Machine-Learning Yukawa couplings from String Theory

Learning Standard Model couplings on Calabi-Yau manifolds.

Kit Fraser-Taliente

based on work with Andrei Constantin, Andre Lukas, Thomas Harvey, and Burt Ovrut (2402.01615), (240X.XXXXX).

KFT is supported by a Gould-Watson scholarship

String compactifications generate (moduli-dependent) couplings

Question

Can we use modern numerical methods to compute Yukawa couplings?

Question

Can we use modern numerical methods to compute Yukawa couplings?

Landscape of geometric string theory solutions

- 1. Standard model particle spectrum/gauge group
- 2. Physical Yukawa couplings
- 3. Moduli stabilisation

Landscape of geometric string theory solutions

- 1. Standard model particle spectrum/gauge group
- 2. Physical Yukawa couplings
- 3. Moduli stabilisation

 $E_8 \times E_8$ heterotic string theory (Horava-Witten)

vector bundle V over smooth CY3 X(CY3 X S1/Z2)

4D N =1 chiral gauge theory

Landscape of geometric string theory solutions

- 1. Standard model particle spectrum/gauge group
- 2. Physical Yukawa couplings
- 3. Moduli stabilisation

We have **many** CY compactifications satisfying (1)

(identified with **methods from data science:** GA/RL)

 $E_8 \times E_8$ heterotic string theory (Horava-Witten)

vector bundle V over smooth CY3 X(CY3 X S1/Z2)

4D N =chira gauge theory

Landscape of geometric string theory solutions

- 1. Standard model particle spectrum/gauge group
- 2. Physical Yukawa couplings
- 3. Moduli stabilisation

We have **many** CY compactifications satisfying (1)

(identified with **methods from data science:** GA/RL)

Yukawas: only known in very **limited classes** of compactifications

 $E_8 \times E_8$ heterotic string theory (Horava-Witten)

vector bundle V over smooth CY3 X (CY3 X S1/Z2)

4D N =chira gauge theory

Landscape of geometric string theory solutions

- 1. Standard model particle spectrum/gauge group
- 2. Physical Yukawa couplings
- 3. Moduli stabilisation

We have **many** CY compactifications satisfying (1)

(identified with **methods from data science:** GA/RL)

Yukawas: only known in very **limited classes** of compactifications

 $E_8 \times E_8$ heterotic string theory (Horava-Witten)

vector bundle V over smooth CY3 X (CY3 X S1/Z2)

4D N =chira gauge theory

Landscape of geometric string theory solutions

1. Standard model particle spectrum/gauge group

2. Physical Yukawa couplings

3. Moduli stabilisation

We have **many** CY compactifications satisfying (1)

(identified with **methods from data science:** GA/RL)

Yukawas: only known in very **limited classes** of compactifications

 $E_8 \times E_8$ heterotic string theory (Horava-Witten)

vector bundle V over smooth CY3 X (CY3 X S1/Z2)

4D chiral gauge theory

Landscape of geometric string theory solutions

1. Standard model particle spectrum/gauge group

2. Physical Yukawa couplings

3. Moduli stabilisation

We have **many** CY compactifications satisfying (1)

(identified with **methods from data science:** GA/RL)

Yukawas: only known in very **limited classes** of compactifications

CY3

 $E_8 \times E_8$ heterotic string theory (Horava-Witten)

vector bundle V over smooth CY3 X(CY3 X S1/Z2)

4D 1 chiral gauge theory

Landscape of geometric string theory solutions

1. Standard model particle spectrum/gauge group

2. Physical Yukawa couplings

3. Moduli stabilisation

We have many CY compactifications satisfying (1)

(identified with methods from data science: GA/RL)

Yukawas: only known in very limited classes of compactifications

 $E_8 \times E_8$ heterotic string theory (Horava-Witten)

vector bundle V over smooth CY3 X(CY3 X S1/Z2)

4D N = 1 chiral gauge theory

Landscape of geometric string theory solutions

1. Standard model particle spectrum/gauge group

2. Physical Yukawa couplings

3. Moduli stabilisation

We have **many** CY compactifications satisfying (1)

(identified with **methods from data science:** GA/RL)

Yukawas: only known in very **limited classes** of compactifications

Caveat. Proof of concept.

builde n**e**ric **D** hamonic forms

 $E_8 \times E_8$ heterotic string theory (Horava-Witten)

vector bundle V over smooth CY3 X(CY3 X S1/Z2)

1 chiral 4D N =gauge theory

chiral matter $C^{I} = (c^{I}, \chi^{I})$

 $\mathscr{L} = -K_{I\bar{J}}\partial_{\mu}c^{I}\partial^{\mu}\bar{c}^{\bar{J}} - iK_{I\bar{J}}\bar{\chi}^{\bar{J}}\bar{\sigma}^{\mu}\partial_{\mu}\chi^{I} + e^{K_{mod}/2}(\lambda_{IJK}c^{I}\chi^{J}\chi^{K} + c.c.) + \dots$

chiral matter $C^{I} = (c^{I}, \chi^{I})$

 $\mathscr{L} = -K_{I\bar{J}}\partial_{\mu}c^{I}\partial^{\mu}\bar{c}^{\bar{J}} - iK_{I\bar{J}}\bar{\chi}^{\bar{J}}\bar{\sigma}^{\mu}\partial_{\mu}\chi^{I} + e^{K_{mod}/2}(\lambda_{IJK}c^{I}\chi^{J}\chi^{K} + c.c.) + \dots$

matter field Kähler metric $K_{I\bar{J}}$, $2\mathcal{V}K_{I\bar{J}} \sim \int_{V} \nu_{I} \wedge \star_{V} \nu_{J}$

holomorphic Yukawa couplings, $\lambda_{IJK} \sim \int_{V} \nu_{I} \wedge \nu_{J} \wedge \nu_{K} \wedge \Omega$

chiral matter $C^{I} = (c^{I}, \chi^{I})$

 $\mathscr{L} = -K_{I\bar{J}}\partial_{\mu}c^{I}\partial^{\mu}\bar{c}^{\bar{J}} - iK_{I\bar{J}}\bar{\chi}^{\bar{J}}\bar{\sigma}^{\mu}\partial_{\mu}\chi^{I} + e^{K_{mod}/2}(\lambda_{IJK})$

matter field Kähler metric $K_{I\bar{J}}$, $2\mathcal{V}K_{I\bar{J}} \sim$

holomorphic Yukawa couplings, $\lambda_{IJK} \sim \int_{V} \nu_{I} \wedge \nu_{J} \wedge \nu_{K} \wedge \Omega$

