trajectory ~x(t) = ~v0 t, the perturbations
�~x(t) of the trajectory are gapless—they are the Goldstone modes of spontaneously broken
translations—and can thus be excited at arbitrarily low energies. It turns out that their
contribution as intermediate states to the amplitude under study is of the same order as the
other contributions of fig. 3, and should thus be kept (the same is true for, e.g., low frequency
Compton scattering in QED.) The same holds for the fluctuations of p, since p is one of the
canonical conjugate variables of ~x. That is why we also need to consider the third diagram
in Fig. 3, in which the wiggly double line represents the propagator of the fluctuations in the

4In systems with boost invariance, this corresponds to a choice of reference frame. Here however boost
invariance is broken by the medium, and so this assumption corresponds to a specific choice of initial state.

14



Problem: 


Solution:   dual 2-form


Analog of dual EM field for magnetic monopoles


Equivalent bulk dynamics:

Coupling to strings
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eq. of state

� ! �+ 2⇡ (“defect”)

@[µA⌫⇢] / ✏µ⌫⇢↵@
↵�

S =

Z
d4x ⇢(Y ) + . . .

Y ⌘ (@[µA⌫⇢])
2



Effective string theory
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Degrees of freedom & symmetries
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Bulk: A[µ⌫]

A00 = 0

A0i = nAi(x)

Aij = n ✏ijk(x
k +Bk(x))

Aµ⌫ ! Aµ⌫ + @µ⇠⌫ � @⌫⇠µ

~r · ~A = 0

~r⇥ ~B = 0

phonon
hydro-photon (analog of Coulomb V)

String: Xµ(⌧,�)

arbitrary parameters

reparametrization invariance

Poincaré 4-vector



Action
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S = Sbulk + SKR + . . .

Bulk: Y ⌘ (@[µA⌫⇢])
2

Kalb-Ramond:

Z
d4x ⇢(Y ) + . . .

�

Z
d�d⌧ Aµ⌫ @�X

µ@⌧X
⌫

q

Z
Aµdx

µ(analog of                )

Perturbation theory:
Xµ ! background + ~⇡(⌧,�)

Aµ⌫ ! background + ~A(x), ~B(x)



Energy of straight string
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The idea is to formally perform the path-integral over ~A and ~B, for given ~X fields,

eiSe↵ [X] =

Z
DADB eiS[X,A,B] . (6.5)

To lowest order, this shifts the e↵ective action of ~X by

Se↵ [ ~X] �

Z
d4xd4y

⇥
1
2J

i
A(x) iG

ij
A(x� y) J j

A(y) +
1
2J

i
B(x) iG

ij
B(x� y) J j

B(y)
⇤
, (6.6)

where the G’s are the propagators (2.18). This is depicted by the self-energy diagram of
Fig. 1: a string in its ground state exchanges ~A and ~B fields with itself; such a process
shifts the action of the string, and thus its energy. For a static configuration such as
ours, the energy is defined by S = �

R
dtE. The shift in the energy thus is

E � �

Z
d3~p

(2⇡)3
⇥
1
2J

i
A(�~p ) iGij

A(~p ) J
j
A(~p ) +

1
2J

i
B(�~p ) iGij

B(~p ) J
j
B(~p )

⇤
, (6.7)

where the propagators have to be computed at zero frequency, and the J ’s now stand
for purely spatial Fourier transforms.

Figure 1: Diagrams contributing to the self-energy of the vortex line. In the first dia-

gram, the hydrophoton (red, dashed line) is emitted and reabsorbed by the worldsheet.

In the second diagram, the same process occurs for the phonon (blue, wavy line).

Including the tension contribution, we get an energy per unit length

dE

dz
= T +

1

2

n̄2�2

w̄

Z
d2p?

