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A useful toy model

o N =8 graviton multiplet (massless) [Andrianopoli, D'Auria, Ferrara, Fre, Trigiante]

h;w, AIJ7 O1JKL + fermions

e Extremal BH ~ half-BPS multiplet (focus on scalar component) Charge not spin

Central charges C;; [Caron-Huot, Zahraee]

_ 0 Laxa
Cl - ( 14)(4 O ) Y CQ m2 ( (P O

® = diag(e'?r, 2 e'¥3 ei%1) > ¢ =0

® Force between BH depends on alignment of charges

o Two-body problem solved for aligned charges to O(v?) all orders in G'!

[Ferrell, Eardley; Gibbons, Ruback; Camps, Manton, Hadar]



Simplicity in N/ = 8 supergravity

| o= &
® One-loop mtegrand [Brink, Green, Schwarz; Caron-Huot, Zahraee]
t=—q°
) 1 4 1 4
/\/lé(l = —i(87G)*16mim35(c — cos ¢)* ( 4 Ez )
2 3 2 3
® TWO-lOOp integrand [Bern, Dixon, Perelstein, Rozowski; JPM, Ruf, Zeng]
/\/1(2) —(87G)316mim35(c — cos ¢)?
{4m%m%(a — cos ¢)? ( + 4+ )
2 T b Y Only scalar
1 41 i1 — L ) integrals
+g®)? ( A [ i + % )
2 3 2= g g~ 2 b 3
(2o 3)}

® Loop integrand known up to five loops

[Bern, Brink, Carrasco, Chen, Dixon, Edison, Green, Johansson,
JPM, Kosower, Perelstein, Roiban, Rozowski, Schwarz, Zeng]

(Un)surprisingly simple!



State of matters

® |n general, calculations can be separated in two parts:

® |ntegrands - solved problem for near future 1§g4

(unitarity methods, double copy, simplified Feynman rules,...) #/stalks

See Emil’s,

® |ntegrals - real bottleneck (not a surprise for QCD friends)

® Today’s talk, single scale integrals to all orders for observables that :

1. are integrated over orbits and celestial sphere |

Gravitons onl
< Yy

inside cuts

2. are independent of the phase of GW

e.g. scattering angle/impulse, energy loss “inclusive enough”




KMO,C (in'in) apprOaCh [Kosower, Maybee, O’Connell]

® Gauge invariant observables directly from amplitudes + unitarity cuts

Example 1: Impulse  Ap} = /qu5(2u1 . q)6(2us - q) eI TH

I
| See David’s
TH = g Tin |
1 + a0 ) | talk!
states gl
o
Example 2: Radiated momentum R* = qu5 2ui - q)d(2us - ¢) eI RH

2K

states

z:( Jrms

o . ’)
Kernels are “inclusive enough See also [Maybee, O’Connell, Vines]



Integrals



Method of Regions

2

® (Classical limit = Large angular momentum _m_;2 ~ % ~J* > 1
® Method of regions [Beneke, Smirnov] lv| = qO/!q!
hard: (w,£) ~ (m,m)
soft:  (w, £) ~ (|ql, Iql) ~ J71 (m]v], m|v])
potential: (w,£) ~ (|q||v],|q|) ~ J~ L (m\v!Q,m!vD
radiation: (M,E) ~ ( q||v|, |q "UD ~ J_l (m‘v‘27m‘v‘2)

® Potential gravitons off-shell, mediate instantaneous interactions

Conservative dynamics
> Vi(p,q) See Zvi’s Talk!




Integration by parts (IBP)

p1—q/2 p1+q/2
® Special variables [Sudakov] p; -q =10 Y
e Soft integrals (HQET-like)
P2 +q/2 P2 —q/2
2 - 4P
0+ p;)? —m? — 20w u; = P;/m;

)

® Homogeneous mass and 4 dependence trivialized - manifest power counting

® Result can be written in terms of a basis of master integrals via IBP

0 Ol
D _
/d gagup(g_q)z... =0

e Automated IBP tools exist (FIRE, Reduze, ...) and can be applied to this problem.



Velocity differential equations

e Single variable! canonical form [Henn]

I(q, pi, i) = (—¢*)* I(y) y=LEL =0+ 0(¢%)

—

dI(y) =€ 3, Asdlog oy (y) I(y)

e Symbol alphabet: {z,z + 1, — 1} — new functions e.g. Liy(1 — 2?) <
Relevant

. t O(G4)?
_ 14a® ~ o—1 a
Yy == log x ~ arcsinh,/ %5

More generally, Harmonic polylogs (HPL) [Remiddi, Vermaseren] or worse!

Example:

|
o O O
o O O
o O =

= IR —
I Bl



Static boundary conditions

e Radiation and potential regions split in near-static limit v < 1

® Only need to calculate appropriate boundary conditions (PN data),
diff. eq. resum the velocity series.