 $\lambda_{IJK} \sim \text{quasi-topological} - \text{invariant under } \nu_I \rightarrow \nu_I + \bar{\partial}\sigma$

$${}_{K}c^{I}\chi^{J}\chi^{K}+c.c.)+\ldots$$

$$\int_X \nu_I \wedge \star_V \nu_J$$

chiral matter $C^{I} = (c^{I}, \chi^{I})$

 $\mathscr{L} = -K_{I\bar{J}}\partial_{\mu}c^{I}\partial^{\mu}\bar{c}^{\bar{J}} - iK_{I\bar{J}}\bar{\chi}^{\bar{J}}\bar{\sigma}^{\mu}\partial_{\mu}\chi^{I} + e^{K_{mod}/2}(\lambda_{IJK})$

matter field Kähler metric $K_{L\bar{I}}$, $2\mathscr{V}K_{L\bar{I}} \sim$

holomorphic Yukawa couplings, $\lambda_{IJK} \sim \int_{V} \nu_{I} \wedge \nu_{J} \wedge \nu_{K} \wedge \Omega$

 $\lambda_{IJK} \sim \text{quasi-topological} - \text{invariant under } \nu_I \rightarrow \nu_I + \bar{\partial}\sigma$

 $K_{L\bar{I}}$ calculation ~ more problematic

$${}_{K}c^{I}\chi^{J}\chi^{K}+c.c.)+\ldots$$

$$\int_X \nu_I \wedge \star_V \nu_J$$

chiral matter $C^{I} = (c^{I}, \chi^{I})$

 $\mathscr{L} = -K_{I\bar{J}}\partial_{\mu}c^{I}\partial^{\mu}\bar{c}^{\bar{J}} - iK_{I\bar{J}}\bar{\chi}^{\bar{J}}\bar{\sigma}^{\mu}\partial_{\mu}\chi^{I} + e^{K_{mod}/2}(\lambda_{IJK})$

matter field Kähler metric $K_{L\bar{I}}$, $2\mathscr{V}K_{L\bar{I}} \sim$

holomorphic Yukawa couplings, $\lambda_{IJK} \sim \int_{V} \nu_{I} \wedge \nu_{J} \wedge \nu_{K} \wedge \Omega$

 $\lambda_{IJK} \sim \text{quasi-topological} - \text{invariant under } \nu_I \rightarrow \nu_I + \bar{\partial}\sigma$

 $K_{L\bar{I}}$ calculation ~ more problematic

$${}_{K}c^{I}\chi^{J}\chi^{K}+c.c.)+\ldots$$

$$\int_X \nu_I \wedge \star_V \nu_J$$

chiral matter $C^{I} = (c^{I}, \chi^{I})$

 $\mathscr{L} = -K_{I\bar{J}}\partial_{\mu}c^{I}\partial^{\mu}\bar{c}^{\bar{J}} - iK_{I\bar{J}}\bar{\chi}^{\bar{J}}\bar{\sigma}^{\mu}\partial_{\mu}\chi^{I} + e^{K_{mod}/2}(\lambda_{IJK})$

matter field Kähler metric $K_{L\bar{I}}$, $2\mathcal{V}K_{L\bar{I}} \sim$

holomorphic Yukawa couplings, $\lambda_{IJK} \sim \int_{V} \nu_{I} \wedge \nu_{J} \wedge \nu_{K} \wedge \Omega$

 $\lambda_{IIK} \sim \text{quasi-topological} - \text{invariant under } \nu_I \rightarrow \nu_I + \bar{\partial}\sigma$

 $K_{I\bar{I}}$ calculation ~ more problematic

Need (g, H, ν_I) : find with **neural networks by** solving PDEs on the manifold and bundle

$${}_{K}c^{I}\chi^{J}\chi^{K}+c.c.)+\ldots$$

$$\int_X \nu_I \wedge \star_V \nu_J$$

chiral matter $C^{I} = (c^{I}, \chi^{I})$

 $\mathscr{L} = -K_{I\bar{J}}\partial_{\mu}c^{I}\partial^{\mu}\bar{c}^{\bar{J}} - iK_{I\bar{J}}\bar{\chi}^{\bar{J}}\bar{\sigma}^{\mu}\partial_{\mu}\chi^{I} + e^{K_{mod}/2}(\lambda_{IJK})$

matter field Kähler metric $K_{I\bar{J}}$, $2\mathscr{V}K_{I\bar{J}} \sim$

holomorphic Yukawa couplings, $\lambda_{IJK} \sim \int_{V} \nu_{I} \wedge \nu_{J} \wedge \nu_{K} \wedge \Omega$ metric gbundle metric $H \sim A^{\mu}$ harmonic forms ν_I

 $\lambda_{IIK} \sim \text{quasi-topological} - \text{invariant under } \nu_I \rightarrow \nu_I + \bar{\partial}\sigma$

 $K_{I\bar{I}}$ calculation ~ more problematic

Need (g, H, ν_I) : find with **neural networks by** solving PDEs on the manifold and bundle

Need: (g, H, ν_I)