(2⇡)2 p2?
� 2

T 2
(01)

w̄c2s

Z
d2p?
(2⇡)2

= T +
n̄2�2

w̄

1

4⇡
log(L⇤)�

T 2
(01)

w̄c2s

1

2⇡
⇤2 , (6.8)

where we integrated from an IR momentum cuto↵ 1/L—the typical size of the container—
to a UV cuto↵ ⇤. The second term is the standard hydrodynamical result, which is due
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~A ~B dE

dz
=

n2�2

w2
log(L · ⇤)

UV

cutoff

container size

Add ``tension”: S ! S � T

Z
d�d⌧

p
det @↵Xµ@�Xµ

RG running:
d

d logµ
T (µ) = � 1

4⇡

n2�2

w

momentum scale



(nonlinear) Kelvin waves
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~A

Figure 2: Contribution to the propagator of Kelvin waves (black, curly lines) coming

from the mixing with hydrophoton and phonon. The Kelvin waves “live” on the world-

sheet, whereas phonons and hydrophotons can also propagate in the bulk.

string in the form (6.10), we can interpret the running tension T (µ) as the sum of all UV
contributions, which include those associated with the microphysics of the string (our
original T ) as well as those coming from the exchange of bulk modes up to scales of order
1/µ. Then, for our new computation, if we choose the renormalization scale µ to be at
the typical momentum scale of our process—the wavenumber k of the perturbation—
we can neglect the contribution of bulk modes of wavelengths larger than 1/µ, thus
e↵ectively concentrating all e↵ects of bulk mode exchange in the running tension.

In conclusion, we can consistently describe string excitations of typical momentum
k by the simple world-sheet e↵ective action

Se↵ =

Z
dtd�

⇥
�

1
3 n̄� ✏ijk X

k@tX
i@�X

j
� T (k)

��@� ~X
�� ⇤ (6.20)

!

Z
dtdz

⇥
�

1
2 n̄� ✏ab ⇡

a@t⇡
b
� T (k)

p
1 + (@z~⇡)2

⇤
, (6.21)

where in the second line ✏ab is restricted to the xy plane. Note that although we
have only checked this result explicitly to quadratic order in the perturbation ~⇡, the
symmetries of the action allows us to extend it to the higher order terms as well.

Given that rotations about the unperturbed string are unbroken, our excitations will
carry a conserved ‘quantum’ number associated with that symmetry, which is nothing
but the z component of angular momentum. To make use of this, it is convenient to
combine the two components of ~⇡ into a complex world-sheet scalar describing circularly
polarized waves,

� ⌘
1p
2
(⇡x + i⇡y) , (6.22)

in terms of which the e↵ective action becomes

Se↵ =

Z
dtdz

⇥
n̄��⇤i@t�� T (k)

p
1 + 2|@z�|2

⇤
. (6.23)

The action is now symmetric under a global U(1) symmetry, and � and �⇤ carry opposite
charge under it.
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~⇡~⇡

~B

Se↵ [~⇡] =

Z
dtdz

⇥
n� ✏ab⇡

a@t⇡
b � T (k)

p
1 + (@z~⇡)2

⇤

one time

derivative

typical

momentum

(linear)

“self-pipe” w/

!± =
�

4⇡
log(µ0/k) k

2

~v = ẑ
�k

2⇡
(nonlinear)
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Small vortex rings

Peculiar conservation laws:

E =
X

n

µ3/2
n logµn +

X

n 6=m

~µn · ~µm � 3(~µm · r̂)(~µn · r̂)
r3

~P =
X

n

~µn

~L =
X

n

~xn ⇥ ~µn

L =
X

n

⇥
~µn · ~̇xn + ~µn · (~r⇥ ~A)

⇤
�

Z
d3x

�
@iAj

�2

!
X

n

�
~µn · ~̇xn � µ3/2

n logµn

�
�

X

n 6=m

~µn · ~µm � 3(~µm · r̂)(~µn · r̂)
r3

~µ = �⇡R2n̂



Interactions w/ sound
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initial phonon propagates perpendicularly to the string, with momentum k and energy
! = csk. The string breaks translations perpendicularly to itself, which means that
the momentum of the phonon in the transverse direction is not conserved. However,
momentum along the string is conserved, and so is energy. The leading contribution
to absorption thus comes from converting the energy of the phonon into two quanta of
Kelvin waves (kelvons) with equal energies E = !/2 and opposite momenta ±q along
the string, as in the diagram of Fig. 5.

Figure 5: Absorption of a phonon into a pair of kelvons.

