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• SU(3) Internal Local Gauge Invariance


•  Local Space-Time Gauge Invariance

GR and QCD  are described by 
related mathematical structures

However, even classically they behave remarkably 
differently
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Stable Exact Solution for 
static sources

GR QCD

No Stable Solution for static 
sources (Mandula 77)

 

(                   (Effectively Abelian)



Further Distinction arise as a consequence of the 
conformal symmetry 

• YM is classically Conformally Invariant


• GR has a Dimensionful Coupling

And despite further quantitative relations in the perturbative 
series for scattering amplitudes (BCJ), this distinction leads 

to completely different behavior as a function of scale 

logs are power suppressed
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As a consequence of this the classical/quantum 
transitions are distinct
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In QCD we can calculate a classical potential (ignoring confinement) by 
hand by ignoring certain regions of loop momenta (see later).
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We will be interested in processes 

with hierarchies between scales.

QCD

Gravity

R ⌧ r ⇠ 1/
p
t

 

R 0
r

or

R/r ⌧ 1To calculate systematically we have a 
double expansion:

Bound States Eikonal

GM

r
⇠ v2 ⌧ 1

g(1/r) ⇠ v ⌧ 1  (Re-sum)

 (Re-sum)

g2(t)(s/t) ⌧ 1

free parameter

Gs2/t ⌧ 1



1

(p2 �m2 + i✏
! 1

q · p+ i✏
qµ = (n⌫ , vµ)

Two Paths

S = �m

Z
ds+ SEH

A ⇠ HSiSj

In both limits we may treat the incoming particles as classical sources.

theory of Wilson 
lines S = �m

Z
ds+

Z
ds ca(s)Dabc

b(s) Dabcb = ċa + igvµAµcb

In QCD we are NOT interested in classical sources and this will lead to distinct 
mode expansions in the EFT. 

Trivial step one of 
EFT process (PP 
approximation).



We will focus on interactions between  particles with 
internal dynamics (e.g. vortices), i.e. not fundamental. For 
QCD this the length scale  is set by confinement (~Fermi) 

but for gravity the scale is a free parameter (e.g. 
Schwarzchild radius).

The existence of internal degrees of freedom complicates matters 
as they are in general gapless (e.g. absorptive).

 

R 0
r

or

�S =

Z
dsQE(s) · E +QB(s) ·B + .....

Dynamical world line fields whose correlation 
functions encode response of the system to  external 

perturbations.



First Stage of EFT (PPE)

S = �
X

i

mi

Z
dsi +

X

i

Z
dsi(E(si) ·Qi

E +B(si) ·Qi
B) + SEH

Valid at all scales r>R+

Z
d

4
x LEH(g(x))



Up to this point we have not made any NR approximations. 
But we can make further systematic progress if we do.

We have succesfully removed the smallest scale (radius of 
obejcts) but we still have another hierarchy in the NR limit:

r << r/v

If we wish to calculate systematically (homogeneous power counting at 
the level of the action), then we need to separate these scale.

Modal EFT
Decompose modes of fields into kinematic regions

 (k) =
X

i

 i(k)
Each field has support only in 

a fixed region of k space



Which Modes do we Include?

If we are calculating scattering amplitudes:

-Include all modes which necessary to reproduce all of the non-analytic 
structure of amplitudes:

- Coleman Norton Theorem: Cuts arise from physically realizable 
space-time processes.

In NRQCD: kµs (mv,m~v) kµUS(mv2,mv2)

In NRGR: kµUS(v/r, v/r)

(purely QM) Radiation and time non-
local effects

(Beneke+Smirnov)



Also include non-propagating modes which are 
integrated out to yield effective interactions:

 



Must have a method to ensure that we 
dont double count when doing integrals  

(zero bin) (Manohar+Stewart)

Integrals with overlapping regions  

I = (IP � IPUS) + IUS

IPUS(p) = lim
~k!0

IP (p,~k)

Crucial to work in dim. reg. to ensure no new regions are introduced 
and scaleless integrals vanish.
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Z
dt

X

i

Vi(r(t)Fi(hUS) +
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i

L(xi, hUS)
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S =
XZ

dtiKE

i �
Z X

a

Va(r(t)) +

Z
dtQµ⌫(xi(t))E

µ⌫ + ....

The potentials can be matched either by the use of 
scattering amplitudes or calculating directly with the 

world-lines.  Radiation follows by calculating one 
point amplitudes.



