Flavour Physics from Heterotic Standard Models with Split Bundles Lucas Leung

String Phenomenology 2024 Padova - 27th June 2024

based on arXiV:2407.XXXXX In collaboration with: Andrei Constantin, Kit Fraser-Taliente, Thomas Harvey and Andre Lukas

- explaining Yukawa couplings: VEVs of moduli fields
- Froggatt and Nielsen $_{\rm [1979]}$ proposed using horizontal symmetries ${\rm U(1)}_{H}$ to explain flavour structures

$$Y_{ij} = a_{ij} \langle \phi \rangle^{n_{ij}}$$

- explaining Yukawa couplings: VEVs of moduli fields
- Froggatt and Nielsen [1979] proposed using horizontal symmetries $U(1)_H$ to explain flavour structures

$$Y_{ij} = a_{ij} \langle \phi \rangle^{n_{ij}}$$

- is **HARD** + done on a case-by-case basis [Constantin et al. 2402.01615]
- salient feature of these models: **flavour symmetries** *J* [Anderson et al. 1202.1757]

 $\mathcal{J}/\mathbb{Z}n \cong U(1)$

- correct spectrum using GA ~ $\mathcal{O}(10^5)$ models [Anderson et al. 1307.4787] lacksquare
- Goal: additional constraints from flavour symmetries from an EFT approach

computation of Yukawa couplings in heterotic line bundle standard models can be achieved - but it

1)ⁿ i.e.
$$q_{\mathcal{J}} \sim q_{\mathcal{J}} + n$$

- explaining Yukawa couplings: VEVs of moduli fields
- Froggatt and Nielsen [1979] proposed using horizontal symmetries $U(1)_H$ to explain flavour structures

$$Y_{ij} = a_{ij} \langle \phi \rangle^{n_{ij}}$$

- is HARD + done on a case-by-case basis [Constantin et al. 2402.01615]
- salient feature of these models: **flavour symmetries** *J* [Anderson et al. 1202.1757]

 $\mathcal{J}/\mathbb{Z}\mathbf{n}\cong U(1)$

- correct spectrum using GA ~ $\mathcal{O}(10^5)$ models [Anderson et al. 1307.4787]
- Goal: additional constraints from flavour symmetries from an EFT approach

- Heterotic Line Bundle Standard Models
- Simple Cases and Examples
- Genetic Algorithms
- Implementation and Algorithms
- Results
- Conclusion

computation of Yukawa couplings in heterotic line bundle standard models can be achieved - but it

1)ⁿ i.e.
$$q_{\mathcal{J}} \sim q_{\mathcal{J}} + n$$

4d $\mathcal{N} = 1$ SUSY Standard Models [Anderson et al. (2012)]

- Gauge symmetry $G_{SM} \times \mathcal{J}$, $\frac{\mathcal{J}}{\mathbb{Z}n} \cong U(1)^{f-1}$
- For field F: $Q_{\mathcal{J}}(F) \sim Q_{\mathcal{J}}(F) + n$
- Charge pattern of matter and moduli fields in \mathcal{J} :

Symbol	SM rep	SU(5) rep	Charge Pattern in \mathcal{J}	Notation	Description
Q_I	$({f 3},{f 2})_1$	10^{I}	$q = e_a$	10_{a}	LH quarks
u_I	$(ar{3}, 1)_{-4}$	10^{I}	$q = e_a$	10_{a}	$\operatorname{RH} u$ quarks
e_I	$({f 3},{f 2})_1$	10^{I}	$q = e_a$	10_{a}	RH electrons
d_I	$(ar{3}, m{1})_2$	$\mathbf{\overline{5}}^{I}$	$q = e_a + e_b$	${f \overline{5}}_{a,b}$	$\operatorname{RH} d$ quarks
L_I	$({f 1},{f 2})_{-3}$	$\mathbf{\overline{5}}^{I}$	$q = e_a + e_b$	${f \overline{5}}_{a,b}$	LH leptons
H_d	$({f 1},{f 2})_{-3}$	${f \overline{5}}_H$	$q = e_a + e_b$	$\mathbf{ar{5}}_{a,b}^{H}$	Down-Higgs
H_u	$(1,2)_3$	5_{H}	$q = -e_a - e_b$	${f 5}^{\acute{H}}_{a,b}$	Up-Higgs
$ u_I $	$(1,1)_1$	1^{I}	$q = e_a - e_b$	$1_{a,b}$	RH neutrinos
ϕ_i	$(1,1)_1$	1	$q = e_a - e_b$	$\phi_{a,b}$	Bundle moduli