10D gauge theory

N = 1 SUGRA coupled to N = 1 $E_8 \times E_8$ SYM

particle spectrum gauge group

4D N = 1 theory

matter field Kähler metric Yukawa couplings

model: X, bundle V with structure group $G = S(U(1)^5) \rightarrow$ gauge group $C_{E_8}(G)$

model: X, bundle V with structure group $G = S(U(1)^5) \rightarrow$ gauge group $C_{E_8}(G)$

1. Find the **Ricci-flat metric** $g_{a\bar{b}}$ (with specified moduli) on X.

- 1. Find the **Ricci-flat metric** $g_{a\bar{b}}$ (with specified moduli) on X.
- 2. Find the **Hermitian Yang-Mills connection** A (~ bundle metric H) on V, $A = \overline{H}^{-1}\partial \overline{H}$.

model: X, bundle V with structure group $G = S(U(1)^5) \rightarrow$ gauge group $C_{E_8}(G)$

- 1. Find the **Ricci-flat metric** $g_{a\bar{b}}$ (with specified moduli) on X.
- 2. Find the **Hermitian Yang-Mills connection** A (~ bundle metric H) on V, $A = \overline{H}^{-1}\partial \overline{H}$. 3. Find the **zero modes** ν_I of the (V-twisted)-Dirac operator.

(Harmonic differential forms ν valued in V, i.e. solutions of $\Delta_V \nu = 0$)

model: X, bundle V with structure group $G = S(U(1)^5) \rightarrow$ gauge group $C_{E_8}(G)$

- 1. Find the **Ricci-flat metric** $g_{a\bar{b}}$ (with specified moduli) on X.
- 2. Find the **Hermitian Yang-Mills connection** A (~ bundle metric H) on V, $A = \overline{H}^{-1}\partial \overline{H}$.
- 3. Find the **zero modes** ν_I of the (V-twisted)-Dirac operator.

(Harmonic differential forms ν valued in V, i.e. solutions of $\Delta_V \nu = 0$)

4. Compute $K_{L\bar{I}}$, λ_{LIK} using ν_I , g, and H, combine:

model: X, bundle V with structure group $G = S(U(1)^5) \rightarrow$ gauge group $C_{E_{\circ}}(G)$

- 1. Find the **Ricci-flat metric** $g_{a\bar{b}}$ (with specified moduli) on X.
- 2. Find the **Hermitian Yang-Mills connection** A (~ bundle metric H) on V, $A = \overline{H}^{-1}\partial \overline{H}$.
- 3. Find the **zero modes** ν_I of the (V-twisted)-Dirac operator.

(Harmonic differential forms ν valued in V, i.e. solutions of $\Delta_V \nu = 0$)

4. Compute $K_{L\bar{I}}$, λ_{LIK} using ν_I , g, and H, combine:

model: X, bundle V with structure group $G = S(U(1)^5) \rightarrow$ gauge group $C_{E_8}(G)$

tree level Yukawa couplings at the compactification scale
Steps to calculate physical Yukawa couplings

- 1. Find the **Ricci-flat metric** $g_{a\bar{b}}$ (with specified moduli) on X.

(Harmonic differential forms ν valued in V, i.e. solutions of $\Delta_V \nu = 0$)

4. Compute $K_{L\bar{I}}$, λ_{LIK} using ν_I , g, and H, combine:

model: X, bundle V with structure group $G = S(U(1)^5) \rightarrow$ gauge group $C_{E_8}(G)$

2. Find the **Hermitian Yang-Mills connection** A (second equations! 3. Find the **zero modes** ν_I of the 3: just (bundle)-Poisson equations! 2 and 3: just (bundle)-Dirac operator.

tree level Yukawa couplings at the compactification scale

- general method: approximate $f \in C(X)$ with $\theta \in \mathbb{R}^N$, **NN architecture** specifies the map $\mathbb{R}^N \to C(X)$
 - want to solve: PDE(f, x) = 0 subject to C(f, x) = 0

general method: approximate $f \in C(X)$ with $\theta \in \mathbb{R}^N$, **NN architecture** specifies the map $\mathbb{R}^N \to C(X)$ want to solve: PDE(f, x) = 0 subject to C(f, x) = 0

$$\mathscr{L}_{PDE}[f_{\theta}] = \alpha \sum_{x_i} \left| PDE(f_{\theta}, x_i) \right|^2 + \beta \sum_{x_j} \left| C(f_{\theta}, x_j) \right|^2$$

general method: approximate $f \in C(X)$ with $\theta \in \mathbb{R}^N$, **NN architecture** specifies the map $\mathbb{R}^N \to C(X)$ want to solve: PDE(f, x) = 0 subject to C(f, x) = 0

$$\mathscr{L}_{PDE}[f_{\theta}] = \alpha \sum_{x_i} \left| PDE(f_{\theta}, x_i) \right|^2 + \beta \sum_{x_j} \left| C(f_{\theta}, x_j) \right|^2$$

'semi-supervised learning': hard PDEs/nontrivial topology/mitigate curse of dimensionality

general method: approximate $f \in C(X)$ with $\theta \in \mathbb{R}^N$, **NN architecture** specifies the map $\mathbb{R}^N \to C(X)$ want to solve: PDE(f, x) = 0 subject to C(f, x) = 0

$$\mathscr{L}_{PDE}[f_{\theta}] = \alpha \sum_{x_i} \left| PDE(f_{\theta}, x_i) \right|^2 + \beta \sum_{x_j} \left| C(f_{\theta}, x_j) \right|^2$$

'semi-supervised learning': hard PDEs/nontrivial topology/mitigate curse of dimensionality

'semi-supervised learning': hard PDEs/nontrivial topology/mitigate curse of dimensionality

general method: approximate $f \in C(X)$ with $\theta \in \mathbb{R}^N$, NN architecture specifies the map $\mathbb{R}^N \to C(X)$ want to solve: PDE(f, x) = 0 subject to C(f, x) = 0

$$\mathscr{L}_{PDE}[f_{\theta}] = \alpha \sum_{x_i} \left| PDE(f_{\theta}, x_i) \right|^2 + \beta \sum_{x_j} \left| C(f_{\theta}, x_j) \right|^2$$

