ON THE LANDSCAPE OF 6D SUPERGRAVITIES

Gregory J. Loges

String Pheno 2024

[2311.00868], [2402.04371], [2404.08845] w/ Yuta Hamada

 $2024 - 06 - 27$

- 6d, $\mathcal{N} = (1, 0)$ supergravity
- Enumerating anomaly-free models
- An overview of the landscape
- Consistent models for $T \leq 1$ and $T \gg 9$
- Conclusions

gravity : (g, Ψ, B^+) vector : (A, λ) tensor : (B^-, χ, ϕ)

hyper : (ψ, φ)

gravity : (g, Ψ, B^+) vector : (A, λ) tensor : (B^-, γ, ϕ) hyper : (ψ, φ)

Pick (T, G, \mathcal{H}_{ch}) :

- \blacksquare # tensors $T \geq 0$
- Gauge group $G = \prod_{i=1}^{k} G_i$
- Charged hypermultiplets $\mathcal{H}_{ch} = \bigoplus_{R \neq 1} n_R \times (R_1, \ldots, R_k)$

gravity : (g, Ψ, B^+) vector : (A, λ) tensor : (B^-, χ, ϕ) hyper : (ψ, φ)

Pick (T, G, \mathcal{H}_{ch}) :

- \blacksquare # tensors $T \geq 0$
- Gauge group $G = \prod_{i=1}^{k} G_i$
- Charged hypermultiplets $\mathcal{H}_{ch} = \bigoplus_{R \neq 1} n_R \times (R_1, \ldots, R_k)$

We will take G non-abelian with any number of simple factors and allow for any hypermultiplet representations

Consistency conditions

■ Local anomalies:
\n
$$
I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} \wedge X_4^{\beta}, \quad X_4 = b_0 \operatorname{tr} \mathcal{R}^2 + \sum_i b_i \operatorname{tr} F_i^2
$$
\n
$$
H_{\text{ch}} - V + 29T \le 273
$$
\n
$$
b_0 \cdot b_0 = 9 - T, \qquad b_i \cdot b_i = \frac{1}{3} \left(\sum_R n_R^i C_R - C_{\text{Adj}} \right), \dots
$$
\n
$$
\Lambda = \bigoplus_{I=0}^T b_I \mathbb{Z} \subset \mathbb{R}^{1,T} \text{ is an integer lattice}
$$

Consistency conditions

■ Local anomalies:
\n
$$
I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} \wedge X_4^{\beta}, \quad X_4 = b_0 \operatorname{tr} \mathcal{R}^2 + \sum_i b_i \operatorname{tr} F_i^2
$$
\n
$$
H_{\text{ch}} - V + 29T \le 273
$$
\n
$$
b_0 \cdot b_0 = 9 - T, \qquad b_i \cdot b_i = \frac{1}{3} \left(\sum_R n_R^i C_R - C_{\text{Adj}} \right), \dots
$$
\n
$$
\Lambda = \bigoplus_{I=0}^T b_I \mathbb{Z} \subset \mathbb{R}^{1,T} \text{ is an integer lattice}
$$

Unimodularity": require $\Lambda \hookrightarrow \Gamma_{1,T}$ with $\Gamma_{1,T}$ unimodular

Consistency conditions

- Local anomalies: $I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} \wedge X_4^{\beta}, \quad X_4 = b_0 \operatorname{tr} \mathcal{R}^2 + \sum_i b_i \operatorname{tr} F_i^2$ $H_{ch} - V + 29T \leq 273$ $b_0 \cdot b_0 = 9 - T$, $b_i \cdot b_i = \frac{1}{3} \left(\sum_R n_R^i C_R - C_{\text{Adj}} \right)$,... $\Lambda = \bigoplus_{I=0}^{T} b_I \mathbb{Z} \subset \mathbb{R}^{1,T}$ is an integer lattice
- "Unimodularity": require $\Lambda \hookrightarrow \Gamma_{1,T}$ with $\Gamma_{1,T}$ unimodular
- "Positivity": $j \in SO(1,T)/SO(T)$ with $j \cdot b_i > 0$ so that all gauge kinetic terms have the correct sign