• These 4d $\mathcal{N} = 1$ SUSY Standard Models are inspired by heterotic SMs with split bundles

$$n = (n_1, n_2, \dots, n_f) |n| = 5$$

Specifies Split Bundle Structure Group

$$H = S(U(n_1) \times \ldots \times U(n_f))$$

4d $\mathcal{N} = 1$ SUSY Standard Models [Anderson et al. (2012)]

- Gauge symmetry $G_{SM} \times \mathcal{J}$, $\frac{\mathcal{J}}{\mathbb{Z}n} \cong U(1)^{f-1}$
- For field F: $Q_{\mathcal{J}}(F) \sim Q_{\mathcal{J}}(F) + n$
- Charge pattern of matter and moduli fields in \mathscr{J} :

Symbol	SM rep	SU(5) rep	Charge Pattern in \mathcal{J}	Notation	Description
Q_I	$({f 3},{f 2})_1$	10^{I}	$q = e_a$	10_{a}	LH quarks
u_I	$({f ar 3},{f 1})_{-4}$	10^{I}	$q = e_a$	10_{a}	$\operatorname{RH} u$ quarks
e_I	$({f 3},{f 2})_1$	10^{I}	$q = e_a$	10_{a}	RH electrons
d_I	$(ar{3}, 1)_2$	$\mathbf{\overline{5}}^{I}$	$q = e_a + e_b$	${f \overline{5}}_{a,b}$	$\operatorname{RH} d$ quarks
L_I	$({f 1},{f 2})_{-3}$	$\mathbf{\overline{5}}^{I}$	$q = e_a + e_b$	${f \overline{5}}_{a,b}$	LH leptons
H_d	$({f 1},{f 2})_{-3}$	${f \overline{5}}_H$	$q = e_a + e_b$	$5_{a,b}^{H}$	Down-Higgs
H_u	$({f 1},{f 2})_3$	5_{H}	$q = -e_a - e_b$	${f 5}^{\acute{H}}_{a,b}$	Up-Higgs
$ u_I $	$(1,1)_1$	1^{I}	$q = e_a - e_b$	$1_{a,b}$	RH neutrinos
ϕ_i	$(1,1)_1$	1	$q = e_a - e_b$	$\phi_{a,b}$	Bundle moduli

• These 4d $\mathcal{N} = 1$ SUSY Standard Models are inspired by heterotic SMs with split bundles

$n = (n_1, n_2, \dots, n_f) |n| = 5$

Specifies Split Bundle Structure Group

$$H = S(U(n_1) \times \ldots \times U(n_f))$$

Different to traditional FN: discrete quotients small SM charges

non-perturbative contributions

Phenomenological Considerations

Mass and Mixing Hierarchies

- Match Electroweak-breaking Scale $\langle H \rangle$
- Avoid Fine-Tuning with $\mathcal{O}(1)$ -coefficients \bullet

Flavour Physics of Heterotic Standard Models with Split Bundles Only 7 sectors to be searched

Phenomenological Considerations

Mass and Mixing Hierarchies

- Match Electroweak-breaking Scale $\langle H \rangle$
- Avoid Fine-Tuning with $\mathcal{O}(1)$ -coefficients