(real) correction to metric: $\phi_{\theta} : \mathbb{R}^m \to \mathbb{R}$

 $g_{CY,a\bar{b}} = g_{FS,a\bar{b}} + \partial_a \partial_{\bar{b}} \phi, \quad \mathscr{L}_{MA} \sim \left| 1 - \frac{1}{\kappa} \frac{\det g}{\Omega \wedge \bar{\Omega}} \right|_n$

'Loss functionals' (to minimise)

(real) correction to metric: $\phi_{\theta} : \mathbb{R}^m \to \mathbb{R}$

$$g_{CY,a\bar{b}} = g_{FS,a\bar{b}} + \partial_a \partial_{\bar{b}} \phi, \quad \mathscr{L}_{MA} \sim \left| 1 - \frac{1}{\kappa} \frac{\det g}{\Omega \wedge \bar{\Omega}} \right|_p$$

(real) correction to bundle metric: $\beta_{\theta} : \mathbb{R}^m \to \mathbb{R}$

$$H^E = e^{\beta} H^E_{FS}$$
, solve $\Delta \beta = \rho_{\beta}$, $\mathscr{L}_{HYM} \sim \Delta$

$$\left| \det g \right|_{p}$$

$$\sim \left| \Delta \beta - \rho_{\beta} \right|_{p}$$

(real) correction to metric: $\phi_{\theta} : \mathbb{R}^m \to \mathbb{R}$

$$g_{CY,a\bar{b}} = g_{FS,a\bar{b}} + \partial_a \partial_{\bar{b}} \phi, \quad \mathscr{L}_{MA} \sim \left[1 - \frac{1}{\kappa} \frac{\dot{c}}{\Omega}\right]$$

(real) correction to bundle metric: $\beta_{\theta} : \mathbb{R}^m \to \mathbb{R}$

$$H^E = e^{\beta} H^E_{FS}$$
, solve $\Delta \beta = \rho_{\beta}$, $\mathscr{L}_{HYM} \sim \Delta \beta$

(∂ -exact, complex) correction to one-form: σ bundle-valued

$$\hat{\sigma}_{\theta}: \mathbb{R}^m \to \mathbb{C}, \ \nu = \nu_{ref} + \bar{\partial}_{L_i} \sigma_{\theta}, \qquad \mathscr{L}_{one-form}$$

$$\left| A \overline{\Omega} \right|_{p}$$

$$\left|\beta - \rho_{\beta}\right|_{p}$$

$$\sim \left\|\Delta_{L_i}\sigma - \rho_{\sigma}\right\|_p$$

(real) correction to metric: $\phi_{\theta} : \mathbb{R}^m \to \mathbb{R}$

$$g_{CY,a\bar{b}} = g_{FS,a\bar{b}} + \partial_a \partial_{\bar{b}} \phi, \quad \mathscr{L}_{MA} \sim \left[1 - \frac{1}{\kappa} \frac{\dot{c}}{\Omega}\right]$$

(real) correction to bundle metric: $\beta_{\theta} : \mathbb{R}^m \to \mathbb{R}$

$$H^E = e^{\beta} H^E_{FS}$$
, solve $\Delta \beta = \rho_{\beta}$, $\mathscr{L}_{HYM} \sim \Delta \beta$

(∂ -exact, complex) correction to one-form: σ bundle-valued

$$\hat{\sigma}_{\theta}: \mathbb{R}^m \to \mathbb{C}, \ \nu = \nu_{ref} + \bar{\partial}_{L_i} \sigma_{\theta}, \qquad \mathscr{L}_{one-form}$$

design networks ϕ, β, σ that are **by construction good functions/sections** on your manifold

$$\left| A \overline{\Omega} \right|_{\mu}$$

$$\left|\beta - \rho_{\beta}\right|_{p}$$

$$\sim \left\|\Delta_{L_i}\sigma - \rho_{\sigma}\right\|_p$$

(real) correction to metric: $\phi_{\theta} : \mathbb{R}^m \to \mathbb{R}$

$$g_{CY,a\bar{b}} = g_{FS,a\bar{b}} + \partial_a \partial_{\bar{b}} \phi, \quad \mathscr{L}_{MA} \sim \left[1 - \frac{1}{\kappa} \frac{\dot{c}}{\Omega}\right]$$

(real) correction to bundle metric: $\beta_{\theta} : \mathbb{R}^m \to \mathbb{R}$

$$H^E = e^{\beta} H^E_{FS}$$
, solve $\Delta \beta = \rho_{\beta}$, $\mathscr{L}_{HYM} \sim \Delta \beta$

(∂ -exact, complex) correction to one-form: σ bundle-valued

$$\hat{\sigma}_{\theta}: \mathbb{R}^m \to \mathbb{C}, \ \nu = \nu_{ref} + \bar{\partial}_{L_i} \sigma_{\theta}, \qquad \mathscr{L}_{one-form}$$

design networks ϕ, β, σ that are **by construction good functions/sections** on your manifold

det g

$$\left|\beta - \rho_{\beta}\right|_{p}$$

$$\sim \left\|\Delta_{L_i}\sigma - \rho_{\sigma}\right\|_p$$

Good measure of success? $M_{MA}(\phi) = \int_{V} \left| 1 - \frac{\det g}{\Omega \wedge \Omega} \right|$

Good measure of success? $M_L(\beta \text{ or } \sigma) = \frac{\int_X \left| \Delta \beta - \rho_{\beta} \right|}{c^{-1}}$

X: (smooth quotient of) "tetraquadric", hypersurface in $\mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1$

1-parameter family of polynomials: ψ

$$p = \sum_{\text{even}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 + \psi_0 \sum_{\text{odd}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 + \psi x_0 x_1 y_0 y_1 u_0 u_1 v_0 v_1$$

