

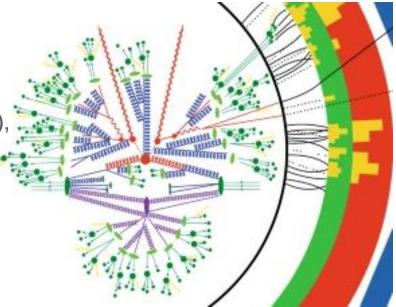
High-energy nuclear physics:

ALICE at the LHC

Istituto Nazionale di Fisica Nucleare Sezione di Padova Speaker: Andrea Rossi (INFN Padova)

ALICE team:

F. Antinori, M. Benettoni, D. Chiappara, A. Dainese,


P. Giubilato, M. Lunardon, S. Mattiazzo,

G. Meng, C. Pantouvakis, P. Rebesan, M. Rignanese, A. Rossi, M. Sgaravatto, H. Sharma, F. Soramel, R. Turrisi, J. Zhu

What happens in **proton-proton collisions at high energies** like those accessible at the **Large Hadron Collider at CERN**?

What happens in **proton-proton collisions at high energies** like those accessible at the **Large Hadron Collider at CERN**?

Quarks and gluons inside protons interact and produce **several quarks and gluons** (rarely other particles), i.e. a system of interacting partons, which **evolves until hadrons are formed**

What happens in proton-proton collisions at high energies like those accessible at the Large Hadron Collider at CERN?

Quarks and gluons inside protons interact and produce **several quarks and gluons** (rarely other particles) i.e. a system of interacting partons, which **evolves until hadrons are formed**

Two types of research at high-energy colliders:

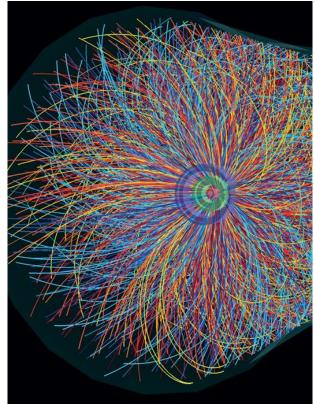
- 1) search for new physics \rightarrow focus on very rare signals, the majority of the produced quarks and gluons is a background
- 2) understand the properties and evolution of the partonic and hadronic systems
 - \rightarrow learn properties of strong force and of some fundamental processes in nature

What happens in **proton-proton collisi** the **Large Hadron Collider at CERN**?

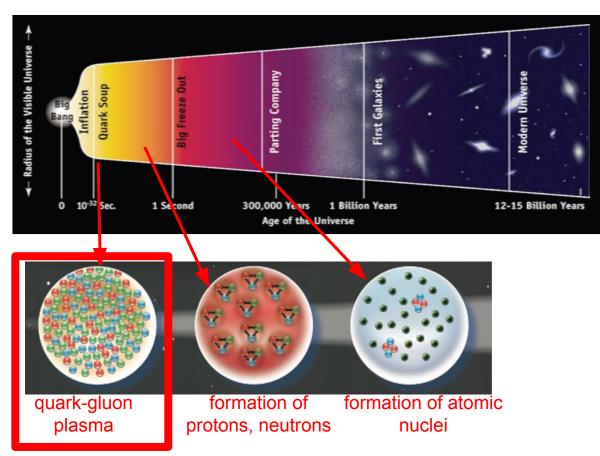
Quarks and gluons inside protons interact and produce **several quarks and gluons** (rarely oth i.e. a system of interacting partons, which **evolves until hadrons are form**

Two types of research at high-energy colliders:

- search for new physics → focus on very rare signals, the majority of the produced quarks and gluons is a background
- 2) understand the properties and evolution of the partonic and hadronic systems \rightarrow learn properties of strong force and of some fundamental processes in nature

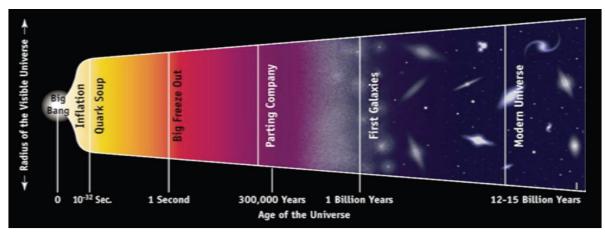

Investigating the strong force at high-energy at colliders What happens in Pb-Pb collisions at high energies like those accessible at the Large Hadron Collider at CERN?