Strategy for enumerating models

[Hamada, GL – 23/24] , building upon [Avramis, Kehagias – 05] [Kumar, Park, Taylor – 10] [Becker et al. – 23] \dots

Strategy for enumerating models

[Hamada, GL – 23/24] , building upon [Avramis, Kehagias – 05] [Kumar, Park, Taylor – 10] [Becker et al. – 23] \dots

 \blacksquare Finite number of anomaly-free models for $T < 9$

[Kumar, Taylor – 09] [Kumar, Morrison, Taylor – 10]

 \blacksquare
 Finite number of anomaly-free models for $T<9$

[Kumar, Taylor – 09] [Kumar, Morrison, Taylor – 10]

Complete^{*} list of anomaly-free models for $T \leq 1$ [Hamada, GL – 24]

 \blacksquare
 Finite number of anomaly-free models for $T<9$

[Kumar, Taylor – 09] [Kumar, Morrison, Taylor – 10]

- Complete^{*} list of anomaly-free models for $T \leq 1$ [Hamada, GL 24]
- String probe unitarity kills many infinite families for $T \geq 9$

[Kim, Shiu, Vafa – 19] [Tarazi, Vafa – 21]

Finite number of anomaly-free models for $T < 9$

[Kumar, Taylor – 09] [Kumar, Morrison, Taylor – 10]

- Complete^{*} list of anomaly-free models for $T \leq 1$ [Hamada, GL 24]
- String probe unitarity kills many infinite families for $T \geq 9$

[Kim, Shiu, Vafa – 19] [Tarazi, Vafa – 21]

Finite number of consistent models for each T (combining [Kim, Shiu, Vafa – 19] [Tarazi, Vafa – 21] [Hamada, GL – 23])

Finite number of anomaly-free models for $T < 9$

[Kumar, Taylor – 09] [Kumar, Morrison, Taylor – 10]

- Complete^{*} list of anomaly-free models for $T \leq 1$ [Hamada, GL 24]
- String probe unitarity kills many infinite families for $T \geq 9$

[Kim, Shiu, Vafa – 19] [Tarazi, Vafa – 21]

- **Finite number of consistent models for each T** (combining [Kim, Shiu, Vafa – 19] [Tarazi, Vafa – 21] [Hamada, GL – 23])
- Some consistent infinite families exist with T unbounded $|GL 24|$

Complete list of 19,847 anomaly-free models [Hamada, GL – 24] (with no $U(1)$, $SU(2)$, $SU(3)$, $Sp(2)$ gauge factors)

 $\mathrm{SU}(4)^6 \;\; + \;\; (\underline{\bf 4}, \underline{\bf 4}, \underline{\bf 1}^4) \oplus 3(\underline{\bf 6}, \underline{\bf 1}^5) \oplus \cdots$ 8 6 -4 -10 $\overline{2}$ $\overline{0}$ 22 $\overline{26}$ $\overline{2}$ 8 10 12 14 16 18 Ω rank $\text{SU}(24) + 20 \times 1 \oplus 3 \times 256$ $\text{SU}(7)^4$ + $(7, 7, 1, 1) \oplus (21, 1^3) \oplus \cdots$

Exactly 20 models have $(3+)$ -charged hypers, e.g.

 $\text{SU}(4) \times \text{Sp}(4)^2 + (\underline{4}, \underline{8}, \underline{8}) \oplus (\underline{20}', \underline{1}, \underline{1}) \oplus (\underline{1}, \underline{42}, \underline{1}) \oplus (\underline{1}, \underline{1}, \underline{42})$

$T = 1$

Complete list of $608,355$ anomaly-free models [Hamada, GL – 24] (with no $U(1)$, $SU(2)$, $SU(3)$, $Sp(2)$ gauge factors)