Notice that the final kelvon momenta are much larger than the initial phonon mo-
mentum. To see this, observe that, for given initial energy ! = csk, the momentum q
of the two final kelvons is given implicitly by their dispersion law:

E = !/2 =
1

n̄�
T (q) q2 . (7.28)

Up to logarithmic corrections, q scales as
p
!, while the phonon momentum k scales

as !, which makes q much bigger than k in the low-frequency limit. This implies that,
if we now consider the more generic case in which the initial phonon propagates at an
angle ✓ relative to the string, the kinematics of the process are essentially unaltered.
The reason is that even though now there is a mismatch in the final kelvon momenta,
it is only �q = k · cos ✓ ⌧ q and can thus be neglected in first approximation.6 For a
generic initial angle ✓ we thus have

q1 ' �q2 ⌘ q , E1 ' E2 ⌘ E = !/2 . (7.29)

Keeping in mind the remarks of section 7.1, the leading contribution to kelvon pair
production by sound comes from expanding the ✏ · B @X@X coupling in (6.39):

n̄� · ✏ijkB
k( ~X, t) @tX

i@zX
j
�

1
4 n̄� · �⇤2⇥@xḂy + @yḂx + i

�
@yḂy � @xḂx

�⇤
. (7.30)

6
Another consequence of the large q/k hierarchy—which turns out not to be relevant for the compu-

tation at hand—is that one should choose µ ⇠ q as renormalization scale for all string-sound running

couplings.
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6.3 Other running couplings

We can apply the same techniques to processes that involve external ~A and ~B fields
as well. Consider for instance the way an external sound mode ~B can couple to the
string: there is a direct world-sheet interaction in (5.9), as well as a more non-local one
mediated by ~A, as depicted in Fig. 3. As before, it is useful to phrase the physical e↵ect
of the latter in terms of an e↵ective action, now for ~X and ~B,

eiSe↵ [X,B] =

Z
DAeiS[X,A,B] . (6.24)

Using standard perturbation theory for the path integral, we get a correction to the
e↵ective action which to leading order is given by

Se↵ [ ~X, ~B] � 1
2w̄(1� c2s)

Z
d4p

(2⇡)4
d4q

(2⇡)4
J i
A(�p)J j

A(�q)(~r · ~B)(�p� q)

⇥
⇥
� p · q Gik

A (p)G
kj
A (q) + qkplGik

A (p)G
lj
A(q)

⇤
, (6.25)

This is definitely a non-local correction to the action. However, we can get a sense of the
kind of non-locality involved by working at very low momenta for the string excitations
and for the external ~B field. To this end, let us take the simplified configuration in
which the string is straight, so that the source ~JA is simply that given in (6.3). After
changing the q integration variable, �(p+ q) ! q, we get

Se↵ �
1

2

n̄2�2

w̄
(1� c2s)

Z
d2p?
(2⇡)2

d2q?
(2⇡)2

(~r · ~B)(~q?)
~p? · (~q? + ~p?)

p2?(~q? + ~p?)2
, (6.26)

where now (~r · ~B)(~q?) is evaluated at zero frequency and zero qz.
The integral in ~p? diverges logarithmically in the UV. We can first isolate and

compute the divergent piece, and then recover with logarithmic accuracy the finite
piece by dimensional analysis. To do so, recall that the external ~B field is concentrated
at low momenta: expanding the integrand in powers of ~q?, to zeroth order we get

Se↵ �
1

2

n̄2�2

w̄
(1� c2s)

 Z
d2q?
(2⇡)2

(~r · ~B)(~q?)

�
⇥

 Z
d2p?
(2⇡)2

1

p2?

�
. (6.27)

Figure 3: Hydrophoton correction to the coupling of sound to the worldsheet.
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of the coupling T(10)(µ), which accompanies the term in the action (5.7) of order Ḃ · Ẋ,

SNG0 �

Z
dtd�|@� ~X|

h
2T(10)( ~̇B? · ~v?)

i
, (6.31)

which will be renormalized by the diagram in Fig. 4 via the ~̇B · (~r ⇥ ~A)(~r · ~B) bulk
coupling in eq. (5.2). The corresponding contribution to the e↵ective action is given

Figure 4: Leading contribution to the running of T(10).

by

Se↵ [ ~X, ~B] �� w̄(1� c2s)

Z
d4p

(2⇡)4
d4q

(2⇡)4
J i
B(�p)J j

A(�q)Ḃk(�p� q)

⇥ ✏kab(�iqa)G
jb
A (q)(�ipl)G

il
B(p) .