Something similar to proton-proton collisions


but the **number of produced quarks and gluons** (and then hadrons) is much higher (about x1000)

Partonic system with very high energy density

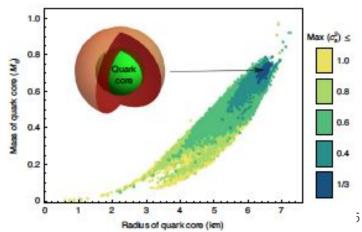
which behaves for a very short time (few 10⁻²³ s) as a **quark-gluon plasma (QGP) state**


Quark-gluon matter in the Early Universe ...

The transition from quarks to hadrons occurred in the expanding & cooling early Universe ~10 µs after the Big Bang

 \rightarrow Before: Quark Gluon Plasma

Quark-gluon matter in Neutron Stars...

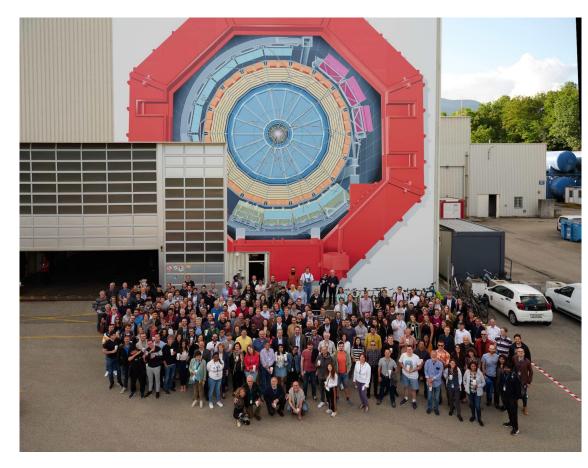


The transition from quarks to hadrons occurred in the expanding & cooling early Universe ~10 µs after the Big Bang

 \rightarrow Before: Quark Gluon Plasma

QGP may characterise also the core of neutron stars.

figure from Nature Physics, 16, 907-910 (2020), https://www.nature.com/articles/s41567-020-0914-9


~ 26 m

"Gigantic" particle accelerator (LHC) with gigantic apparatus

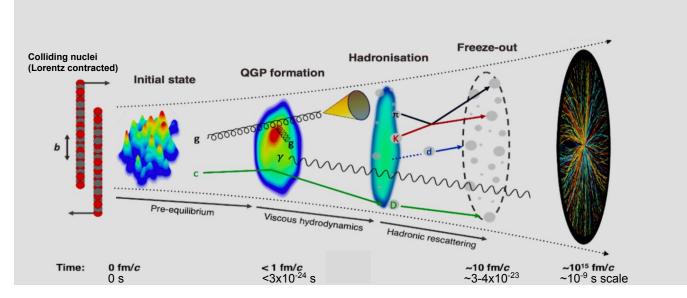
 \rightarrow magnets, trackers, muon-chambers, calorimeters... and several other detectors to study the transition from hadrons to quarks (and return) in laboratories

ALICE public webpages (just look for "ALICE CERN"): https://alice.cem/alice-physics

The ALICE experiment at the Large Hadron Collider

40 countries, 170 institutes, ~2000 members

- \rightarrow Network of contacts
 - PhD, post-doc
 - spend periods at CERN or in foreign institutes


Back to nuclei collisions: system evolution and phases

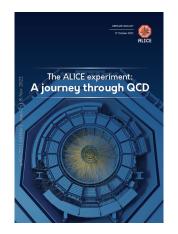
Temperature

Phase transition critical temperature: T_c =156 MeV ~ 1.8·10¹² K Sun core: 1.5 · 10⁷ K Sun surface: 5778 K

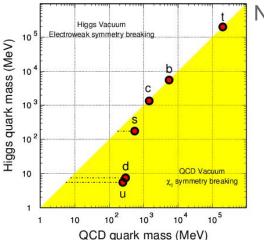
Back to nuclei collisions: system evolution and phases

"Language" and physics concepts used to describe system properties and evolution:

admixture of particle physics, Standard Model, Quantum Chromodynamics and statistical mechanics, thermodynamics, hydrodynamics


What do we want to know?

What are the global properties (e.g. temperature, density, volume, viscosity) of the system?


Can we model the evolution of the quark-gluon system from proton-proton to Pb-Pb collisions?

How do hadrons form out of a system of quarks (hadronisation process)?