\boldsymbol{n}	Charges				
(1, 1, 1, 1, 1)	10_{1}	10_{2}	10_{5}	${f 5}^{H}_{4,5}$	
	10_{1}	10_{2}	10_{4}	$[{f 5}^{H}_{4,4}]$	
(1 1 1 9)	10_{2}	10_3	10_{4}	${f 5}^{H}_{1,4}$	
	10_{1}	10_{2}	10_3	$\mathbf{\bar{5}}_{1,4}^{H}$	
	10_{1}	10_3	10_{4}	$\mathbf{ar{5}}_{1,2}^{H}$	
(1,1,3)	10_{1}	10_{2}	10_{3}	${f \bar{5}}^{H}_{3,3}$	
(1,2,2)	10_{1}	10_{2}	10_{3}	${f 5}^{H}_{3,3}$	
(1,4)					
(2,3)	_				
(5)	unsplit				

Example in n =

 $Y^{d} \sim \begin{array}{cccc} \bar{\mathbf{5}}_{1,2} & \bar{\mathbf{5}}_{1,4} & \bar{\mathbf{5}}_{2,3} \\ Y^{d} \sim \begin{array}{cccc} \mathbf{10}_{2} \\ \mathbf{10}_{3} \\ \phi_{4,3}\phi_{3,2}\phi_{2,1} \\ \phi_{3,2}\phi_{2,1} \end{array} & \phi_{2,1}\phi_{1,4}\phi_{3,2} \end{array} \qquad \begin{array}{ccccc} Y_{u} = \begin{bmatrix} \epsilon^{5} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & 1 \end{bmatrix}, \begin{array}{cccc} Y_{d} = \begin{bmatrix} \epsilon^{6} & \epsilon^{6} & \epsilon^{4} \\ 0 & 0 & \epsilon^{2} \end{bmatrix} \\ Y^{d} \sim \begin{array}{cccc} \mathbf{10}_{3} \\ \phi_{3,2}\phi_{2,1} \\ \phi_{3,2}\phi_{2,1} \end{array} & \phi_{2,1}\phi_{1,4}\phi_{3,2} \end{array} \qquad \begin{array}{cccc} Y_{u} = \begin{bmatrix} \epsilon^{5} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & 1 \end{bmatrix}, \begin{array}{cccc} Y_{d} = \begin{bmatrix} \epsilon^{6} & \epsilon^{6} & \epsilon^{4} \\ 0 & 0 & \epsilon^{2} \end{bmatrix} \end{array}$

Yukawa Textures

= (1,1,1,2) with
$$\bar{5}_{4,4}^H$$

$$\langle \phi_{4,2} \rangle \sim \epsilon^2, \langle \phi_{2,1} \rangle \sim \epsilon, \langle \phi_{1,3} \rangle \sim \epsilon^2, \langle \phi_{3,4} \rangle \sim \epsilon$$
$$Y_u = \begin{pmatrix} \epsilon^6 & \epsilon^5 & \epsilon^3 \\ \epsilon^5 & \epsilon^4 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 \end{pmatrix}, \quad Y_d = \begin{pmatrix} \epsilon^7 & \epsilon^7 & \epsilon^5 \\ \epsilon^6 & \epsilon^6 & \epsilon^4 \\ 0 & 0 & \epsilon^2 \end{pmatrix}$$

with choice of VEV powers

.2

Yukawa Textures

Example in n = (1, 1, 1, 2) with $\bar{5}_{4,4}^H$

- typical $\epsilon \sim 0.4$

$$Y_{u} = \begin{pmatrix} \epsilon^{6} & \epsilon^{5} & \epsilon^{3} \\ \epsilon^{5} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & 1 \end{pmatrix}, \quad Y_{d} = \begin{pmatrix} \epsilon^{7} & \epsilon^{7} & \epsilon^{5} \\ \epsilon^{6} & \epsilon^{6} & \epsilon^{4} \\ 0 & 0 & \epsilon^{2} \end{pmatrix}$$

with choice of VEV powers

Example in n = (1, 1, 1, 2) with $\bar{5}_{4,4}^H$

- typical $\epsilon \sim 0.4$

$$Y_{u} = \begin{pmatrix} \epsilon^{6} & \epsilon^{5} & \epsilon^{3} \\ \epsilon^{5} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & 1 \end{pmatrix}, \quad Y_{d} = \begin{pmatrix} \epsilon^{7} & \epsilon^{7} & \epsilon^{5} \\ \epsilon^{6} & \epsilon^{6} & \epsilon^{4} \\ 0 & 0 & \epsilon^{2} \end{pmatrix}$$

with choice of VEV powers

- A family of optimisation-search algorithms.
- Two parts: Environment + Evolution