(6.32)

Here we are taking the configuration in which the string is straight but moving with
constant transverse velocity ~v?, which is o↵-shell and does not satisfy the equations of
motion, since an infinite straight string does not move unless we change the boundary
conditions at infinity:

~X = (~v?t, �) , (6.33)

and then we have

~JA =
�
n̄�+ 2T(10)va✏

ab
rb

�
ẑ · �2(~x? � ~v?t) , (6.34a)

~JB =
�
n̄�(~v ⇥ ẑ)� 2T(01)

~r+ 2T(10)~v?v
j
?rj

�
· �2(~x? � ~v?t) . (6.34b)

As in the previous subsection, a, b run over the transverse directions, and we ignore
the terms with a derivative on the Dirac delta function in the low-momentum limit.
Furthermore, we keep only the leading terms in ~v = ~v? in the small-velocity limit. In
this case ~JA is given by (6.3), and

~JB(~x) = n̄�(~v ⇥ ẑ)�2(~x?) . (6.35)
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. . .

� =
1

16wc3s
!2q sin4 ✓ ⇠

p
!5/ log!

Phonon —> kelvons conversion: 
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Vortex precession

Fact:

+ ωp =
3Γ

8πc2
s

ωxωy log(R⊥/Λ)
Vtrap(x) Vtrap(x)



Rotons

24



25

Elementary excitations in Helium 4

v =
@E

@p
=
>
<

0

(Donnelly 1997)

E

p

phonons

rotons

p⇤ ⇠ 1/a

� ⇠ 10 K

v = cs
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Effective point particle theory

translations ! ;

rotations      rotations about velocity !

Good for 

}phonon = 
vortex ring =  

roton = ? 

(boosts broken by medium) 
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Action

local

fluid velocity

local

density

background

phonons (or flow)

S =

Z
dt f

��� ~̇X � ~u
��, ⇢

�

data

f = Legendre transform of E(p)
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corrections to Landau-
Khalatnikov, 1949

Describes interactions with soft phonons (or fluid flows)

E.g.:

hard phonon-soft phonon matches previous result

roton-soft phonon

Figure 3: Lowest order contributions to phonon-phonon or roton-phonon scattering in the e↵ective
point-particle theory.

trajectory of the hard phonon. Notice finally that there is no point-particle analog of the
fourth diagram in Fig. 2. This is because in our point-particle approach the external hard
phonon lines do not actually correspond to asymptotic states—they are just a visual aid to
make the physical meaning of this diagram more transparent.

In order to calculate the first two diagrams, we need to expand the point-particle action
(22) up to quadratic order in ⇡:

Sphonon '
Z

dt p
�
v � cs � c

0
s
⇡̇ + v̂ ·r⇡ + 1

2

⇥
1
v
P

ij

? @i⇡@j⇡ + c
0
s
(r⇡)2 � c

00
s
⇡̇
2
⇤ 

, (61)

where we have simplified the notation by defining ~v ⌘ ~̇x and P
ij

? = �
ij� v̂

i
v̂
j. Setting ~v = csv̂0,

we find the following on-shell results for the first two diagrams in Fig. 2:

= �2icsp0k2

⇢


c
0
s
cs cos ✓ + c

00
s
c
3
s

1� cos ✓

�
(62a)

=
icsp0k

2

⇢
(1 + csc

0
s
)(c0

s
cs � cos ✓)

1 + cos ✓

(1� cos ✓)2
(62b)

Remember again that we are considering a head-on collision. It is worth to point out that
the second diagram reproduces, up to an overall constant, the contribution coming from the
second diagram in Fig. 2. This is known as the “u-channel” contribution in high energy
physics parlance. This result should not be surprising. In fact, each of these two diagrams
is given by the product of three factors—two vertices and one propagator. The propagators
and the bulk vertices are identical for the two diagrams, and our discussion of phonon decay
has shown that the world-line vertex reproduces the physics of the bulk vertex. The fact that
the soft phonon interacting with the world-line is on-shell for the decay process and o↵-shell
in the case of scattering is inconsequential: matching in e↵ective field theories can always be
performed on- or o↵-shell [19].

