

Neutrino physics with ENUBET and T2K

Prof. Andrea Longhin

Per gli studenti di LT e LM in Fisica

DFA UniPD, 23/02/2024

The neutrino

Hypothesis 1932 (Pauli), discovery 1957 (reactors, Reines-Cowan)

Extremely abundant: the Sun $\rightarrow 6x10^{10}/s/cm^2$!!! the Early Universe $\rightarrow 336/cm^3$ (indirect)

Many sources over ~20 orders of magnitude in energy \rightarrow

Where do neutrinos come from?

Weak interaction only

3

The only elementary particle with weak interaction only \rightarrow gigantic and refined detectors

← The Sun neutrino-graphed by Super-Kamiokande

Tunnel? no thanks

Beams of O(100 km) or more feasible underground \rightarrow oscillation experiments (flavor transitions)

- 1998: discovery of neutrino oscillations \rightarrow at least 2 out of the 3 neutrinos have a non-zero mass (< 1 eV) \rightarrow Nobel 2015 (Kajita, McDonald)
- Neutrinos are ~O(1 M) times lighter that the electron! why so unnaturally lighter than leptons (to which they are intimately related)?
- Is it due to other undiscovered neutrinos at high-mass? \rightarrow a ``portal" towards physics beyond the standard model
- Does neutrino masses arise from the Higgs mechanism? Or are they intrinsically different particles? (``Majorana fermions")

- Do neutrinos violate the CP symmetry as quarks? Where does the matter-over antimatter asymmetry in the universe come from?
- Which is the mass of the lightest neutrino?
- Which is the mass ordering of the 3 mass states ?
 - We currently only now differences of mass² from oscillations.

6

• Are there "new" neutrinos beyond those with a standard lepton counterpart (sterile neutrinos)?

Neutrinos are experimentally "difficult"

- Need to detect them far away + weak interactions \rightarrow large statistical uncertainties
- production+interaction only described by models → large systematic uncertainties

Systematics are becoming the driving limitation → **Desperate need for high quality experimental inputs**

I will show 2 "directions" explored by our group:

- 1) fully exploit the information from "near detectors"
 - Bayesian analysis of the T2K experiment data ("analysis")
- 2) new ideas to improve the source:
 - ENUBET demonstrator → a new concept neutrino source with 1% precision ("hardware")

8

Neutrinos are experimentally "difficult"

- Need to detect them far away + weak interactions \rightarrow large statistical uncertainties
- production+interaction only described by models → large systematic uncertainties

Systematics are becoming the driving limitation

```
→ Desperate need for high
```


T2K uses difference in the process $\nu_{\mu} \rightarrow \nu_e$ and $\nu_{\mu} \rightarrow \nu_e$ to study the matter-antimatter asymmetry over a 295 km "travel".

Super-Kamiokande can separate v_{μ} from v_{e}

Many unknowns:

- the neutrino flux (different between near and far)
- the neutrino interaction parameters (that depend on nuclear models, from the target composition)
- There are several different final states each with a different efficiency in the detectors.

The goal is to predict as precisely as possible the number of neutrinos that we expect at the far detector \rightarrow the difference is due to oscillations (appearance of electron neutrinos, disappearance of muon neutrinos) that we can then study.

We use the data collected at the **near detector** (at only 280 m \rightarrow high statistics) to get a constraint on unknown quantities ("nuisance parameters").

The "Near detector fit"

Near detector data AFTER fit

11

Uncertainty on the prediction at far BEFORE ad AFTER the near detector fit:

12

The fit is very complex. Besides the oscillation parameters it involves **hundreds of unknown parameters** ("nuisance") from uncertainties in nuclear models, final state interactions, flux, detector parameters. These are "fitted out" to finally access the interesting oscillation parameters (3).

Bayesian statics \rightarrow posterior probabilities on physical quantities.

The search of maxima in the complex multi-dim space of the likelihood function and marginalization of nuisance parameters is achieved with a **Metropolis-Hastings Markov-chain Monte Carlo**.

Plenty of room for students with a passion in **advanced analysis tools and statistics**.