Swampland bounds

BPS string probes & anomaly inflow: $Q \in \Gamma_{1,T}$, $k_i = Q \cdot b_i \geq 0$

$$
\sum_{i} \frac{k_i \dim G_i}{k_i + h_{G_i}^{\vee}} \le c_L \quad (= 3Q^2 + 9Q \cdot b_0 + 2)
$$

[Kim, Shiu, Vafa – 19]

 \blacksquare Two swampland bounds proposed in [Tarazi, Vafa – 21] limit the allowed hypermultiplet representations:

$$
\sum_{m=1}^{r} \lambda_m \le k_i, \qquad \Delta_R = \frac{C_2(R)}{2(k_i + h_i^{\vee})} \le 1
$$

Swampland bounds

BPS string probes & anomaly inflow: $Q \in \Gamma_{1,T}$, $k_i = Q \cdot b_i \geq 0$

$$
\sum_{i} \frac{k_i \dim G_i}{k_i + h_{G_i}^{\vee}} \le c_L \quad (= 3Q^2 + 9Q \cdot b_0 + 2)
$$

[Kim, Shiu, Vafa – 19]

 \blacksquare Two swampland bounds proposed in [Tarazi, Vafa – 21] limit the allowed hypermultiplet representations:

$$
\sum_{m=1}^{r} \lambda_m \le k_i, \qquad \Delta_R = \frac{C_2(R)}{2(k_i + h_i^{\vee})} \le 1
$$

Curiously, $all T = 0$ anomaly-free models are consistent! $(Q:$ is this still the case if $U(1)$, $SU(2)$ etc. are reintroduced?)

Swampland bounds

BPS string probes & anomaly inflow: $Q \in \Gamma_{1,T}$, $k_i = Q \cdot b_i > 0$

$$
\sum_{i} \frac{k_i \dim G_i}{k_i + h_{G_i}^{\vee}} \le c_L \quad (= 3Q^2 + 9Q \cdot b_0 + 2)
$$

[Kim, Shiu, Vafa – 19]

 \blacksquare Two swampland bounds proposed in [Tarazi, Vafa – 21] limit the allowed hypermultiplet representations:

$$
\sum\nolimits_{m=1}^{r} \lambda_m \le k_i, \qquad \Delta_R = \frac{C_2(R)}{2(k_i + h_i^{\vee})} \le 1
$$

Curiously, $all T = 0$ anomaly-free models are consistent! $(Q:$ is this still the case if $U(1)$, $SU(2)$ etc. are reintroduced?)

We find that $\approx 50\%$ of anomaly-free models are consistent for $T = 1$ (Work in progress: for those which remain, how many/which can be matched to known string constructions?)

$T \gg 9$

 $\left[H_{\text{ch}} - V + 28 \text{ rk}(b_i \cdot b_j)\right](\mathcal{M}^{\text{irr}}) > 0$ with only $\bar{8}$ exceptions \implies any infinite family with $T \gg 9$ must be of a form like

$$
G = G'(k) \times E_8^k, \qquad \mathcal{H}_{\mathrm{ch}} = (\mathcal{H}'_{\mathrm{ch}}(k), \underline{\mathbf{1}}^k)
$$

$T \gg 9$

 $\left[H_{\text{ch}} - V + 28 \text{ rk}(b_i \cdot b_j)\right](\mathcal{M}^{\text{irr}}) > 0$ with only 8 exceptions \implies any infinite family with $T \gg 9$ must be of a form like

$$
G = G'(k) \times E_8^k, \qquad \mathcal{H}_{\mathrm{ch}} = (\mathcal{H}'_{\mathrm{ch}}(k), \underline{\mathbf{1}}^k)
$$

■ With a scaling argument,

$$
Q \sim k^{\alpha} \,, \qquad b_i' \cdot b_j' \sim k^{\beta} \,, \qquad b_i^{E_8} \cdot b_j^{E_8} \sim k^0 \,, \qquad \ldots
$$

and using existence of j with $j \cdot j = 1$ and $j \cdot b_i > 0$, can show that a consistent infinite family. . .

