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* Motivation and context

Swampland Conjectures

@ AdS Distance Conjecture: Any AdS Quantum Gravity

Energy (String Theory)

vacuum has an infinite tower of states

that becomes light in the limit A — 0,

satisfying m ~ |A|7. . Lust, E. Palti, C. Vafa '19

Landscape
2T 30

Q .
AN

for non-SUSY = no scale separation.

Strong version: o = 1/2 for SUSY and o > 1/2J

Swampland

@ AdS/KK scale separation conjecture: In
AdS vacua there is no separation between

the AdS and the lightest KK scales. @ De Sitter Conjecture: No dS vacua

D. Tsimpis '12 . . .
consistent with quantum gravity. A

Compactifications in AdSs x Xg, with Romans scalar potential of an EFT weakly

mass and membranes in the smearing coupled to gravity must satisfy

approximation remain elusive.
PP MP‘LVVlZC, c~0O(1).

O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor '05
P. G. Camara, A. Font, L.E. Ibdfiez '05

G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa '18
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Current goal

@ Test these conjectures in DGKT-like settings including geometric and non-geometric

fluxes. F. Marchesano, D. Prieto, J. Quirant and P. Shukla 20
@ We find:

o Families of vacua displaying scale separation. Ingredients: elliptically fibered
CY + geometric fluxes (no Romans mass). gJ
o Several dS no-go’s including RR, NSNS, geometric and non-geometric fluxes.
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* Type llIA and the bilinear formulation
Manifold, moduli and flux quanta

@ Y Type IIA CY orientifold with fluxes and smeared D6/06 characterized by
T. W. Grimm, J. Louis '04
o Kihler 2-form Jo=B+iJ= (b +it?)w,
@ Holomorphic 3-form Q. = G +iRe(CQ) = Nfak — UpB" = (" + iu")\,
H=dB+H—h,

NSNS and RR fluxes B
G=dyC+G — e, e, m", m

@ Geometric Fluxes: faw, = aKBK — £ an

Qb ak = Qkw, Q> " = Q" w,

Non-geometric fluxes
Re (ak + BN = Rk + R"

@ Fluxes induce a superpotential

W= e*AG+ [ QADEe ), with D=d—H+fa+Q>+Re.
Yo Y6

S. Gukov, C. Vafa and E. Witten '00; G. Aldazabal, P. G. Cdmara, A. Font and L. Ibdfez '06
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* Type llIA and the bilinear formulation

F-term flux potential

saxions

*

@ Bilinear formulation for the F-term moduli scalar potential: V = paA zAB pB

=

axions—+fluxes

1 m
po = e + e’ + Eicabcmab"bC + gIcabcbab"b“ + pug",
m
Pa = €+ K:abcmbbc + E’Cabcbbbc + Paugu )
P =m’ 4+ mb® + 7 ¢",
p=mt gt
—h a 1 b,c~a 1 a b, c
Pu = hu + faub + EKabcb b QH + g’cabcb b°b Ru7
— fo + Kapeb®QC + LK bPBR
Pap = Tap abc m 5 abc o
.= Q) + bRy,

Pu =Ry .
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F-term flux potential

saxions

A

@ Bilinear formulation for the F-term moduli scalar potential: V = paA zAB pB

=

axions-+fluxes

ot ¢
4 0 0 0 0 0 0 —2K
g_| 0 & 0 0 o_ 0 0 L] 0
o o g, o |’ 0 wWyrst 0 0 ’
0o 0 o K 2%y 0 0 0
v 0 —emvte 0
c— 0 e rth 4 gyt yv 0 —envpr K
—envKa 0 Lem KKy + 2 gyt u” 0
0 —envib 0 K2onv
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Stability, F-terms and Ansatz

@ Look for a criterion that simplifies the equations of motion while favoring the solutions

that are stable.

@ Simple criterium to analyse vacua metastability for F-term potentials in 4d supergravity:
sGoldstino direction in field space is the one more likely to become tachyonic.

M. Gomez-Reino , C. A. Scrucca '06

@ Maximum vev of the sGoldstino is achieved by

{D.W, D, W} x {9:K, 8, K}

@ This leads to the following ansatz

pa — Kappput = £,7P 0K, Kabp® + papu* = £;7Q 0K,

1., 1.
pu— S Kaf =L MoK, Epan = K = £ VauK,
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# Scale Separation with Metric Fluxes New families of vacua

Equations of motion and refined a

@ Turn off non-geometric fluxes. Equations of motion in the Ansatz become
8 (poM — PN)O,K =0,
1 4

[87’(/)() - Q) — gﬁlC(—2Q+ 8N)]8aK + [glCﬁ—&- 8P — SM} paput =0,
2 3 2 2 2, K2, ~

4p5 + 12P° + 397 + 8M* + 8N +?p —20QN —4MKp | K =0,
2 2 2 2 K2,

4p§ + 4P° — Q° — 8ON + 16 M — 5P 0,K + |8Q — 8N | poput =0.