X: (smooth quotient of) "tetraquadric", hypersurface in $\mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1$

1-parameter family of polynomials: ψ

$$p = \sum_{\text{even}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 + \psi_0 \sum_{\text{odd}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 + \psi x_0 x_1 y_0 y_1 u_0 u_1 v_0 v_1$$

$$V = \mathcal{O}_X \begin{pmatrix} -1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2 \end{pmatrix}$$

X: (smooth quotient of) "tetraquadric", hypersurface in $\mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1$

1-parameter family of polynomials: ψ

$$p = \sum_{\text{even}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 + \psi_0 \sum_{\text{odd}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 \qquad \bullet \text{ one}$$

+ $\psi x_0 x_1 y_0 y_1 u_0 u_1 v_0 v_1 \qquad \bullet \text{ odd}$

$$V = \mathcal{O}_X \begin{pmatrix} -1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2 \end{pmatrix}$$

• no chiral exotica/vectorlike pairs

Consistent string model: precisely the **MSSM particle content**

- ne of many known MSSM-like models
- Additional U(1) symmetries constrain couplings
- (Standard-model charged) particle content of the model:

$$\begin{array}{c} Q_{2} \\ U_{2} \\ U_{2} \\ E_{2} \end{array} \right), \ \begin{pmatrix} Q_{5} \\ U_{5} \\ E_{5} \end{array} \right), \ \begin{pmatrix} D_{2,4} \\ L_{2,4} \end{array} \right), \ 2 \begin{pmatrix} D_{4,5} \\ L_{4,5} \end{array} \right), \ H_{2,5}^{d}, \ H_{2,5}^{u} \ .$$

X: (smooth quotient of) "tetraquadric", hypersurface in $\mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1$

1-parameter family of polynomials: ψ

$$p = \sum_{\text{even}} x_{\alpha}^{2} y_{\beta}^{2} u_{\gamma}^{2} v_{\delta}^{2} + \psi_{0} \sum_{\text{odd}} x_{\alpha}^{2} y_{\beta}^{2} u_{\gamma}^{2} v_{\delta}^{2}$$
• one
$$+\psi x_{0} x_{1} y_{0} y_{1} u_{0} u_{1} v_{0} v_{1}$$
Additional

$$V = \mathcal{O}_X \begin{pmatrix} L_1 & L_2 & L_3 & L_4 & L_5 \\ -1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2 \end{pmatrix}$$
(Standard-model charged) particle content of
$$2 \begin{pmatrix} Q_2 \\ U_2 \\ E_2 \end{pmatrix}, \begin{pmatrix} Q_5 \\ U_5 \\ E_5 \end{pmatrix}, \begin{pmatrix} D_{2,4} \\ L_{2,4} \end{pmatrix}, 2 \begin{pmatrix} D_{4,5} \\ L_{4,5} \end{pmatrix}, H_{2,5}^d, H_{2,5}^u$$

perturbative operators at dimension-four \supset up-type Yukawa couplings

- Consistent string model: precisely the **MSSM particle content**
 - no chiral exotica/vectorlike pairs
 - ne of many known MSSM-like models
- Additional U(1) symmetries constrain couplings
 - of the model:

X: (smooth quotient of) "tetraquadric", hypersurface in $\mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1$

1-parameter family of polynomials: ψ

$$p = \sum_{\text{even}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 + \psi_0 \sum_{\text{odd}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 \qquad \bullet \text{ one}$$

+ $\psi x_0 x_1 y_0 y_1 u_0 u_1 v_0 v_1 \qquad \bullet \text{ Additional}$

$$V = \mathcal{O}_X \begin{pmatrix} L_1 & L_2 & L_3 & L_4 & L_5 \\ -1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2 \end{pmatrix}$$
(Standard-model charged) particle content of $2 \begin{pmatrix} Q_2 \\ U_2 \\ E_2 \end{pmatrix}, \begin{pmatrix} Q_2 \\ U_2 \\ E_2 \end{pmatrix}, \begin{pmatrix} Q_5 \\ U_5 \\ E_5 \end{pmatrix}, \begin{pmatrix} D_{2,4} \\ L_{2,4} \end{pmatrix}, 2 \begin{pmatrix} D_{4,5} \\ L_{4,5} \end{pmatrix}, H_{2,5}^d, H_{2,5}^u$.

- Consistent string model: precisely the **MSSM particle content**
 - no chiral exotica/vectorlike pairs
 - ne of many known MSSM-like models
- Additional U(1) symmetries constrain couplings
 - of the model:

perturbative operators at dimension-four \supset up-type Yukawa couplings $\Lambda^{u}_{ij}H_{u}Q^{i}U^{j}$

X: (smooth quotient of) "tetraquadric", hypersurface in $\mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1 \times \mathbb{P}_1$

1-parameter family of polynomials: ψ

$$p = \sum_{\text{even}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 + \psi_0 \sum_{\text{odd}} x_{\alpha}^2 y_{\beta}^2 u_{\gamma}^2 v_{\delta}^2 \qquad \bullet \text{ one}$$

+ $\psi x_0 x_1 y_0 y_1 u_0 u_1 v_0 v_1 \qquad \bullet \text{ odd}$

$$V = \mathcal{O}_X \begin{pmatrix} L_1 & L_2 & L_3 & L_4 & L_5 \\ -1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2 \end{pmatrix}$$
(Standard-model charged) particle content of
$$2 \begin{pmatrix} Q_2 \\ U_2 \\ E_2 \end{pmatrix}, \begin{pmatrix} Q_2 \\ U_2 \\ E_2 \end{pmatrix}, \begin{pmatrix} D_{2,4} \\ L_{2,4} \end{pmatrix}, 2 \begin{pmatrix} D_{4,5} \\ L_{4,5} \end{pmatrix}, H_{2,5}^d, H_{2,5}^u$$

perturbative operators at dimension-four \supset up-type Yukawa couplings $\Lambda^{u}_{ij}H_{u}Q^{i}U^{j}$