Finite Size Effects

�S =

Z
dsQE(s) · E +QB(s) ·B + .....

 

Q Q EE

gang
i✓(t)h⌦ | [QE(t), QE(0)] | ⌦i

Effects on equations of motion (CTP formalism)

B. The dissipative equations of motion for a binary inspiral

Let us now return to the e↵ective action. We next integrate out the world-line degrees of

freedom. The leading order interaction come from the time ordered product of two potentials

(??). In so doing we generate the action

S6b = �1

2

X

A 6=B=1,2

m2
BG

2

Z
dtdt0qaij(t)G

ab(A)
ijkl (t� t0)qbkl(t

0) (62)

where Gab(A) is the two point function in the Keldysh basis for Q(A). The magnetic potential

is sub-leading in the PN expansion and will be ignored. The force on particle A is determined

by varying the action with respect to xA
� and setting it to zero leaving

FA
l = �m2

AG
2

Z
dt0(@lqij(t))G

B(ret)
ijkl (t� t0)qkl(t

0). (63)

We can determine G(B)ret
ijkl , the retarded propagator for the Q correlators describing the

internal dynamics of particle B, via a matching procedure. However, note this is a very

unusual matching in that we are matching for an infra-red quantity, whereas normally in an

EFT we match to fix parameters arising from ultra-violet physics. So it is perhaps better to

use the term “extracting” instead of matching.

We can extract the response function from the calculation of the scattering cross section

which has both elastic as well as inelastic pieces. In the EFT the total cross section is given

by

�abs =
1

2!

X

f

X

�

�| h0 | Q⇢⌫(0) | fiW ⇢⌫ |2 + | h0 | M⇢⌫(0) | fiX⇢⌫ |2� (2⇡)�(P 0
i + ! � P 0

f )

(64)

where Pf is the momentum of the final state f which may or may not include one or more

gravitons. � are the graviton polarizations. W⇢⌫ and X⇢⌫ are tensors quadratic in momenta

and include the polarization tensors. Keep in mind that we are interested in the long

wavelength limit, so we are expanding around flat space. At leading order in this expansion

we may ignore the di↵erences between the local and global coordinate systems.

At leading order the purely absorptive piece, includes one incoming graviton and none

in the final state. Furthermore, restricting ourselves to the physical polarization, the non-

24

qij = @i@j
1
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What can we say about correlation functions? 

Concentrate on the two point functions for the 
moment, in particular let us try to construct the 

Wightman functions as building blocks

Let us for the moment confine ourselves to classical processes where 

h⌦ | Q(t1).....Q(tn) | ⌦i

A+ =

Z
dth⌦ | Q(t)Q(0)) | ⌦ie�i!t

A� =

Z
dth⌦ | Q(0)Q(t) | ⌦ie�i!t

ALO
+ (!) = ALO

� (!) = (2⇡)
�(0)(!)

rs!2
⇠ �/! (0.14)

In the EFT there is an order � corrections coming from a mass insertions. i.e. a tail correction

on one side of the cut. The imaginary part is IR divergent but cancels when adding the two cuts.

All that is left over is a real piece leaving for the

PEFT (1|0)NLO =
!

2⇡
(ANL0

+ +ALO
+ rs!)

PEFT (0|1)NLO =
!

2⇡
(ANL0

� +ALO
� rs!)

(0.15)

Matching to the full theory result (0.12)

��(0)
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x2
+

�(1)
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= (2⇡)2!(ANL0
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1

(2⇡)2
�(0)(!)
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ANLO
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[�3

2
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x2
+

�(1)

x
] (0.17)

1

2
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x2
+
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x
= (2⇡)2!(ANL0

� ) + �(0) (0.18)

ANLO
� (!) =

1
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2
�(0) � 2(�(0))2

x2
+

�(1)

x
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Now let us match for four point function. From Bekenstein we have

P (2|0) = (ex � 1)�2

(ex � 1 + �)3
⇡ �2/x2 + ... (0.20)

1 Caclulate Gret

Gret =

Z
d!0

2⇡

A+(!
0)�A�(!

0)

! � !0 + i✏
+ C =

Z
d!0

(2⇡)3
�(0)(!0)/!0

! � !0 + i✏
+ C (1.1)
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What can we say about the analytic structures of 
correlators?