@ When brackets do not vanish independently = AdS vacua, generically without scale

separation (nearly-K&hler manifolds). F. Marchesano, D. Prieto, J. Quirant and P. Shukla 20
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@ Demanding blue brackets to vanish independently — 4 new families of vacua.

P
arameters P s 6 o m M
Branch
7
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0 3
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New families of vacua

@ Demanding blue brackets to vanish independently — 4 new families of vacua.

Parameters P s o m M
Branch
7

Susy Free | 3+4%; -3N —-10Z | -2%P

0 3
non-SUSY +4 4 -4 (1-1) 0 =

,% 4

@ Viac = _12EKQZ = AdS.

@ 10d-perspective

-4
WL = —I,C%se¢

= Half-flat manifold.
, Wh = —iGFe®, Wi = W, = Ws = 0)
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Scale Separation with Metric Fluxes

New families of vacua

@ Demanding blue brackets to vanish independently — 4 new families of vacua.

P
arameters P s 6 o m M
Branch
SUSY Free | 3+42; —3IN N | —102 | —2p | <
0 3 =
non-SUSY +4 4 “Na-2) | N 0 7
,% 4

@ Viac = _126KQ2 = AdS.
@ 10d-perspective = Half-flat manifold.
Wi = —ig%e?, Wh = iG] e? , W5 = Wy = W5 = 0)

@ Study Scale Separation with vanishing Romans mass m = 0 and rank-one metric fluxes.

N. Cribiori, D. Junghans, V. Van Hemelryck, T. Van Riet and T. Wrase '21

@ Focus on first two branches and set P = 0 and fa;, = 020y
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@ Consider Y5 = (T2§< Y4)/T, with Y3 a CY 2-fold. Geometric flux along the torus fibre

induces twist. The intersection numbers simplify to

Kiag =omas, Kapc =Kia=Kp =0.
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L
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Twisted Factorized Geometries

@ Consider Y = (T2>~< Y4)/T, with Y3 a CY 2-fold. Geometric flux along the torus fibre

induces twist. The intersection numbers simplify to

Kiag =omas, Kapc =Kia=Kp =0.

@ Exact solution for the saxions: @ Scaling the fluxes asymmetrically leaves the
eoms invariant.
Ao D mA oL
mb "’ O~n¥, m*~n"%, mb~ const.
Yy Kéhler saxions
eONn2r7 eANnr7 eLNn2r—s’ hP«an‘
tL o QQITIL
B 5o nagmAmB @ D6 tadpole contribution
T2 Kihler saxion L

Naux = mhy + m?fa, = m-o ~ const.
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Twisted Factorized Geometri

@ Consider Y = (T2>~< Y4)/T, with Y3 a CY 2-fold. Geometric flux along the torus fibre

induces twist. The intersection numbers simplify to

Kiag =omas, Kapc =Kia=Kp =0.

@ Exact solution for the saxions: @ Scaling the fluxes asymmetrically leaves the
eoms invariant.
Ao D m* oL
mt™ "’ O~n¥, m*~n"%, mb~ const.
Yy Kéhler saxions
eONn2r7 eANnr7 eLNn2r—s’ hP«an‘
tL o QQmL
B 5o nagmAmB @ D6 tadpole contribution
T2 Kihler saxion L

Naux = mhy + m?fa, = m-o ~ const.

@ Tuning the exponents one can find parametric scale separation.

2 2
Licre ~o A/EA ~ nf/2 Mick ~ 8 ,5rt2s
KK M2 " Volx tA L1(r—s)
P 6 — RaasMkx ~ n2

A= (RAdSMP)_2 ~ eKQ2 ~ n—6r+3s

N. Cribiori, D. Junghans, V. Van Hemelryck, T. Van Riet and T. Wrase '21
14
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Elliptically fibered Calabi-Yau

@ Elliptically fibered CY Yg with base By and c1(Bs) = c®wa # 0. The intersection numbers
become

B A B
Kiag =nag; Kia=mnagc”, Kii=nasc’c”, Kapc=0.

@ Turning on a rank-one metric flux along fibre direction, the scaling symmetry remains if
we allow the Chern Class of the base to grow

m*~n""5, mbt~const., Q~n*, A~nc.



# Scale Separation with Metric Fluxes Finding scale separation

Elliptically fibered Calabi-Yau

@ Elliptically fibered CY Yg with base By and c1(Bs) = c®wa # 0. The intersection numbers

become
Kiag = Kia=nasc®, Kiur =nasc*c®, Kapc=0
tAB = 1MaB; Kia=mnapc”, K =mnapc”c”, Kapc=0.

