Speakers: Poulomi Dam (Università degli Studi di Padova)
Aims. We provide an in-depth analysis of the COSMOS-Web ring, an Einstein ring at z=2 that we serendipitously discovered in the COSMOS-Web survey and possibly the most distant lens discovered to date.
Methods. We extract the visible and NIR photometry from more than 25 bands and we derive the photometric redshifts and physical properties of both the lens and the source with three different SED fitting codes. Using JWST/NIRCam images, we also produce two lens models to (i) recover the total mass of the lens, (ii) derive the magnification of the system, (iii) reconstruct the morphology of the lensed source, and (iv) measure the slope of the total mass density profile of the lens.
Results. The lens is a very massive and quiescent (sSFR < 10^(-13) yr-1) elliptical galaxy at z = 2.02 \pm 0.02 with a total mass Mtot(<thetaE) = (3.66 \pm 0.36) x 10^11 Msun and a stellar mass M* = (1.37 \pm 0.14) x 10^11 Msun. Compared to SHMRs from the literature, we find that the total mass is consistent with the presence of a DM halo of mass Mh = 1.09^(+1.46)_(-0.57) x 10^13 Msun. In addition, the background source is a M* = (1.26 \pm 0.17) x 10^10 Msun star-forming galaxy (SFR=(78 \pm 15) Msun/yr) at z = 5.48 \pm 0.06. Its reconstructed morphology shows two components with different colors. Dust attenuation values from SED fitting and nearby detections in the FIR also suggest it could be partially dust-obscured.
Conclusions. We find the lens at z=2. Its total, stellar, and DM halo masses are consistent within the Einstein ring, so we do not need any unexpected changes in our description of the lens (e.g. change its IMF or include a non-negligible gas contribution). The most likely solution for the lensed source is at z = 5.5. Its reconstructed morphology is complex and highly wavelength dependent, possibly because it is a merger or a main sequence galaxy with a heterogeneous dust distribution.
One of the surprising results from HST was the discovery that many of the most massive galaxies at z~2 are very compact, having half-light radii of only 1-2 kpc. The interpretation is that massive galaxies formed inside-out, with their cores largely in place by z~2 and approximately half of their present-day mass added later through minor mergers. Here we present a compact, massive, quiescent galaxy at zphot=1.94+0.13−0.17 with a complete Einstein ring. The ring was found in the JWST COSMOS-Web survey and is produced by a background galaxy at zphot=2.98+0.42−0.47. Its 1.54" diameter provides a direct measurement of the mass of the "pristine" core of a massive galaxy, observed before mixing and dilution of its stellar population during the 10 Gyr of galaxy evolution between z=2 and z=0. We find a mass of Mlens=6.5+3.7−1.5×1011 Msun within a radius of 6.6 kpc. The stellar mass within the same radius is Mstars=1.1+0.2−0.3×1011 Msun for a Chabrier initial mass function (IMF), and the fiducial dark matter mass is Mdm=2.6+1.6−0.7×1011 Msun. Additional mass is needed to explain the lensing results, either in the form of a higher-than-expected dark matter density or a bottom-heavy IMF.