If no long time tails (i.e. damping exists) then they should be  
analytic around zero frequency

Let us try to gain some intuition for the degrees of freedom that live on the world line. If

we are to have control over our calculations, it had better be that the correlators of M and

Q are analytic around ! = 0, since we are working in a derivative expansion. Physically, this

implies that the correlations functions die o↵ faster than any power in time. Classically we

know that the system will have a set of quasi-normal modes whose propagators have poles

o↵ the real axis. In the low energy limit we will be sampling the tails of these ringing modes.

Modeling the system as a set of damped harmonic oscillators the two point functions should

schematically look like

GR(!) ⌘
Z

dtei!thQ(t)Q(0)i ⇠ 1

!2 � !2
0 + i�!

. (59)

If we consider the case of a black hole, where the quasi-normal spectrum is known, there is

only one relevant scale rs and !0 ⇠ � ⇠ r�1
s . Note that the system is e↵ectively ungapped

even though the real part of the pole is non-zero. This is due to the dissipation (width), as

any small amount of energy can be absorbed, as we would expect from a classical macroscopic

object.

Given our assumption of exponential die o↵ in time, we may expand the correlation

function in a series in !. Since the real time propagator is real valued, the imaginary part

of the frequency space propagator is odd and its expansion takes the form

GR(!) = A1 + i!B1 + A2!
2 + ... (60)

A1 is known as the “tidal Love number” and is a measure of the response to a static field,

while A2 is related to the first dynamic Love number. When we expand the gravitational

field around a background probe field gµ⌫ = gbgµ⌫ + hµ⌫ we generate tadpole responses from

both the coupling to the world line degrees of freedom via (??) as well as the contact

interactions (??). The static Love number is then seen to be a linear combination of CE and

A1. However, we can allow the coupling (??) to subsume the local interactions.

The exponential fall o↵ in time of the correlation function is telling us that the correlators

are in e↵ect instantaneous potential modes, and thus one might think there is no distinction

between the in-in and in-out formalism since the i✏ prescription for the propagator is irrel-

evant. However, this is not correct. The reason being that if we wish to capture dissipative

equations of motion, the standard variational technique following from Hamiltons principle

22

Implies that the interactions are instantaneous (local 
in time) and can be contracted to a point.

Absorptive pieceLove Number

Dynamical Love number

We can extract these coefficients from matching to other  (simpler) 
observables.



The Love number can be extracted 
by putting the system and 
calculating the response

Binnington/Poisson, Damour/
Lecian, Kol/Smolkin

A1 = 0 Schwarzschild

The leading order finite size effects for a BH are purely 
absorptive
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that A+E = A+B ⌘ A+ and

ImGret(!) = �abs(!)⇥
M2

pl

2!3
(71)

Such that the the dissipative force is given by

FA
l = �i

X

a

m2
aG

64⇡

Z
dt0

Z
[d!]ei!(t�t0)�abs(!)

!3
(@lqij(t))(

2

3
�ij�kl � �ik�jl � �il�jk)qkl(t

0) (72)

Since Im(Gret(!)) is odd �abs must be an even function of !. Moreover, since the Gret

should decay in time, it is analytic in ! near the origin. Thus writing

�i
abs(!) = A4iR

6
i!

4 + A6iR
8
i!

6 + .... (73)

where Ri is the radius of object i. The series starts at order !4 since the action is local in

time given our assumptions about the correlators and the potential nature of the interaction.

The force exerted on the world line is then

~F1 = �~F2 =
9G

32⇡

X

a 6=b

A4bR
6
bm

2
a

✓
1

~x8
(~v + 2

~x · ~v
~x2

~x)

◆
(74)

Let us now specialize to the case of a black hole. At leading order in the derivative

expansion the absorptive cross section for a graviton scattering on a black hole is given by

[18]

�abs =
4⇡r6s!

4

45
, (75)

so that R = rs = 2Gm and A4 =
4⇡
45 and

FBHi
1 = �FBHi

2 = (m2
am

6
b +m2

bm
6
a)
8G7

5

✓
1

~x8
(~v + 2

~x · ~v
~x2

~x)

◆
(76)

Now let us return to the question of the v scaling of the wordline line terms (93). We

would like to determine the scaling of the absorptive potential (??) in both L and v. As

previsouly emphasized we can read o↵ the scaling by studying the scalings of the operators

which make up the Feynman diagram (7b). The scaling of Q can be read o↵ by looking at

26
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Exploring the BH EFT

We could just choose to ignore particle emission  
in our classical higher order analysis, but this would seem to contradict 

power counting.

