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Motivation and context

Swampland Conjectures
AdS Distance Conjecture: Any AdS

vacuum has an infinite tower of states

that becomes light in the limit Λ → 0,

satisfying m ∼ |Λ|γ . D. Lust, E. Palti, C. Vafa ’19

Strong version: α = 1/2 for SUSY and α ≥ 1/2

for non-SUSY ⇒ no scale separation.

AdS/KK scale separation conjecture: In

AdS vacua there is no separation between

the AdS and the lightest KK scales.
D. Tsimpis ’12

Compactifications in AdS4 × X6, with Romans

mass and membranes in the smearing

approximation remain elusive.

O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor ’05

P. G. Cámara, A. Font, L.E. Ibáñez ’05

Swampland

Landscape

Theory Space

Theory Space

Energy

Sw
am

p
land

 C
onstraints

Quantum Gravity
(String Theory)

De Sitter Conjecture: No dS vacua

consistent with quantum gravity. A

scalar potential of an EFT weakly

coupled to gravity must satisfy

MP
|∇V |
V

≥ c , c ∼ O(1) .

G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa ’18
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Motivation and context

Current goal

Test these conjectures in DGKT-like settings including geometric and non-geometric

fluxes. F. Marchesano, D. Prieto, J. Quirant and P. Shukla ’20

We find:

Families of vacua displaying scale separation. Ingredients: elliptically fibered

CY + geometric fluxes (no Romans mass).

Several dS no-go’s including RR, NSNS, geometric and non-geometric fluxes.
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Type IIA and the bilinear formulation

Manifold, moduli and flux quanta

Y6 Type IIA CY orientifold with fluxes and smeared D6/O6 characterized by

T. W. Grimm, J. Louis ’04

Kähler 2-form Jc = B + iJ = (ba + ita)ωa

Holomorphic 3-form Ωc = C3 + iRe (CΩ) = NKαK − UΛβ
Λ = (ξµ + iuµ)λµ

NSNS and RR fluxes

H = dB + H̄ → hµ

G = dHC + Ḡ → e0, ea,m
a,m

Geometric Fluxes: f ◁ ωa = faKβ
K − fa

ΛαΛ

Non-geometric fluxes

Q ▷ αK = Qa
Kωa Q ▷ βΛ = QaΛωa

R • (αK + βΛ) = RK + RΛ

Fluxes induce a superpotential

W =

∫
Y6

e−Jc ∧ Ḡ+

∫
Y6

Ωc ∧ D(e−Jc ) , with D = d − H + f ◁+Q ▷+R • .

S. Gukov, C. Vafa and E. Witten ’00; G. Aldazabal, P. G. Cámara, A. Font and L. Ibáñez ’06
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Type IIA and the bilinear formulation

F-term flux potential

Bilinear formulation for the F-term moduli scalar potential:

saxions

V = ρA ZAB ρB

axions+fluxes

ZAB = eK

 B O

O t C

 ,

B =


4 0 0 0

0 gab 0 0

0 0 4K2

9 gab 0

0 0 0 K2

9

 , O =


0 0 0 − 2K

3 uν

0 0 2K
3 uνδab 0

0 − 2K
3 uνδba 0 0

2K
3 uν 0 0 0

 ,

C =


cµν 0 −c̃µν Kb

2 0

0 c̃µν tatb + gabuµuν 0 −c̃µν ta K
6

−c̃µν Ka
2 0 1

4 c̃
µνKaKb + 4K2

9 gabu
µuν 0

0 −c̃µν tb K
6 0 K2

36 cµν

 .
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Type IIA and the bilinear formulation

F-term flux potential

Bilinear formulation for the F-term moduli scalar potential:

saxions

V = ρA ZAB ρB

axions+fluxes

ρ0 = e0 + eab
a +

1

2
Kabcm

abbbc +
m

6
Kabcb

abbbc + ρµξ
µ
,

ρa = ea + Kabcm
bbc +

m

2
Kabcb

bbc + ρaµξ
µ
,

ρ̃
a = ma + mba + ρ̃

a
µξ

µ
,

ρ̃ = m + ρ̃µξ
µ
,

ρµ = hµ + faµb
a +

1

2
Kabcb

bbcQa
µ +

1

6
Kabcb

abbbcRµ ,

ρaµ = faµ + Kabcb
bQc

µ +
1

2
Kabcb

bbcRµ ,

ρ̃
a
µ = Qa

µ + baRµ ,

ρ̃µ = Rµ .
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 B O

O t C
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Type IIA and the bilinear formulation

Stability, F-terms and Ansatz

Look for a criterion that simplifies the equations of motion while favoring the solutions

that are stable.

Simple criterium to analyse vacua metastability for F-term potentials in 4d supergravity:

sGoldstino direction in field space is the one more likely to become tachyonic.