® Potential region integral with cut matter propagators

: 1 1 1 2 4
Graviton: 72— T_g2 — P2 (2‘3)2 (2‘5)3 o
: 1 1
Matter: 2u;-f 2(uf w—wu;l)
|«
e Singular, evaluated by residue prescription y
(Similar to NRQCD/NRGR) y
> >




Full soft integrals

® Advantage over potential region: analyticity in velocity

® Advantage over massless integrals: Euclidean region!

o
“bound”

u-channel scattering “unbound”

Integrals are real static

® Only a few boundary conditions are independent.

® No divergence from splitting potential + radiation (tails) m




Reve rse Unltarlty [Anastasiou, Melnikov]

I
® Phase space integrals - no problem! :
I
I

® On-shell conditions are just like propagators

1 1
2%1'61—2'6 QU1°€1‘|‘i€

271 5(2”&1 y 61) —

® Satisfy same type of differential equations as uncut integrals!

d ! : 1 R | |
Simple example: —— =0 esult equals
do , : ; static limit

®* Importantly, we sum over full intermediate phase space!



Application:

Gravitational Bremsstrahlung




COnse rvatlve reSU It [Herrmann, JPM, Ruf, Zeng]

® KMO’C formulas can be used evaluating integrals in potential region.

Only two-particle cuts necessary

16G3m2mio? b o—1 o?s
T _ 113 .
ApY |cons = " i 4 arcsinh 5 + myma(o? — 1)37°

/

High-energy log

see Heissenberg,
Damour talks!

® Scattering angle: sin X — v2pAp1 matches result from eikonal/EFT

[JPM, Ruf, Zeng]

® Purely transverse due to “no-triangle” property at one loop

[Caron-Huot, Zahraee]



Two-loop radiative Impulse e, o, w zene

® Evaluating integrals in full soft region

Conservative

16G3m2m3ot bt [ 202 ‘/ -1,
Apl = — ;nlmQa |- 20 + (4 7 (77 3/2 arcsinhy /2 373
o4 —1 b o4 —1 (62 — m1m2 —1)

4rGPmimio* oul — uf 202 4o (0% - 2) o1
_ (0_2_1)3/2 ’6’3 _0_2_1 — 14— (02 3/2 arcsinh —410g( 1—|—0‘— \/ O _]_)>

/

New function!

® Angle with radiation matches eikonal [DiVecchia, Heissenberg, Russo, Veneziano]

® Contains more information!



Energy loss

® Radiated momentum R* = —Ap; — Aps

® Energy loss in rest frame of one of the particles E™@4 — 4, . R = R"

G3m2m2 Aot 202 do (02 — 2) oc—1 1
rad __ 17792 . . L : _ _ _ 2 _
prad — TN G| 4 2 1" arcsinhy / 5 4log 5 (1+o g2 —1)

® Has expected Mass dependence [Kovacs, Thorne; Bini, Damour, Geralico]

3n 200 2
° High-energy limit as expected!  pgrad g7 (2102 — 1) G Tz‘émQ o?

AE = (20.0 + 0.3)[(mamg)?/b%ly° . Modulo coefficient

- T— R

[Kovacs, Thorne]



Results in pure gravity underway...

stay tuned!



Conclusions



Comments about KMO’C approach

‘ KMO'C! ‘

® Real time dynamics - Schwinger-Keldish

'

® Option 1: time ordered propagators/Feynman rules, unitarity cuts

(in|STOS|in) = Doy Do O eiS1e1]—iS[z]

f(¢1=¢2)t:+oo

® Option 2: Keldish basis, causal (advanced, retarded) propagators,
manifest classical limit

b1 = ¢1+ 2 ~ O(RY) d— = ¢1 — 2 ~ O(h')

6S[o]
1P 0S[p+]
fDqﬁe e+ —5<5¢:)

c.f. Damour’s talk

® Different from other approaches which calculate time-symmetric
guantities. Here Feynman vs causal propagators just a choice of basis.



Conclusions

e KMO’C formalism captures real time dynamics in a way amenable to
traditional methods for covariant integration

® Adapted modern techniques (IBP, canonical diff. eq.) for calculation of
integrals relevant for classical gravity (or Heavy Particle EFTs). Single
scale to all orders!

® |n our example, different velocity regions captured in boundary
conditions.

® Thanks to reverse unitarity: “inclusive enough observables” require no
more complicated methods than virtual amplitude/scattering angle.
Also in full soft region hereditary effects (tails) should not be an issue.

® Technology/automation ripe to go to higher orders!



Questions

® Can we adapt classical methods to use same integration techniques?
(Yes! see Porto’s talk)

® Can we have have our cake and eat it?
® EFT: non-covariant integrals - integrand level subtractions
® Eikonal, KMO’C: covariant integrals - no integrand level subtractions

® How much does the four-point amplitude know? Bounds states, decay
rates, analytic continuation?

® Does EFT philosophy (“one scale at a time”) + manifest power counting
always imply one integration variable at a time?



Thank you!