(A�(!))

� = !/Mpl

Naively one might think at A�(!)/A+(!) ⇠ �

However, this would fly in the face of detailed balance: 

A�(!)/A+(!) ⇠ f(!)

Classical 

Quantum

Einstein Coefficients : A ~ B

� = !rc

E/TH ⇠ (~!)/(~/rs)
This is consistent with the 

fact that Hawking give hn(!)i = �(!)

e�E � 1



ALO
+ (!) = ALO

� (!) = (2⇡)
�(0)(!)

rs!2
⇠ �/! (0.14)

In the EFT there is an order � corrections coming from a mass insertions. i.e. a tail correction

on one side of the cut. The imaginary part is IR divergent but cancels when adding the two cuts.

All that is left over is a real piece leaving for the

PEFT (1|0)NLO =
!

2⇡
(ANL0

+ +ALO
+ rs!)

PEFT (0|1)NLO =
!

2⇡
(ANL0

� +ALO
� rs!)

(0.15)

Matching to the full theory result (0.12)
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ANLO
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x2
+

�(1)

x
] (0.19)

Now let us match for four point function. From Bekenstein we have

P (2|0) = (ex � 1)�2

(ex � 1 + �)3
⇡ �2/x2 + ... (0.20)

1 Caclulate Gret

Gret =

Z
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+ C =

Z
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(2⇡)3
�(0)(!0)/!0

! � !0 + i✏
+ C (1.1)
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Recall 

This might lead us to believe that Hawking radiation can lead to a 
classical (unsuppressed by Planck scale) effects. However,

C number if phi satisfies linear wave 
equation

Therefore there must be a  Cancellation between + 
and - Wightman functions in any FREE field theory

In the EFT there is an order � corrections coming from a mass insertions. i.e. a tail correction

on one side of the cut. The imaginary part is IR divergent but cancels when adding the two cuts.

All that is left over is a real piece leaving for the
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Gret = Tr(⇢✓(t)[�(t),�(0)])

e.g free field theory in thermal state

AT
+ = i(2⇡)�(k2 �m2)(F (!) + ✓(!)) AT

� = i(2⇡)�(k2 �m2)(F (!) + ✓(�!))

F (!) = 1/(e�|!| � 1)

=
1

k2 �m2 + isgn(!)✏



Hawking radiation can not show up in Retarded Greens 
function  unless one goes beyond free field theory.

Nonetheless this EFT can yield new results in quantum gravity

What are the effects of hawking radiation on the scattering off of black holes?

Consider inelastic inclusive scattering:

p p�

q = p � p�

vµ vµ

M X

X

X
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Figure 1. Leading order gravitational inelastic scattering of a scalar field incident on a semi-classical
Schwarzschild black hole.

In this paper, we will use the EFT to analyze the inelastic scattering of matter fields, rep-

resented here by the complex scalar � of Eq. (2.1) incident on a black hole with mass M � m.

Since the case where the scalar field has negligible mass compared to the Hawking temperature,

TH = (4⇡rs)�1, corresponding to absorption and re-emission of on-shell scalars, is well under-

stood [12], we focus instead on the limit m � TH . In this regime, the dominant inelastic process

is through the exchange of o↵-shell Hawking gravitons between the scalar and the black hole.

Alternatively, one could also study the limit where the incoming scalar has energy E� � TH ,

where again the scattering process is dominated by graviton exchange. However, in order to

remain within the regime of validity of the EFT, we take the typical momentum transfer q (or

equivalently, the impact parameter b ⇠ 1/q) to lie in the region defined by Eq. (2.5). Thus to

ensure the validity of the EFT, we assume the following hierarchy of kinematic scales

M � E� � TH � q ⇠ b�1 � ⌧�1
BH . (2.8)

3 Scattering by o↵-shell Hawking radiation

We now compute the inelastic process �(p) + BHM ! �(p0) + X where a scalar field scatters

o↵ a heavy Schwarzschild black hole. Due to the presence of the horizon, the scalar can tidally

exchange energy and momentum with the black hole. In the Unruh state, the exchanged energy

can be of either sign, due to the possibility that � absorbs a virtual Hawking mode emitted by

the black hole.

