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(X, V, Ṽ,  5-branes, W)

algebraic geometric data

SUSY variation != 0

co
ns

tr
ai

ns



N=1 heterotic compactifications

5

10D gauge theory 

  SUGRA coupled to  
 SYM

N = 1 N = 1
E8 × E8

particle spectrum 
gauge group

matter field Kähler metric 
Yukawa couplings

4D  theoryN = 1
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model: , bundle  with structure group  gauge group X V G = S(U(1)5) → CE8
(G)

2 and 3: just (bundle)-Poisson equations!
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