Bitlist

- A family of optimisation-search algorithms.
- Two parts: Environment + Evolution

Bitlist

Charge Patterns + VEVs

ENVIRONMENT

 $10_a, 10_b, 10_c, \bar{5}_{a,b}, \bar{5}_{c,d}, \bar{5}_{e,f}, \bar{5}_{a,b}^H, 1_{a,b} \dots$

- A family of optimisation-search algorithms.
- Two parts: **Environment** + **Evolution** •

- A family of optimisation-search algorithms.
- Two parts: **Environment** + **Evolution** •

Physical Observables $\langle H \rangle$, tan β $m_u, m_c, m_t, m_d, m_s, m_b$ V_{CKM}

Results - Scans

Results - Scans

Perturbative (Bundle Moduli) Scan

n	Charges of 10 and $\mathbf{\overline{5}}^{H}$			$n_{\phi} \le 3$	$n_{\phi} = 4$	
(1, 1, 1, 1, 1)	10_{1}	10_{2}	10_5	$ar{f 5}_{4,5}^{m H}$		≥ 10
(1, 1, 1, 2)	10_{1}	10_{2}	10_{4}	$ar{f 5}^{m H}_{4,4}$		≥ 10
	10_2	10_3	10_{4}	$ar{f 5}^{m H}_{1,4}$	—	≥ 100
	10_{1}	10_2	10_3	${f ar 5}^{{m H}}_{1,4}$		—
	10_{1}	10_3	10_{4}	${f ar 5}^{{m H}}_{1,2}$	—	—
(1,1,3)	10_{1}	10_{2}	10_3	$ar{5}_{3,3}^{H}$		
(1,2,2)	10_{1}	10_2	10_3	$m{5}_{3,3}^{m{H}}$	_	

Results - Scans

Perturbative (Bundle Moduli) Scan

n	Charges of 10 and $\mathbf{\overline{5}}^{H}$			$n_{\phi} \le 3$	$n_{\phi} = 4$	
(1, 1, 1, 1, 1)	10_{1}	10_{2}	10_5	$ar{f 5}_{4,5}^{m H}$		≥ 10
(1, 1, 1, 2)	10_{1}	10_{2}	10_{4}	$ar{f 5}^{m H}_{4,4}$		≥ 10
	10_2	10_3	10_{4}	$ar{f 5}^{m H}_{1,4}$	—	≥ 100
	10_{1}	10_2	10_3	${f ar 5}^{{m H}}_{1,4}$		—
	10_{1}	10_3	10_{4}	${f ar 5}^{{m H}}_{1,2}$	—	—
(1,1,3)	10_{1}	10_{2}	10_3	$ar{5}_{3,3}^{H}$		
(1,2,2)	10_{1}	10_2	10_3	$m{5}_{3,3}^{m{H}}$	_	

Spectrum

10_{1}	10_2	10_5		
${ar 5}_{1,2}$	${ar 5}_{1,2}$	${f \overline{5}}_{1,2}$		
${f 5}_{4.5}^{H}$,	,		
$\phi_{5,1}$	$\phi_{3,5}$	$\phi_{4,5}$	$\phi_{1,2}$	$\phi_{4,1}$

Moduli VEV
$\langle \phi_{5,1} angle$
$\langle \phi_{3,5} angle$
$\langle \phi_{4,5} angle$
$\langle \phi_{1,2} angle$
$\langle \phi_{4,1} angle$