In the EFT, the inclusive probability is given in Fig. 1, where we sum over the unobserved

internal states X of the final black hole. The interaction between the black hole and � is mediated

by graviton exchange. Linearizing about flat space, gµ⌫ = ⌘µ⌫ + hµ⌫/mP l, the relevant term in

Eq. (2.1) is
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Figure 1. Leading order gravitational inelastic scattering of a scalar field incident on a semi-classical
Schwarzschild black hole.
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where again the scattering process is dominated by graviton exchange. However, in order to
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Hawking radiation 

Our calculation is performed in Feynman gauge, where the propagator of the exchanged graviton

is i
q2

Pµ⌫;↵� , with

Pµ⌫;↵� =
1

2
[⌘µ↵⌘⌫� + ⌘µ�⌘⌫↵ � ⌘µ⌫⌘↵� ] . (3.2)

In the rest frame of the black hole vµ = (1, 0), the amplitude to leading order in the EFT of

Eq. (2.2) takes the form (q = p � p0 is the momentum transfer)
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d⌧e�iq·v⌧ hX|QE

ab(⌧)|MiAE
ab + mag. (3.3)
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1

2
m2(v · q)✏µ⌫⇢�v⇢q�. (3.5)

In order to perform the tensor contractions, we have used the package [14].

Summing over the final states X, and assuming unitarity of the black hole quantum me-

chanics,
P

X |XihX| = 1, the inclusive squared amplitude breaks up into electric and magnetic

contributions X

X

|AX |2 = |AE |2 + |AB|2, (3.6)

which depend on the two-point Wightman functions defined in Eq. (2.6) (note that by parity

invariance, the mixed correlator hQEQBi vanishes). For example, the electric term in the case of

zero black hole spin is

|AE |2 =
1
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q4
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+(!)ha, b|c, diAE
abAE

cd, (3.7)

and similarly for the magnetic piece. The time scale T = 2⇡�(! ! 0) is an arbitrary IR cuto↵

associated with time translation invariance which will not appear in physical observables. We

find, from Eqs. (3.4), (3.5),
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where we drop terms subleading in powers of the momentum transfer q. The resulting black

hole-frame di↵erential cross section for inelastic scattering is then
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– 6 –



We can extract            from Bekensteins calculation 
for spontaneous emission from a BH

(A+(!))
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We now ask if this form of P„(n)is what would be
expected if ordinary scattering (by the potential
barrier surrounding the hole& were the only pro-
cess responsible for returning the incident black-
body quanta outward. The probability distribution
for scattering is calculated as follows: Let F, be
the probability that a single quantum incident on
the hole is absorbed; 1-I', is the probability that
it will be scattered outward. Then the probability
P,(n) that n quanta are scattered outward is con-
structed by combining-the probability distribution
+b for the incident quanta with the binomial prob-
ability distribution with parameter I', :

p.(m) =Q p(m I n) p„(n).
n =0

(14)

Substituting P, (m) from (7) and Pbb(n) from (9), and
writing z =e 'we see that

sion as well as ordinary scattering. Effectively
p(m In) is the square of the matrix element
(n+m, m In}, in the notation of Ref. 4, which has
been calculated under various restrictions for
the case n =0 by Parker, ' Wald, ' and Hawking. ' It
is a crucial assumption of our arguments that
P(m In) does not depend on the black hole's environ-
ment, but only on its intrinsic properties.
For a black hole immersed in a blackbody bath

we clearly have

One finds that

p, (n) =(1—e ")e "",
e z=-(1-1',)(e'- I', ) '.

(12) g p(m I
n)z" = (1-e & ')(1—z) ' e "i' '

n =0

where y(z) is defined by (8). Expanding the right-
hand side in powers of z we find" that

The sum can be verified by expanding out (13) in
powers of I', e ' (see Appendix of Ref. 8).
We see that P„(n)and P,(n) are not of the same

form regardless of the choice of I",. What can
cause the discrepancy? There can be no doubt
about the correctness of P,(n) in (7). As shown in
Ref. 8 any other distribution would clash with the
second law. The construction scheme (10) is the
only possible one if the spontaneous emission is
independent of the "scattering"; and the scatter-
ing probability distribution P,(n) is the only one
possible if the quanta are indistinguishable bosons.
Thus we are forced to conclude that scattering is
not the only process that returns incident quanta
outward. We are led to believe that stimulated
emission must also be present. To be sure, the
suggestion is not new. Zel'dovich' and Starobin-
ski" interpreted the phenomenon of black-hole
superradiance~ as implying stimulated emission
in modes with u&&mQ (uncharged black hole). This
view is verified by a quantum calculation of Wald. "
However, we are led by thermodynamics to expect
stimulated emission in all modes, even in those
for which there is no classical superradiance. We
now proceed to extract the contribution of stimu-
lated emission to P,(n), and to the definition of the
Einstein coefficients.