- Consistent string model: precisely the **MSSM particle content**
 - no chiral exotica/vectorlike pairs
 - ne of many known MSSM-like models
- Additional U(1) symmetries constrain couplings
 - of the model:

- 11 feedforward neural networks,
- Each 30,000 parameters
- Each \sim 1 hour on a laptop (CPU)
- Trained on 300,000 randomly sampled points

- 11 feedforward neural networks,
- Each 30,000 parameters
- Each ~ 1 hour on a laptop (CPU)
- Trained on 300,000 randomly sampled points

- 11 feedforward neural networks,
- Each 30,000 parameters
- Each \sim 1 hour on a laptop (CPU)
- Trained on 300,000 randomly sampled points

- 11 feedforward neural networks,
- Each 30,000 parameters
- Each \sim 1 hour on a laptop (CPU)
- Trained on 300,000 randomly sampled points

- 11 feedforward neural networks,
- Each 30,000 parameters
- Each \sim 1 hour on a laptop (CPU)
- Trained on 300,000 randomly sampled points

Laplacian measure for each bundle metric

	(0,2,-2,0)	(1,1,0,-2)	(-1,-3,2,2)
$M_{Laplacian}(\beta)$	5%	4%	3%

- 11 feedforward neural networks,
- Each 30,000 parameters
- Each \sim 1 hour on a laptop (CPU)
- Trained on 300,000 randomly sampled points

Laplacian measure for each bundle metric

	(0,2,-2,0) (1,1,0,-2)		(-1,-3,2,2)	
$M_{\sf Laplacian}(eta)$	5%	4%	3%	

- 11 feedforward neural networks,
- Each 30,000 parameters
- Each \sim 1 hour on a laptop (CPU)
- Trained on 300,000 randomly sampled points

Laplacian measure for each bundle metric

	(0,2,-2,0) (1,1,0,-2)		(-1,-3,2,2)	
$M_{\sf Laplacian}(eta)$	5%	4%	3%	

Laplacian measure for each 1-form

	Н	Q3	U3	Q1	Q2	Q3
$M_{Laplacian}(\beta)$	3%	4%	5%	7%	8%	6%

SVD of
$$\Lambda^{u}_{phys} = \begin{pmatrix} 0 & a' \\ b'^{T} & 0 \end{pmatrix}$$

SVD of
$$\Lambda^{u}_{phys} = \begin{pmatrix} 0 & a' \\ b^{T} & 0 \end{pmatrix}$$

(scaled) mass as a function of moduli

SVD of
$$\Lambda^{u}_{phys} = \begin{pmatrix} 0 & a' \\ b^{T} & 0 \end{pmatrix}$$

Two nonzero masses **equal** up to numerical error

- general polynomial **breaks** mass degeneracy
- *insensitive* to point sampling

(scaled) mass as a function of moduli

SVD of
$$\Lambda^{u}_{phys} = \begin{pmatrix} 0 & a' \\ b^{T} & 0 \end{pmatrix}$$

Two nonzero masses **equal** up to numerical error

- general polynomial **breaks** mass degeneracy
- *insensitive* to point sampling

Tree-level physical masses for given moduli

(scaled) mass as a function of moduli

SVD of
$$\Lambda^{u}_{phys} = \begin{pmatrix} 0 & a' \\ b^{T} & 0 \end{pmatrix}$$

Two nonzero masses **equal** up to numerical error

- general polynomial **breaks** mass degeneracy
- *insensitive* to point sampling

Tree-level physical masses for given moduli

Reference calculation ($\phi = \beta = \sigma = 0$) in red

- relatively good approximation $\sim 25~\%$
- **only** ~ 1 min for 100,000 pts
- **closer** than the 'canonical' **unnormalised** holomorphic Yukawa couplings in <u>blue</u>
- enables exploration of moduli space

(scaled) mass as a function of moduli

Conclusions

Conclusions

We present the first numerical calculation, based on machine-learning techniques, of the **physical Yukawa couplings** in a compactification of heterotic string theory (in nonstandard embedding).

Conclusions

We present the first numerical calculation, based on machine-learning techniques, of the physical Yukawa couplings in a compactification of heterotic string theory (in nonstandard embedding).

A single full calculation ~ 0.5 days on a laptop for 11 neural networks

- 'reference approximation' appears to work to within $\sim 25 \%$
- systematic error analysis/ablation study forthcoming
- easily generalised to run on other manifolds/models.

Able to compute CY masses to within < 5% (improved since publication: ultimately expect < 2% with unchanged training time)

Conclusions

We present the first numerical calculation, based on machine-learning techniques, of the physical Yukawa couplings in a compactification of heterotic string theory (in nonstandard embedding).

A single full calculation ~ 0.5 days on a laptop for 11 neural networks

- 'reference approximation' appears to work to within $\sim 25 \%$
- systematic error analysis/ablation study forthcoming
- easily generalised to run on other manifolds/models.

Outlook:

- Non-abelian bundles/F-theory applications/constraining string models/type II string theories
- More **sophisticated architectures**?
- exploration of the moduli space (e.g. generating **hierarchies**)

Able to compute CY masses to within < 5% (improved since publication: ultimately expect < 2% with unchanged training time)

Conclusions

We present the first numerical calculation, based on machine-learning techniques, of the physical Yukawa couplings in a compactification of heterotic string theory (in nonstandard embedding).

A single full calculation ~ 0.5 days on a laptop for 11 neural networks

- 'reference approximation' appears to work to within $\sim 25 \%$
- systematic error analysis/ablation study forthcoming
- easily generalised to run on other manifolds/models.

Outlook:

- Non-abelian bundles/F-theory applications/constraining string models/type II string theories
- More **sophisticated architectures**?
- exploration of the moduli space (e.g. generating **hierarchies**)

Able to compute CY masses to within < 5% (improved since publication: ultimately expect < 2% with unchanged training time)

thank you

thank you

'reference' calculation - a good approximation?

breaking the degeneracy!