... many more questions

https://arxiv.org/pdf/2211.04384.pdf

N.B.

- Higgs boson accounts only for a few % of the matter mass: M(proton) ~ 938 MeV/c² M(up, down) ~ few MeV/c²
- Most of matter mass is generated dynamically during the transition from quarks to hadrons

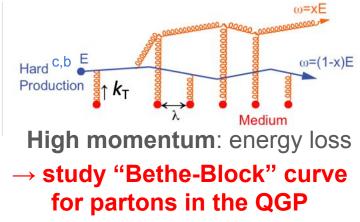
Activities of the ALICE group in Padova

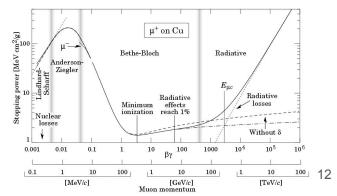
- 1) Data analysis
- 2) Silicon pixel sensors

Team composition:

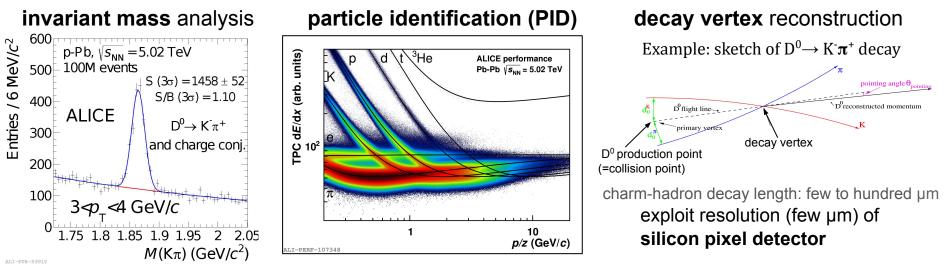
- 12 Unipd and INFN staff members
- 3 post-doc
- 2 PhD students

Data analysis, heavy-flavour particles: physics motivation


Heavy quarks (**charm and beauty**, mass ~1.5-4.5 GeV/c², heavier than protons!) are ideal probes of QGP and quark-to-hadron transition


- produced in the first instants
- flavour conserved in strong interactions

Low momentum: Brownian motion markers of QGP \rightarrow study **quark diffusion** and transport properties

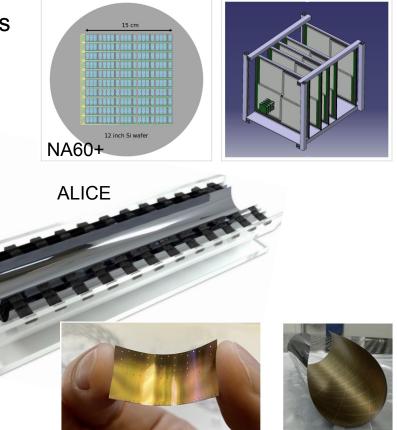

Investigate **hadronisation process**: e.g. baryon vs. meson formation probability

Our data-analysis toolkit

Some among the main standard tools used in nuclear and particle physics

+ **machine-learning** classification techniques. Signal hunters! Overwhelming background to reject! Recent detector upgrade, tons of data being collected and ready to be analysed! <u>Software tools</u>:

- mainly C++-based software (ROOT and ALICE specific software)
- machine-learning packages
- (python)


Activity on silicon sensors: at the frontier of detector technology

- High-precision silicon pixel detectors, as close as possible to the interaction point
 → identification of charm and beauty particles
- We participate in the development of the next-generation sensors:
 - thinned to ~ 50 μ m
 - long (>10 cm), wide area
 - bent in cylindrical shape around beam axis

Imagine to hold and bend a sheet of paper ... which instead is a layer of silicon pixel sensors!

First detectors with these features!