- with $n_+(b_i \cdot b_j) = 0$ must have $b_0 \in \text{span}(b_i)$ (fixes T)
- with $n_+(b_i \cdot b_j) = 1$ must have $T 9 + (b_0 \cdot b_i)(b \cdot b)_{ij}^{-1}(b_0 \cdot b_j) \ge 0$ bounded \implies T must grow with k in a prescribed way

 $T \gg 9$

 $\left[H_{\text{ch}} - V + 28 \text{ rk}(b_i \cdot b_j)\right](\mathcal{M}^{\text{irr}}) > 0$ with only 8 exceptions \implies any infinite family with $T \gg 9$ must be of a form like

$$
G = G'(k) \times E_8^k, \qquad \mathcal{H}_{\mathrm{ch}} = (\mathcal{H}'_{\mathrm{ch}}(k), \underline{\mathbf{1}}^k)
$$

With a scaling argument,

$$
Q \sim k^{\alpha} , \qquad b_i' \cdot b_j' \sim k^{\beta} , \qquad b_i^{E_8} \cdot b_j^{E_8} \sim k^0 , \qquad \dots
$$

and using existence of j with $j \cdot j = 1$ and $j \cdot b_i > 0$, can show that a consistent infinite family. . .

- with $n_+(b_i \cdot b_j) = 0$ must have $b_0 \in \text{span}(b_i)$ (fixes T)
- with $n_+(b_i \cdot b_j) = 1$ must have $T 9 + (b_0 \cdot b_i)(b \cdot b)_{ij}^{-1}(b_0 \cdot b_j) \ge 0$ bounded \implies T must grow with k in a prescribed way
- Idea: some interplay between the highly constrained form of the surviving families and potential global Dai-Freed anomalies

 $(e.g. see$ [Basile, Leone – 23])

Summary

- 6d SUGRA + local anomalies, unimodularity, positivity
- Graph algorithms $+$ iterative construction of models
- Complete lists of anomaly-free models for $T \leq 1$ (modulo low-rank groups)
- Swampland bounds: all anomaly-free models are consistent for $T = 0$ and *half* are consistent for $T = 1$
- For $T \gg 9$ the swampland bounds grow stronger and stronger. The surviving infinite families are highly constrained. Idea: highly constrained form forces there to be global anomalies

Summary

- 6d SUGRA + local anomalies, unimodularity, positivity
- Graph algorithms $+$ iterative construction of models
- Complete lists of anomaly-free models for $T \leq 1$ (modulo low-rank groups)
- Swampland bounds: all anomaly-free models are consistent for $T = 0$ and *half* are consistent for $T = 1$
- For $T \gg 9$ the swampland bounds grow stronger and stronger. The surviving infinite families are highly constrained. Idea: highly constrained form forces there to be global anomalies

Proof of finiteness for all T may be within reach – stay tuned!

$$
G = G_2 \times E_8^{4m}
$$

\n
$$
\mathcal{H} = (140m + 440)(\mathbf{1}; \mathbf{1}^{4m}) \oplus (72m - 26)(\mathbf{7}; \mathbf{1}^{4m})
$$

\n
$$
T = 12m + 1
$$

$$
b_0 = (3; 1, 1^{12m})
$$

\n
$$
b_0^{G_2} = (3m + 2; -3m + 4, 1^{12m})
$$

\n
$$
b_{4r+1}^{E_8} = (-1; 1, 0^{12r}, -1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0^{12(m-r-1)})
$$

\n
$$
b_{4r+2}^{E_8} = (-1; 1, 0^{12r}, 1, -1, 1, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0^{12(m-r-1)})
$$

\n
$$
b_{4r+3}^{E_8} = (-1; 1, 0^{12r}, 1, 1, -1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0^{12(m-r-1)})
$$

\n
$$
b_{4r+4}^{E_8} = (-1; 1, 0^{12r}, 1, 1, -1, 0, 0, 0, 0, 0, 0, 2, 2, 0^{12(m-r-1)})
$$