Work would be in a **highly qualified international group** (in Padova A.L. convener of the oscillation analysis group)

$$\begin{split} -\ln(L) &= \sum_{i}^{ND280bins} N_{i}^{p}(\vec{b},\vec{x},\vec{f},\vec{d}) - N_{i}^{d} + N_{i}^{d}ln[N_{i}^{d}/N_{i}^{p}(\vec{b},\vec{x},\vec{f},\vec{d})] \\ &+ \sum_{i}^{SK1R_{\mu}bins} N_{i}^{p}(\vec{b},\vec{x},s\vec{k}d) - N_{i}^{d} + N_{i}^{d}ln[N_{i}^{d}/N_{i}^{p}(\vec{b},\vec{x},s\vec{k}d)] \\ &+ \sum_{i}^{SK1R_{\nu}bins} N_{i}^{p}(\vec{b},\vec{x},s\vec{k}d) - N_{i}^{d} + N_{i}^{d}ln[N_{i}^{d}/N_{i}^{p}(\vec{b},\vec{x},s\vec{k}d)] \\ &+ \frac{1}{2} \sum_{i}^{S} \sum_{j}^{S} \Delta b_{i}(V_{b}^{-1})_{i,j}\Delta b_{j} \\ &+ \frac{1}{2} \sum_{i}^{Sscepars} \sum_{j}^{Sscepars} \Delta x_{i}(V_{x}^{-1})_{i,j}\Delta x_{j} \\ &+ \frac{1}{2} \sum_{i}^{Sipars} \sum_{j}^{Sipars} \Delta f_{i}(V_{f}^{-1})_{i,j}\Delta f_{j} \\ &+ \frac{1}{2} \sum_{i}^{Nd280det} \sum_{j}^{Sdedt} \Delta skd_{i}(V_{d}^{-1})_{i,j}\Delta d_{j} \\ &+ \frac{1}{2} \sum_{i}^{Skdet} \sum_{j}^{Sipdet} \Delta skd_{i}(V_{skd}^{-1})_{i,j}\Delta skd_{j} \end{split}$$

2) monitored v beams: ENUBET

Reach a O(1 %) control on the flux \rightarrow precise physics How ? "counting" positrons from kaon decays with a large/scalable detector

ENUBET \rightarrow Enhanced NeUtrino Beams from kaon Tagging

 $(1 e^+ = 1 neutrino)$

Challenges for the detector:

fast electronics / radiation tolerance / good particle identification with a cost-effective solution


```
European Research Council
Established by the European Commission
```


The demonstrator

Construction of the ENUBET demonstrator

15

Summer 2022 @ INFN-LNL

Construction of the ENUBET demonstrator

Summer 2022 @ INFN-LNL

17

bundling of the WLS fibers with 3D printed "fiber concentrators"+ in situ polishing

SiPM

Readout electronics

physics 😄 #enubet #cern

ENUBET takes off !!!

building 157, CERN Meyrin PS East Hall T9 area

> Movable platform "landing site" @ T9 test beam area.

ENUBET "landed" at the PS-T9 area

Simulation and data analysis of CERN data

Efficiency maps \rightarrow "radiography" using muons

Simulation and data analysis of CERN data

22

Electron energy resolution

Total energy (contained) 0.5 GeV/c 1 GeV/c 2 GeV/c 0.18 3 GeV/c 4 GeV/c 0.16 5 GeV/c - 0.5 GeV/c - AS 0.14 - 1 GeV/c - AS - 2 GeV/c - AS 0.12 - 3 GeV/c - AS - 4 GeV/c - AS 0.1 5 GeV/c - AS 0.08 0.06 0.04 0.02 00 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A. Moro, tesi triennale, Dec. 2023

New horizons for ENUBET

We are currently upgrading the Data Acquisition system for a **new exposure at CERN in 2024.** Precious occasion for a thesis work with the possibility of participating to the construction (Legnaro) and testing (CERN) of a complex detector and analysis of the associated data.

Simulation and data analysis of CERN data

Construction of the ENUBET demonstrator

26

Summer 2022 @ INFN-LNL

Event displays

Ø

Simulation and data analysis of CERN data

Data taking with the demonstrator

horizontal run with darkening cover

Beam spot at the detector upstream face after several runs illuminating different regions of the detector

Oct 2022 CERN-PS-T9

200 mrad tilt run