 \rightarrow presentation by P. Giubilato

Activity on silicon sensors: at the frontier of detector technology

Ongoing studies in Padua clean room for:

- short-term ALICE upgrade (ITS3)
- future experiments: NA60+, ALICE 3, ePIC (\rightarrow R. Turrisi)

Collaboration with CERN and other INFN sites in Italy

Activities:

- Sensor characterization
- Sensor design (longer term)

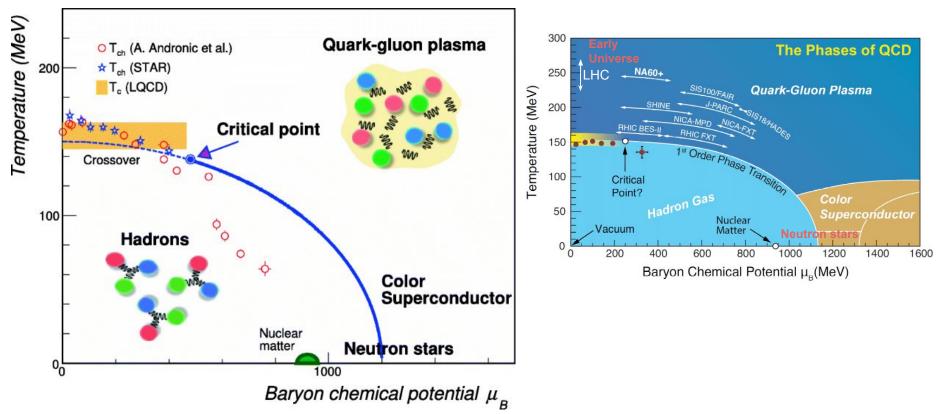
Can learn/contribute to

- prepare an experimental setup
- data taking
- data analysis

Requirements:

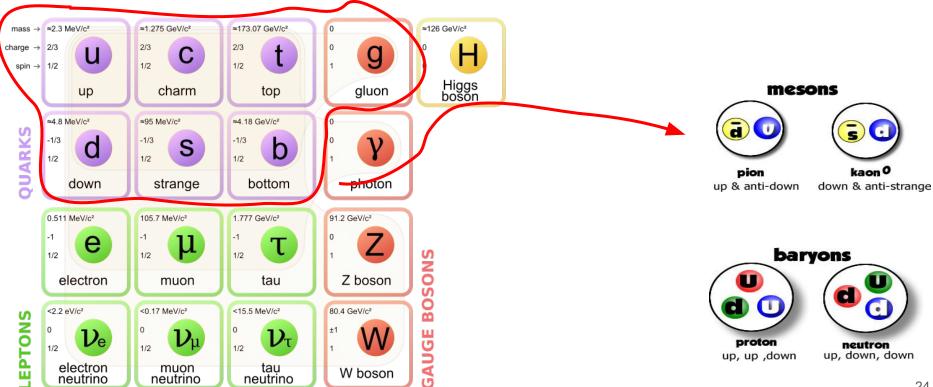
- Interaction of radiation with matter
- **Basic knowledge of electronics** (for signal processing and readout)
- Some **basic knowledge** of **C++/Python** is desirable, **but not required**

Speaker: Andrea Rossi (andrea.rossi@pd.infn.it) Room 404, Paolotti building

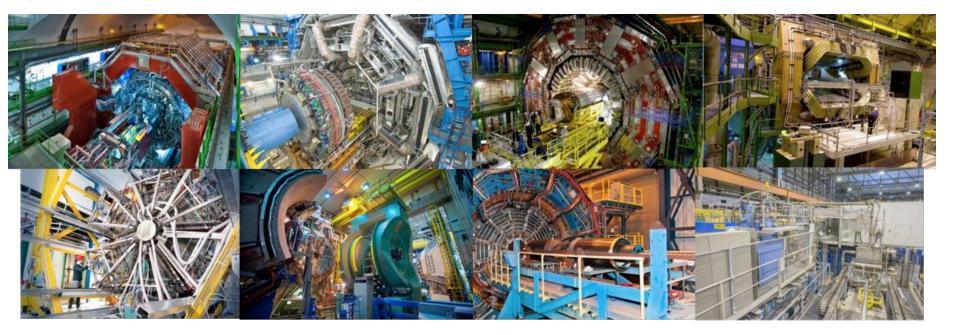

Group:

Andrea Dainese (<u>andrea.dainese@pd.infn.it</u>, also for NA60+) Federico Antinori (<u>federico.antinori@pd.infn.it</u>) Marcello Lunardon (<u>marcello.lunardon@unipd.it</u>)

Work on silicon sensors: Piero Giubilato (<u>piero.giubilato@unipd.it</u>) Serena Mattiazzo (<u>serena.mattiazzo@unipd.it</u>)


Extra

Exploring the strong-interaction phase diagram



Elementary particles and hadrons

We never observe free quarks, only composite objects called hadons, in which quarks are bound and confined to stay by the strong nuclear force

Examples of experimental apparatus...