'reference' calculation - a good approximation? 20-complex-dimensional moduli space

breaking the degeneracy!

'reference' calculation - a good approximation? **20-complex-dimensional moduli space** do gradient descent in this space: optimise \mathscr{L}

$$\mathscr{L} = -\alpha \left| \log \left(\frac{m_2}{m_1} \right) \right| + \beta$$

each step: c. 1 hour for 100,000 points, 40 vectors

$\beta \left| \log \left(m_1 \right) \right|$

'reference' calculation - a good approximation? **20-complex-dimensional moduli space** do gradient descent in this space: optimise \mathscr{L}

$$\mathscr{L} = -\alpha \left| \log \left(\frac{m_2}{m_1} \right) \right| + \beta$$

each step: c. 1 hour for 100,000 points, 40 vectors

increasing m_1 seems to be hard (in this model)

- $\beta \left| \log \left(m_1 \right) \right|$

- easily achieve hierarchy of ~ 300 with masses: $(m_1, m_2, m_3) = [0.0721 \ 0.0003 \ 0]$

'reference' calculation - a good approximation? **20-complex-dimensional moduli space** do gradient descent in this space: optimise \mathscr{L}

$$\mathscr{L} = -\alpha \left| \log \left(\frac{m_2}{m_1} \right) \right| + \beta$$

each step: c. 1 hour for 100,000 points, 40 vectors

increasing m_1 seems to be hard (in this model)

- $\beta \left| \log \left(m_1 \right) \right|$

- easily achieve hierarchy of ~ 300 with masses: $(m_1, m_2, m_3) = [0.0721 \ 0.0003 \ 0]$

n-manifold: defined over patches. embed patches in $\mathbb{R}^{m>n}$ **consistently** solve PDE over all patches Enforce the transformation law for the NN $\tilde{\phi}_{\theta} : \mathbb{R}^m \to \mathbb{R}$

 $\tilde{\phi}_{\theta}(u^{s}(x)) = \tilde{\phi}_{\theta}(u^{t}(x)) \quad \forall \text{ patches } s, t \implies \tilde{\phi}_{\theta} \text{ is a good function}$

n-manifold: defined over patches. embed patches in $\mathbb{R}^{m>n}$ **consistently** solve PDE over all patches Enforce the transformation law for the NN $\tilde{\phi}_{\theta} : \mathbb{R}^m \to \mathbb{R}$ $\tilde{\phi}_{\theta}(u^s(x)) = \tilde{\phi}_{\theta}(u^t(x)) \, \forall$ patches $s, t \implies \tilde{\phi}_{\theta}$ is a **good function** *(can build this into architecture)*

n-manifold: defined over patches. embed patches in $\mathbb{R}^{m>n}$ **consistently** solve PDE over all patches Enforce the transformation law for the NN $\tilde{\phi}_{\theta} : \mathbb{R}^m \to \mathbb{R}$ $\tilde{\phi}_{\theta}(u^{s}(x)) = \tilde{\phi}_{\theta}(u^{t}(x)) \quad \forall \text{ patches } s, t \implies \tilde{\phi}_{\theta} \text{ is a good function}$ (can build this into architecture) Sections of nontrivial bundles - add transition functions! $\tilde{\phi}_{\theta}(u^{s}(x)) = T_{s,t}\tilde{\phi}_{\theta}(u^{t}(x)) \quad \forall s,t \implies \tilde{\phi}_{\theta} \text{ is a good global section}$

n-manifold: defined over patches. embed patches in $\mathbb{R}^{m>n}$ **consistently** solve PDE over all patches Enforce the transformation law for the NN $\tilde{\phi}_{\theta} : \mathbb{R}^m \to \mathbb{R}$ $\tilde{\phi}_{\theta}(u^{s}(x)) = \tilde{\phi}_{\theta}(u^{t}(x)) \quad \forall \text{ patches } s, t \implies \tilde{\phi}_{\theta} \text{ is a good function}$ (can build this into architecture) Sections of nontrivial bundles - add transition functions! $\tilde{\phi}_{\theta}(u^{s}(x)) = T_{s,t}\tilde{\phi}_{\theta}(u^{t}(x)) \quad \forall s,t \implies \tilde{\phi}_{\theta} \text{ is a good global section}$ (can build this into architecture)

Structure group of V, choose G = SU(5)/maximal rank sub-group of SU(5)

specialising to SU(5)

Structure group of V, choose G = SU(5)/maximal rank sub-group of SU(5)

V represents an internal gauge field configuration

specialising to SU(5)

Structure group of V, choose G = SU(5)/maximal rank sub-group of SU(5)

V represents an internal gauge field configuration

specialising to SU(5)

low energy gauge group $SU(5)_{LE} = C_{E_8}(SU(5))$ or $SU(5)_{LE} \times J$, $J = C_{SU(5) \subset E_8}(G)$

Structure group of V, choose G = SU(5)/maximal rank sub-group of SU(5)V represents an internal gauge field configuration low energy gauge group $SU(5)_{LF} =$

$$C_{E_8}(SU(5))$$
 or $SU(5)_{LE} \times J$, $J = C_{SU(5) \subset E_8}(G)$

 $\mathbf{248}_{E_{\aleph}} \rightarrow \left[(1, 24) \oplus (24, 1) \oplus (5, 10) \oplus (\overline{5}, \overline{10}) \oplus (10, \overline{5}) \oplus (\overline{10}, 5) \right]_{SU(5)_{LE} \times SU(5) = G_{GUT} \times G_{bundle}}$

Structure group of V, choose G = SU(5)/maximal rank sub-group of SU(5)

