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6d, N = (1, 0) supergravity

gravity : (g,Ψ, B+) vector : (A, λ)

tensor : (B−, χ, ϕ) hyper : (ψ,φ)

Pick (T,G,Hch):

# tensors T ≥ 0

Gauge group G =
∏k

i=1Gi

Charged hypermultiplets Hch =
⊕

R ̸=1 nR × (R1, . . . , Rk)

We will take G non-abelian with any number of simple factors and
allow for any hypermultiplet representations
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Consistency conditions

Local anomalies:
I8 = 1

2ΩαβX
α
4 ∧Xβ

4 , X4 = b0 trR2 +
∑

i bi trF
2
i

Hch − V + 29T ≤ 273

b0 · b0 = 9− T , bi · bi = 1
3

(∑
R
niRCR − CAdj

)
, . . .

Λ =
⊕T

I=0 bIZ ⊂ R1,T is an integer lattice

“Unimodularity”: require Λ ↪→ Γ1,T with Γ1,T unimodular

“Positivity”: j ∈ SO(1, T )/SO(T ) with j · bi > 0 so that all gauge
kinetic terms have the correct sign
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Strategy for enumerating models

[Hamada, GL – 23/24] , building upon [Avramis, Kehagias – 05] [Kumar, Park,

Taylor – 10] [Becker et al. – 23] . . .

M =
⊕

n Mirr
n

↪→

( , )⊕ ( , )

SU(7), 21 ⊕
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An overview of the landscape

T

...

· · ·
· · ·

...

· · ·
· · ·
· · ·

...

0
1

8
9

≫ 9

killed by SPB
anomaly-free

Finite number of anomaly-free models for T < 9
[Kumar, Taylor – 09] [Kumar, Morrison, Taylor – 10]

Complete∗ list of anomaly-free models for T ≤ 1 [Hamada, GL – 24]

String probe unitarity kills many infinite families for T ≥ 9
[Kim, Shiu, Vafa – 19] [Tarazi, Vafa – 21]

Finite number of consistent models for each T
(combining [Kim, Shiu, Vafa – 19] [Tarazi, Vafa – 21] [Hamada, GL – 23] )
Some consistent infinite families exist with T unbounded [GL – 24]
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T = 0

Complete list of 19,847 anomaly-free models [Hamada, GL – 24]

(with no U(1), SU(2), SU(3), Sp(2) gauge factors)

SU(24) + 20× 1 ⊕ 3× 256

SU(7)4 + (7,7,1,1)⊕ (21,13)⊕ · · ·

SU(4)6 + (4,4,14)⊕ 3(6,15)⊕ · · ·

Exactly 20 models have (3+)-charged hypers, e.g.

SU(4)× Sp(4)2 + (4,8,8)⊕ (20′,1,1)⊕ (1,42,1)⊕ (1,1,42)
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T = 1

Complete list of 608,355 anomaly-free models [Hamada, GL – 24]

(with no U(1), SU(2), SU(3), Sp(2) gauge factors)
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Swampland bounds

BPS string probes & anomaly inflow: Q ∈ Γ1,T , ki = Q · bi ≥ 0∑
i

ki dimGi

ki + h∨Gi

≤ cL (= 3Q2 + 9Q · b0 + 2)

[Kim, Shiu, Vafa – 19]

Two swampland bounds proposed in [Tarazi, Vafa – 21] limit the
allowed hypermultiplet representations:∑r

m=1
λm ≤ ki , ∆R =

C2(R)

2(ki + h∨i )
≤ 1

Curiously, all T = 0 anomaly-free models are consistent!
(Q: is this still the case if U(1), SU(2) etc. are reintroduced?)

We find that ≈50% of anomaly-free models are consistent for T = 1
(Work in progress: for those which remain, how many/which can be
matched to known string constructions?)
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T ≫ 9

[
Hch − V + 28 rk(bi · bj)

]
(Mirr) > 0 with only

8 exceptions =⇒ any infinite family with T ≫ 9
must be of a form like

G = G′(k)× Ek
8 , Hch = (H′

ch(k),1
k)

With a scaling argument,

Q ∼ kα , b′i · b′j ∼ kβ , bE8
i · bE8

j ∼ k0 , . . .

and using existence of j with j · j = 1 and j · bi > 0, can show
that a consistent infinite family. . .

• with n+(bi · bj) = 0 must have b0 ∈ span(bi) (fixes T )
• with n+(bi · bj) = 1 must have T − 9 + (b0 · bi)(b · b)−1

ij (b0 · bj) ≥ 0
bounded =⇒ T must grow with k in a prescribed way

Idea: some interplay between the highly constrained form of the
surviving families and potential global Dai-Freed anomalies

(e.g. see [Basile, Leone – 23] )
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Summary

6d SUGRA + local anomalies, unimodularity, positivity

Graph algorithms + iterative construction of models

Complete lists of anomaly-free models for T ≤ 1 (modulo
low-rank groups)

Swampland bounds: all anomaly-free models are consistent for
T = 0 and half are consistent for T = 1

For T ≫ 9 the swampland bounds grow stronger and stronger.
The surviving infinite families are highly constrained.
Idea: highly constrained form forces there to be global anomalies

Proof of finiteness for all T may be within reach – stay tuned!
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Thanks!
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G = G2 × E4m
8

H = (140m+ 440)(1;14m)⊕ (72m− 26)(7;14m)

T = 12m+ 1

b0 = (3; 1, 112m)

bG2 = (3m+ 2;−3m+ 4, 112m)

bE8
4r+1 = (−1; 1, 012r,−1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 012(m−r−1))

bE8
4r+2 = (−1; 1, 012r, 1,−1, 1, 1, 0, 0, 2, 2, 0, 0, 0, 0, 012(m−r−1))

bE8
4r+3 = (−1; 1, 012r, 1, 1,−1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 012(m−r−1))

bE8
4r+4 = (−1; 1, 012r, 1, 1, 1,−1, 0, 0, 0, 0, 0, 0, 2, 2, 012(m−r−1))
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