

g

Thesis opportunities at the Belle II Experiment

Alessandro Gaz (DFA) on behalf of the Belle II Padova Group

- The Belle II Experiment and its mission;
- The Time Of Propagation (TOP) sub-detector;
- Physics analysis topics;
- Our group;
- Thesis opportunities.

The mission

- Belle II is a big experiment, with 1200 collaborators from 28 countries (from Italy: ~80 members from 8 institutions);
- The physics program is very vast:
 - → B-mesons physics:

 $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ (in a quantum entangled state)

- * abundant production of charmed mesons and τ leptons;
- searches for exotic hadrons;
- searches for Dark Sector particles;
- An entire analysis can be performed from start to finish by a very small number of people;
- Also opportunities for detector development and upgrade;

A large data set is already available for physics analysis and detector studies, and much more will come!

The SuperKEKB e⁺e⁻ collider

4

- Asymmetric energy e⁺e⁻ collider, operating at E_{CM} ~ 10.58 GeV = m[Y(4S)];
- Luminosity goals
 - → instantaneous: 6 x 10³⁵ cm⁻²s⁻¹ [reached so far 4.7 x 10³⁴]
 - → integrated: 50 ab⁻¹ [recorded so far 0.424]
- Successfully completed Run1 (2019-2022), and just started Run2!

First Run2 collisions last Tuesday!

A Constrained of the second of

The Belle II Detector

A modern HEP detector with several key features:

- good hermiticity and efficient reconstruction of charged tracks;
- great decay vertex resolution;
- efficient reconstruction of neutral particles (π⁰'s, η^(')'s, K⁰_L's, ...);
- reliable discrimination between different kinds of particles (Particle IDentification).

The Time Of Propagation (TOP) sub-detector

The Belle II Padova Group contributed to the construction, commissioning, and operations of the TOP detector, which is (mostly) dedicated to the identification of π 's and K's;

Micro-channel plate photomultipliers (MCP PMT's)

Development on SiPM

- We are considering to replace the MCP PMT's (which suffer from radiation damage) with Silicon Photomultipliers;
- In Padova we are working on the full characterization of SiPM's response under controlled conditions;
- We are also studying the radiation damage and possible mitigation strategies.

The Time Of Propagation (TOP) sub-detector

TOP PID is currently based on a (quite complicated) analytic calculation of the probability density function of the times of arrival of the Cherenkov photons:

0

Belle II Physics Topics

• The main topic in physics analysis for our group is:

CP violation

(which is the violation of the symmetry between matter and anti-matter)

- B mesons are an ideal place to study this kind of phenomena as:
 - CP violation happens in different forms and in many decay channels;
 - The Standard Model can make precise predictions, so any discrepancy with the experimental value is a potential evidence for New Physics!
 - at Belle II we can really take advantage of the quantum entanglement of the two neutral B mesons:

If one of the two B's is a B^0 , in the same instant the other B must be a $\overline{B^0}$

Time dependent CPV B^0 $\eta' K^0_s$

 \overline{B}^{0}

The $\eta' K_s$ final state is a CP eigenstate and is accessible to both B^o and \overline{B}^o .

The interference between the direct decay and the decay through oscillation gives us access to fundamental parameters of the standard model.

$$\mathcal{A}_{f}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f) - \Gamma(B^{0}(\Delta t) \to f)}{\Gamma(\overline{B}^{0}(\Delta t) \to f) + \Gamma(B^{0}(\Delta t) \to f)}$$
$$= S_{f} \sin(\Delta m_{B} \Delta t) + A_{f} \cos(\Delta m_{B} \Delta t)$$

Time-dependent CPV in $B^0 \rightarrow \eta' K_s$

- Hot off the press: arXiv:2402.03713 [hep-ex], submitted to PRD;
- First time-dependent CPV analysis at Belle II on this channel!

Channel	Signal yield	$C_{\eta' K_S^0}$	$S_{\eta'K^0_S}$
$\eta' \to \eta_{\gamma\gamma} \pi^+ \pi^-$	358 ± 20	-0.10 ± 0.13	0.69 ± 0.14
$\eta' ightarrow ho \gamma$	471 ± 29	-0.24 ± 0.10	0.65 ± 0.13
$\eta' o \eta_{3\pi} \pi^+ \pi^-$	55 ± 8	0.11 ± 0.32	0.25 ± 0.50
Sim. fit	829 ± 35	-0.19 ± 0.08	0.67 ± 0.10

How to improve from here:

- more sub-channels (K^0_L , $K^0_S \rightarrow \pi^0 \pi^0$, ...);
- better tools;
- more data!

determination of the ϕ_2 (α) angle of the CKM Unitarity Triangle;

 It is a quite rare decay (BR ~ 10⁻⁶) and experimentally challenging (wide resonances, polarization,);

Plots from BaBar, Phys. Rev. D 78, 071104 (2008)

• With the data that we will have in the next 1-2 years, we will be in a position to make a world leading time-dependent measurement!

The Belle II Padova group

PhD students

Staff

Alessandro Gaz

Stefano Lacaprara

Postdoc

Roberto Stroili

Ezio Torassa

Thesis opportunities

We have many thesis opportunities for topics related to those I mentioned today that cover:

- hardware development;
- detector performance;
- physics analysis;

Typically the student will work side-by-side with one of the senior members of the group on a project that suits his/her needs (Triennale/Master's), interests, and availability;

For more details, please see the Thesis Portal (https://tesi.dfa.unipd.it) and talk to us:

alessandro.gaz@unipd.it stefano.lacaprara@pd.infn.it roberto.stroili@unipd.it ezio.torassa@pd.infn.it