(16)

The expansion considered is natural, as it is
about the point T =0. Writing A=I'(e"-1) '+I"-1.
and changing to the new independent variable 5'
=(1—z)(1—I') ' we have

1 (-1)" 8" (1+AW)"
n( I")

~ (( r(""an" I(+((+n(n(""}
(17)

Performing the differentiation and simplifying,
we get

(en 1)enn rm+n nnn(n, m& (-1)n(m +n —k)!
p( I }- ( I,r)n+ m+1 p t, i(n y)((m g}(

x 1—2, (cosh x- 1), (18}
where the sum extends up to m or n, whichever
is smaller.
This expression is so complicated that it is

worthwhile checking it in a simple limit. For n =0
we get

p(m IO) =(e"—1)(e"-1+r)™1r
= (1—e 8)e zm (19)

III. THE CONDITIONAL PROBABILITY p(m In)

We define P(m In) as the conditional probability
that a rotating charged Kerr black hole emits
exactly m quanta in a given mode when precisely
n are incident in the corresponding mode. The
P(m In) includes spontaneous and stimulated emis- .

the last step following from the definition of e 6,
Eq. (2}. We thus find that p(m IO) =p,~(m), as
would be expected: The conditional probability
for emission when nothing is incident is just the
probability of spontaneous emission.
We notice that the sum in (18) is symmetric in

Matching with wave 
packets

0.1 Power Counting

We have at our disposal two power counting parameters � ⌘ (!rs) and � ⌘ !/Mpl. We have the

following scalings

�(x) ⇠ h(x) ⇠ !

O(0, t) ⇠ �

dt ⇠ 1/!

(0.7)

So that the operator scales as Z
dt�O ⇠ � (0.8)

We will directly extract the Wightman correlators defined as

A+(!) =

Z
dte�i!th⌦ | O(t)O(0) | ⌦i

A�(!) =

Z
dte�i!th⌦ | O(0)O(t) | ⌦i

(0.9)

such that A+ (�!) = A�(!). The leading order correlator thus scales as !A± ⇠ �2.

0.2 Matching

We take the incoming our going states to be wave packets centered at a momentum k.

| ki =
Z

d3p g(k, p)a†p | 0i (0.10)

such that hk | ki = 1. Then a simple calculation gives

PEFT (0|1) =
!

2⇡
A+(!)

PEFT (1|0) =
!

2⇡
A+(�!)

(0.11)

where we using the notation | ~k |⇠ !.

P full(1|0) =
�(0)(!)

x
� 1

2
�(0) � 2(�(0))2

x2
+

�(1)

x
...
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�(0)(!)

x
+

1

2
�(0) � 2(�(0))2
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+

�(1)

x
... (0.12)

and � starts at O(�2), so we have written

� = �(0) + ��(1) + ... (0.13)

2

ALO
+ (!) = ALO

� (!) = (2⇡)
�(0)(!)

rs!2
⇠ �/! (0.14)

In the EFT there is an order � corrections coming from a mass insertions. i.e. a tail correction

on one side of the cut. The imaginary part is IR divergent but cancels when adding the two cuts.

All that is left over is a real piece leaving for the

PEFT (1|0)NLO =
!

2⇡
(ANL0

+ +ALO
+ rs!)

PEFT (0|1)NLO =
!

2⇡
(ANL0

� +ALO
� rs!)