@ Turning on a rank-one metric flux along fibre direction, the scaling symmetry remains if

we allow the Chern Class of the base to grow

m*~n5, mt~const., Q~n*, A~n"*
A
@ In general we have the approximate scaling symmetry with corrections e* = # ~n®r
5
th =tk (1 + AL+ 0(62)) . A= - 550 (AA +mAAk 4 O(e)) .
(0) ©) " 3 mL
AL — _ nasc’m®m" A= T At
2M ’

Up to € corrections we find the same parametric scale separation as in the factorized geometry.
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Stability and examples

@ Test stability studying the Hessian in T2X T* and T2X K3 analytically.
@ For the elliptic fibration we perform numerical evaluation in specific examples (e.g. two

parameter hypersurface of ]1}‘(‘1,171,6,9)).
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Stability and examples

@ Test stability studying the Hessian in T2X T* and T2X K3 analytically.
@ For the elliptic fibration we perform numerical evaluation in specific examples (e.g. two

parameter hypersurface of ]P"(ll

,1,1,6,9))'
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Stability and examples

Finding scale separation

@ Test stability studying the Hessian in T2X T* and T2X K3 analytically.

@ For the elliptic fibration we perform numerical evaluation in specific examples (e.g. two

parameter hypersurface of P?l,l,l,e,g))‘
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General dS no-go conditions

@ General eoms are very involved. Use simplifying combinations of t?0,aV, 7012V, ut0¢n V

and u*O,n V to extract relevant information.

@ Focusing on the NSNS sector we find 4 no-go conditions for dS vacua.

162,52 +R - § + %C““ﬁuﬁu — c*pup, <0,
R — S +4p5 + 2c* pupy — ?SC“Vpupu <o,
§—§+7~2—§+’C—2c“ Pupv <0,
2R —28+R — § +3c*pupy <0.
J
R= (E“”tatb + gabU“uV) PapPby — 4T,S2ﬁaﬁbgab, S =& Kapu il »
Rz (002 B ) B - e, S KE i

@ Whenever one of these inequalities is verified, de Sitter vacua is ruled out.
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Ansatz dS no-go conditions

@ We obtain much more analytical control once we introduce the stability motivated ansatz.

| {D,W, D, W} x {8,K, 8, K} |

Non-geo Non-geo
local global Geo NSNS local  global Geo NSNS
(e [ 7 Lo ow [ [Wew] (e [ 2 [ | oo [ vowe ]
0 X 0 X
0 0
- X - ?
0 0
0 X 0 ? po =0
- - p, - - .
0 -
0 X 0 X
0 0
- ? p=0 - ?
) 0 X i 0 ? | po=0
) - 7 | 5=0 i B ?

20
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Refining the analysis in the Ansatz

@ Scalar potential can be written in terms of 8 quantities.

1 . . K.
7 = po, Y2 = pat?, 3= EiCapa, "=l

1 . K.
AL = PNUM: A2 = Papta ut, A3 = EK:aPZu#’ Ay = g pu“”~

@ Use this to account for the RR sector contribution and perform a complete study of the

256 cases. 227 of the are excluded (most of the simplest ones).
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Refining the analysis in the Ansatz

@ Scalar potential can be written in terms of 8 quantities.

1 . . K.
7 = po, Y2 = pat?, 3= EiCapa, "=l

1 K
AL = Pu““: A2 = Papta ut, A3 = EICaﬁZu“, Ay = Eﬁu““-

@ Use this to account for the RR sector contribution and perform a complete study of the

256 cases. 227 of the are excluded (most of the simplest ones).

@ Simplest non-excluded case:

_47 >\3:_Z'Y4’ Y4 >0,

21
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Conclusions

@ Bilinear formalism is a powerful tool to systematically study phenomenological properties

of flux vacua.

@ Scale separation found in Type IlA orientifolds with no Romans mass and rank-one metric

fluxes. Generalizes the model built by Cribiori et al. ‘21 to elliptic fibrations.
@ Still need better understanding of 10d uplift and localized sources.

@ To avoid dS no-go's a complex interplay between RR, NSNS, geometric and

non-geometric fluxes in very generic configurations is needed.
@ Flux quantization and tadpole bound will impose additional constraints.

@ There are some particularly simple configurations that are good candidates for a detailed

numerical analysis.
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@ Bilinear formalism is a powerful tool to systematically study phenomenological properties

of flux vacua.

@ Scale separation found in Type IlA orientifolds with no Romans mass and rank-one metric

fluxes. Generalizes the model built by Cribiori et al. ‘21 to elliptic fibrations.
@ Still need better understanding of 10d uplift and localized sources.

@ To avoid dS no-go's a complex interplay between RR, NSNS, geometric and

non-geometric fluxes in very generic configurations is needed.
@ Flux quantization and tadpole bound will impose additional constraints.

@ There are some particularly simple configurations that are good candidates for a detailed

numerical analysis.

Thanks for your attention!! J
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