Spectrum

10_{1}	10_2	10_{5}		
${f \overline{5}}_{1,2}$	${f \overline{5}}_{1,2}$	${f \overline{5}}_{1,2}$		
$ar{5}_{4.5}^{H}$,	,		
$\phi_{5,1}$	$\phi_{3,5}$	$\phi_{4,5}$	$\phi_{1,2}$	$\phi_{4,1}$

Moduli VEV
$\langle \phi_{5,1} angle$
$\langle \phi_{3,5} angle$
$\langle \phi_{4,5} angle$
$\langle \phi_{1,2} angle$
$\langle \phi_{4,1} angle$

Yukawa Textures

 $Y_{u} \sim \begin{pmatrix} \phi_{5,1}\phi_{4,1} & \phi_{5,1}\phi_{1,2}\phi_{4,1} & \phi_{4,1} \\ \phi_{5,1}\phi_{1,2}\phi_{4,1} & \phi_{5,1}\phi_{1,2}^{2}\phi_{4,1} & \phi_{1,2}\phi_{4,1} \\ \phi_{4,1} & \phi_{1,2}\phi_{4,1} & \phi_{4,5} \end{pmatrix}$ $Y_d \sim \begin{pmatrix} \phi_{5,1}\phi_{3,5} & \phi_{5,1}\phi_{3,5} & \phi_{5,1}\phi_{3,5} \\ \phi_{5,1}\phi_{3,5}\phi_{1,2} & \phi_{5,1}\phi_{3,5}\phi_{1,2} & \phi_{5,1}\phi_{3,5}\phi_{1,2} \end{pmatrix}$ $\phi_{3,5}$ $\phi_{3,5}$ $\phi_{3,5}$

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

dentile sheet of a

1400

1000

1200

Spectrum

10_{1}	10_2	10_{5}		
${f \overline{5}}_{1,2}$	${f \overline{5}}_{1,2}$	${f \overline{5}}_{1,2}$		
$ar{5}_{4.5}^{H}$,	,		
$\phi_{5,1}$	$\phi_{3,5}$	$\phi_{4,5}$	$\phi_{1,2}$	$\phi_{4,1}$

Moduli VEV
$\langle \phi_{5,1} angle$
$\langle \phi_{3,5} angle$
$\langle \phi_{4,5} angle$
$\langle \phi_{1,2} angle$
$\langle \phi_{4,1} angle$

Yukawa Textures

 $Y_{u} \sim \begin{pmatrix} \phi_{5,1}\phi_{4,1} & \phi_{5,1}\phi_{1,2}\phi_{4,1} & \phi_{4,1} \\ \phi_{5,1}\phi_{1,2}\phi_{4,1} & \phi_{5,1}\phi_{1,2}^{2}\phi_{4,1} & \phi_{1,2}\phi_{4,1} \\ \phi_{4,1} & \phi_{1,2}\phi_{4,1} & \phi_{4,5} \end{pmatrix}$ $Y_d \sim \begin{pmatrix} \phi_{5,1}\phi_{3,5} & \phi_{5,1}\phi_{3,5} \\ \phi_{5,1}\phi_{3,5}\phi_{1,2} & \phi_{5,1}\phi_{3,5}\phi_{1,2} \\ \phi_{5,1}\phi_{3,5}\phi_{1,2} & \phi_{5,1}\phi_{3,5}\phi_{1,2} \end{pmatrix}$ $\phi_{3,5}$ $\phi_{3,5}$ $\phi_{3,5}$

Conclusions & Outlook

- standard models with split bundles using flavour symmetries.
- found a list of viable models.
- Guidance to top-down model building!
- **Extension with non-perturbative** contributions. Ο
- Ο Weinberg operator. Neutrino mass generation?

• We have constructed a GA environment that allows us to search for heterotic

• We have performed searches on the perturbative sector of the system and

Extension to the lepton sector. R-parity violating terms, the μ -term and

• String perspective - similar flavour constraints in F-theory local models?