V represents an internal gauge field configuration

low energy gauge group $SU(5)_{LE} =$

R	1	10	10	$\overline{5}$	5
$H^1(X, U_R)$	$H^1(X,V\otimes V^*)$	$H^1(X,V)$	$H^1(X, V^*)$	$H^1(X, \Lambda^2 V)$	$H^1(X, \Lambda^2 V^*)$

$$C_{E_8}(SU(5))$$
 or $SU(5)_{LE} \times J$, $J = C_{SU(5) \subset E_8}(G)$

 $\mathbf{248}_{E_{\aleph}} \rightarrow \left[(1, 24) \oplus (24, 1) \oplus (5, 10) \oplus (\overline{5}, \overline{10}) \oplus (10, \overline{5}) \oplus (\overline{10}, 5) \right]_{SU(5)_{LE} \times SU(5) = G_{GUT} \times G_{bundle}}$

Structure group of V, choose G = SU(5)/maximal rank sub-group of SU(5)

V represents an internal gauge field configuration

low energy gauge group $SU(5)_{LE} =$

R	1	10	$\overline{10}$	$ar{5}$	5
$H^1(X, U_R)$	$H^1(X,V\otimes V^*)$	$H^1(X,V)$	$H^1(X, V^*)$	$H^1(X, \Lambda^2 V)$	$H^1(X, \Lambda^2 V^*)$

Note: eventually **break** SU(5) to G_{SM} by taking a Wilson line bundle on the quotient manifold. Other $E_8 =$ 'hidden sector', couples only gravitationally: neglect \tilde{V}

$$C_{E_8}(SU(5))$$
 or $SU(5)_{LE} \times J$, $J = C_{SU(5) \subset E_8}(G)$

 $\mathbf{248}_{E_{\aleph}} \rightarrow \left[(\mathbf{1}, \mathbf{24}) \oplus (\mathbf{24}, \mathbf{1}) \oplus (\mathbf{5}, \mathbf{10}) \oplus (\mathbf{\overline{5}}, \mathbf{\overline{10}}) \oplus (\mathbf{10}, \mathbf{\overline{5}}) \oplus (\mathbf{\overline{10}}, \mathbf{5}) \right]_{SU(5)_{IE} \times SU(5) = G_{GUT} \times G_{bundle}}$

Structure group of V, choose G = SU(5)/maximal rank sub-group of SU(5)

V represents an internal gauge field configuration

low energy gauge group $SU(5)_{LE} =$

R	1	10	$\overline{10}$	$ar{5}$	5
$H^1(X, U_R)$	$H^1(X,V\otimes V^*)$	$H^1(X,V)$	$H^1(X, V^*)$	$H^1(X, \Lambda^2 V)$	$H^1(X, \Lambda^2 V^*)$

Note: eventually **break** SU(5) to G_{SM} by taking a Wilson line bundle on the quotient manifold. Other $E_8 =$ 'hidden sector', couples only gravitationally: neglect \tilde{V}

$$C_{E_8}(SU(5))$$
 or $SU(5)_{LE} \times J$, $J = C_{SU(5) \subset E_8}(G)$

 $\mathbf{248}_{E_{\aleph}} \rightarrow \left[(\mathbf{1}, \mathbf{24}) \oplus (\mathbf{24}, \mathbf{1}) \oplus (\mathbf{5}, \mathbf{10}) \oplus (\mathbf{\overline{5}}, \mathbf{\overline{10}}) \oplus (\mathbf{10}, \mathbf{\overline{5}}) \oplus (\mathbf{\overline{10}}, \mathbf{5}) \right]_{SU(5)_{IE} \times SU(5) = G_{GUT} \times G_{bundle}}$

Need nontrivial gauge field profile over the Calabi-Yau manifold!

Heterotic **anomaly cancellation** (via the GS mechanism): $dH = \frac{\alpha'}{4} \left(\operatorname{Tr}(R \wedge R) - \operatorname{Tr}(F \wedge F) \right)$

Need **nontrivial gauge field profile** over the Calabi-Yau manifold!

Heterotic **anomaly cancellation** (via the GS mechanism): $dH = \frac{\alpha'}{4} \left(\operatorname{Tr}(R \wedge R) - \operatorname{Tr}(F \wedge F) \right)$

 \implies Tr($R \wedge R$) and Tr($F \wedge F$) in the same cohomology class (up to 5-branes):

- Need nontrivial gauge field profile over the Calabi-Yau manifold!
- Heterotic **anomaly cancellation** (via the GS mechanism): $dH = \frac{\alpha'}{4} \left(\operatorname{Tr}(R \wedge R) \operatorname{Tr}(F \wedge F) \right)$
- \implies Tr($R \land R$) and Tr($F \land F$) in the same cohomology class (up to 5-branes):
 - vector bundle $V \rightarrow X$, structure group: $G \subset E_8$

- Need **nontrivial gauge field profile** over the Calabi-Yau manifold!
- Heterotic **anomaly cancellation** (via the GS mechanism): $dH = \frac{\alpha'}{A} \left(\operatorname{Tr}(R \wedge R) \operatorname{Tr}(F \wedge F) \right)$
- \implies Tr($R \land R$) and Tr($F \land F$) in the same cohomology class (up to 5-branes):
 - vector bundle $V \rightarrow X$, structure group: $G \subset E_8$

• result: one E_8 splits $\rightarrow G \times G_{4d}$, $G_{4d} = C_{E_8}(G)$ is the commutant in E_8

- Need nontrivial gauge field profile over the Calabi-Yau manifold!
- Heterotic **anomaly cancellation** (via the GS mechanism): $dH = \frac{\alpha'}{A} \left(\operatorname{Tr}(R \wedge R) \operatorname{Tr}(F \wedge F) \right)$
- \implies Tr($R \land R$) and Tr($F \land F$) in the same cohomology class (up to 5-branes):
 - vector bundle $V \rightarrow X$, structure group: $G \subset E_8$
 - Other $E_8 =$ 'hidden sector', couples only gravitationally.

• result: one E_8 splits $\rightarrow G \times G_{4d}$, $G_{4d} = C_{E_8}(G)$ is the commutant in E_8