To compute the �~x and �p propagators that enter the third diagram in Fig. 3, we need
the point-particle action expanded to quadratic order in �~x, �p and to zeroth order in ⇡:

Sphonon �
Z

dt
1

2

h
p0

cs
P

?
ij
�ẋ

i
�ẋ

j + 2(v̂0 · �~̇x) �p
i
. (63)

The associated propagators are

h�p �pi = 0 , h�p �~xi = �h�~x �pi = � v̂0

!
, h�xi

�x
ji = cs

p0

i

!2
P

?
ij

. (64)
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On floating and sinking
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Archimedes

No obvious Archimedean principle for sound 
waves, vortex lines, rotons…

EFT again: gravity = gauge field for 
spacetime symmetries

transformation 
properties under 
spacetime symmetries

coupling to gravity

In our case: µ ! µ� �
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Phonons “float”: 

Phonons

Equivalent to standard refraction:

cos ✓

cs(z)
= const (Snell’s law)

z

x
✓

mg = −
d log cs

d log ρ
⋅

E
c2

s



32

Rotons “sink”:

Rotons

Separation at finite temperature? Measurable?

-0.10 -0.05 0.00 0.05 0.10

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

x

z

Figure 4: Possible trajectories for rotons in a vertical gravitational field ~g = �gẑ. For all the
trajectories displayed, the horizontal component of the momentum, which is conserved, is directed
towards the right. The arrows point in the direction of forward time evolution. We truncated the
trajectories in the past and in the future when the rotons get too far from the roton minimum for
our approximations to apply, which for definiteness we characterized by |p � p⇤|/p⇤ > 30%. The
coordinates are in units of p2⇤/m⇤mgg. According to the classification in the main text, we have
green = no turning points (px = 1.1 p⇤); red = two turning points (px = 0.9 p⇤); blue, right = one
turning point + metamorphosis (px = 0.69 p⇤); blue, left = vice-versa (ditto). For comparison, we
are showing in dashed grey the trajectory of a normal object with parameters such that the curvature
and velocity at the top are the same as for our no turning point roton trajectory.

Specifically, imagine extrapolating the trajectories to all times, past and future. The time-
evolution of the momentum, eq. (105), happens on a plane, and so does that of the velocity,
which is aligned or anti-aligned with the momentum. We can thus restrict to motion in the
x-z plane without loss of generality. Then, in going from t = �1 to t = +1, pz(t) spans
all possible values, whereas px is conserved, px(t) = p0,x for all t’s. We can thus classify these
extrapolated orbits by their px, which without loss of generality we assume to be positive.
Since |~p | =

p
p2
x
+ p2

z
becomes large at large positive and negative times, because pz does,

we see that all orbits start and end on the right of the roton minimum. We also have that
|~p | � px for all times. Keeping in mind that our approximations break down when we get too
far from the roton minimum, we thus see that trajectories can feature:

• No turning points: This happens for px > p⇤. In this case |~p (t)| is always on the right
of the roton minimum.

• Two turning points: This happens for px < p⇤, but with (p⇤ � px) ⌧ p⇤. In this case
|~p (t)| momentarily drops below p⇤ at intermediate times, while staying always close to
the roton minimum.

• One turning point + Metamorphosis (or viceversa): This happens for px < p⇤, but with
(p⇤ � px) ⇠ p⇤. In this case |~p (t)| drops below p⇤ at intermediate times, but it decreases
so much that it ends up violating the condition p⇤ � |~p | ⌧ p⇤. At that point we are far
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mg = − ρ
dΔ
dP

∼ +
Δ
c2

s
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The mass of sound

This is also the mass carried by a classical wave:

(at 2nd order)

Can me measure it? Seismic waves? Cold atoms?

mg = −
d log cs

d log ρ
⋅

E
c2

s

mg = ∫ d3x δρ



Summary

Vortex lines, vortex rings, rotons: very 
unconventional mechanical systems


Important degrees in freedom in superfluids


EFT: efficient tool to understand them


Only systematic tool to couple them to bulk 
fields (sound, gravity, …)


Experiments?
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