(0.15)

Matching to the full theory result (??)
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Now let us match for four point function. From Bekenstein we have

P (2|0) = (ex � 1)�2

(ex � 1 + �)3
⇡ �2/x2 (0.20)

1 Caclulate Gret
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Our calculation is performed in Feynman gauge, where the propagator of the exchanged graviton

is i
q2

Pµ⌫;↵� , with

Pµ⌫;↵� =
1

2
[⌘µ↵⌘⌫� + ⌘µ�⌘⌫↵ � ⌘µ⌫⌘↵� ] . (3.2)

In the rest frame of the black hole vµ = (1, 0), the amplitude to leading order in the EFT of

Eq. (2.2) takes the form (q = p � p0 is the momentum transfer)

iAX = � 1

2m2
P l

· i

q2

Z
d⌧e�iq·v⌧ hX|QE

ab(⌧)|MiAE
ab + mag. (3.3)

where the tensors AE
ab = eµae⌫bAE

µ⌫ are given by4

AE
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, (3.4)

AB
µ⌫ = ✏µ↵⇢�v↵p⇢q� [(v · q)p � (v · p)q]⌫ +

1

2
m2(v · q)✏µ⌫⇢�v⇢q�. (3.5)

In order to perform the tensor contractions, we have used the package [14].

Summing over the final states X, and assuming unitarity of the black hole quantum me-

chanics,
P

X |XihX| = 1, the inclusive squared amplitude breaks up into electric and magnetic

contributions X

X

|AX |2 = |AE |2 + |AB|2, (3.6)

which depend on the two-point Wightman functions defined in Eq. (2.6) (note that by parity

invariance, the mixed correlator hQEQBi vanishes). For example, the electric term in the case of

zero black hole spin is

|AE |2 =
1

4m4
P l

T

q4
AE

+(!)ha, b|c, diAE
abAE

cd, (3.7)

and similarly for the magnetic piece. The time scale T = 2⇡�(! ! 0) is an arbitrary IR cuto↵

associated with time translation invariance which will not appear in physical observables. We

find, from Eqs. (3.4), (3.5),
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where we drop terms subleading in powers of the momentum transfer q. The resulting black

hole-frame di↵erential cross section for inelastic scattering is then
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4qµ? = qµ � (v · q)vµ, ⌘µ⌫
? = ⌘µ⌫ � vµv⌫ .
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How does this scale relative to canonical EFT corrections to 

(elastic)  Newtonian scattering?
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Figure 2. Selected one-loop corrections to the elastic scattering process in perturbative quantum gravity.
Diagram (a) contributes at first order in q2/m2

Pl ⌧ 1, while (b) encodes both classical corrections of order
rsE� ⌧ 1 and quantum e↵ects of order q2/m2

Pl. The top (arrowed) line corresponds to �, while the
(bottom) solid line corresponds to the black hole, treated as static point source.

It is useful to compare the magnitude of this result with the leading order cross section for

Newtonian potential scattering o↵ the black hole. In the black hole rest frame, this is given by

d�N

dq2
=

4⇡r2s
q4

⇥
(v · p)2 � 1

2m
2
⇤2

(v · p)2 � m2
. (3.11)

To compare this to the o↵-shell Hawking process, we would need to integrate Eqs. (3.8), Eq. (3.9)

over the region �1 < v ·q < 1. Although the EFT breaks down when the magnitude of q ·v is of

order rs, we expect, by unitarity, that the integral over the form factors AE,B
+ (q · v) is finite, and

dominated by scales near q · v. Thus we may estimate the magnitude of the integrated inelastic

(Hawking) di↵erential cross section d�H/dq2 by taking the result in Eq. (3.10) and multiplying

it by a factor of q · v ⇠ r�1
s . We then find that, parametrically,

d�H

d�N
⇠ q2

m2
P l

, (3.12)

up to factors (rsq)2 which we cannot determine by purely dimensional arguments and are treated

as being of order unity for the purposes of this estimate. We see that inelastic scattering is

a quantum gravity e↵ect, of the same order in q2/m2
P l as the one-loop correction to elastic

scattering that arises from graviton vacuum polarization e↵ects of the type first computed in [2]

and illustrated in Fig. 2. Our result in Eq. (3.10) should then be interpreted as a new type of

calculable, leading order, quantum gravity e↵ect in black hole quantum mechanics. Moreover,

the prediction is made within a systematic expansion with calculable corrections.

4 Conclusions

We have presented what, to our knowledge, is the first computation of quantum gravity e↵ects

in scattering processes with black holes appearing as asymptotic states. Our approach relies on

EFT methods presented in [6, 7]. In this EFT, the leading quantum corrections due to horizon

dynamics is represented by the exchange of virtual Hawking radiation. What is interesting about

these e↵ects is that, despite being non-perturbative in nature, are not as suppressed as one might
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EFFECTS OF HAWKING RADIATION SAME 
ORDER AS LO  CORRECTIONS TO NEWTON.
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