M. Gomez-Reino , C. A. Scrucca ’06

Maximum vev of the sGoldstino is achieved by

{DaW ,DµW } ∝ {∂aK , ∂µK}

This leads to the following ansatz

ρa −Kab ρ̃
b
µu

µ = ℓ−1
s P ∂aK , Kab ρ̃

b + ρaµu
µ = ℓ−1

s Q ∂aK ,

ρµ −
1

2
Kaρ̃

a
µ = ℓ−1

s M ∂µK , taρaµ −
1

6
Kρ̃µ = ℓ−1

s N ∂µK ,

10
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Scale Separation with Metric Fluxes
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Scale Separation with Metric Fluxes New families of vacua

Equations of motion and refined ansatz

Turn off non-geometric fluxes. Equations of motion in the Ansatz become

8 (ρ0M−PN ) ∂µK = 0 ,[
8P(ρ0 −Q)−

1

3
ρ̃K (−2Q+ 8N )

]
∂aK +

[
4

3
Kρ̃+ 8P − 8M

]
ρaµu

µ = 0 ,(
4ρ20 + 12P3 + 3Q2 + 8M2 + 8N 2 +

K2

9
ρ̃2 − 20QN − 4MKρ̃

)
∂µK = 0 ,[

4ρ20 + 4P2 −Q2 − 8QN + 16M2 −
K2

9
ρ̃2

]
∂aK +

[
8Q− 8N

]
ρaµu

µ = 0 .

When brackets do not vanish independently ⇒ AdS vacua, generically without scale

separation (nearly-Kähler manifolds). F. Marchesano, D. Prieto, J. Quirant and P. Shukla ’20

12



Scale Separation with Metric Fluxes New families of vacua

New families of vacua

Demanding blue brackets to vanish independently → 4 new families of vacua.

Branch

Parameters P S ρ0 Q m M

SUSY Free 3 + 4 P2

N2 − 3
2N N −10P

K − 2
3P

⇐

non-SUSY

0 3

−N
2

(
1 − 12

S
)

N 0 4P
S

⇐

+N
2 4

−N
2 4

Vvac = −12eKQ2 ⇒ AdS.

10d-perspective ⇒ Half-flat manifold.

(W1 = −i 4Q
Kℓs

eϕ , W2 = −iGP
2 eϕ , W3 = W4 = W5 = 0)

Study Scale Separation with vanishing Romans mass m = 0 and rank-one metric fluxes.

N. Cribiori, D. Junghans, V. Van Hemelryck, T. Van Riet and T. Wrase ’21

Focus on first two branches and set P = 0 and faµ ≡ σaσµ.
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Scale Separation with Metric Fluxes Finding scale separation

Twisted Factorized Geometries

Consider Y6 = (T 2×̃Y4)/Γ, with Y4 a CY 2-fold. Geometric flux along the torus fibre

induces twist. The intersection numbers simplify to

KLAB = σLηAB , KABC = KLLA = KLLL = 0 .

Exact solution for the saxions:

tA = −
5

3

mA

mL
tL ,

Y4 Kähler saxions

tL =

√
−

9QmL

5σLηABmAmB

T2 Kähler saxion

.

Scaling the fluxes asymmetrically leaves the

eoms invariant.

Q ∼ n2r , mA ∼ nr−s , mL ∼ const.

e0 ∼ n2r , eA ∼ nr , eL ∼ n2r−s , hµ ∼ ns .

D6 tadpole contribution

Nflux = mhµ +mafaµ = mLσL ∼ const.

Tuning the exponents one can find parametric scale separation.

LKK ∼
√

tA ∼ nr/2 =⇒
M2

KK

M2
P

∼
g2
s

VolX6
tA

∼ n−5r+2s

Λ = (RAdSMP)
−2 ∼ eKQ2 ∼ n−6r+3s

 → RAdSMKK ∼ n
1
2
(r−s)

N. Cribiori, D. Junghans, V. Van Hemelryck, T. Van Riet and T. Wrase ’21
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Scale Separation with Metric Fluxes Finding scale separation

Elliptically fibered Calabi-Yau

Elliptically fibered CY Y6 with base B4 and c1(B4) = cAωA ̸= 0. The intersection numbers

become

KLAB = ηAB , KLLA = ηABc
B , KLLL = ηABc

AcB , KABC = 0 .

Turning on a rank-one metric flux along fibre direction, the scaling symmetry remains if

we allow the Chern Class of the base to grow

mA ∼ nr−s , mL ∼ const. , Q ∼ n2r , cA ∼ nr−s .

In general we have the approximate scaling symmetry with corrections ϵA ≡ cA

mA ∼ ns−r .

tL = tL(0)

(
1 + ∆L +O(ϵ2)

)
, tA = tA(0) −

5

3

tL
(0)

mL

(
∆A +mA∆L +O(ϵ)

)
.

∆L = −
ηABc

AmBmL

2M
, ∆A =

4

5
cAmL

.

Up to ϵ corrections we find the same parametric scale separation as in the factorized geometry.
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Scale Separation with Metric Fluxes Finding scale separation

Stability and examples

Test stability studying the Hessian in T 2×̃T 4 and T 2×̃K3 analytically.

For the elliptic fibration we perform numerical evaluation in specific examples (e.g. two

parameter hypersurface of P4
(1,1,1,6,9)

).
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Searching de Sitter with Non-Geometric Fluxes

General Picture

Many dS no-go’s have been found in Type IIA, some even including geometric fluxes.

J. M. Maldacena and C. Nunez ’01

Geometric & non-geometric fluxes together still have potential.

Go back to the eoms without assuming any Ansatz. First check: SUSY.

⟨VSUSY⟩ = −3eK

[(
ρ0 −

1

2
Kaρ̃

a

)2

+

(
ρat

a −
K
6
ρ̃

)2
]
⇒ SUSY dS is not possible.
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Searching de Sitter with Non-Geometric Fluxes

General dS no-go conditions
General eoms are very involved. Use simplifying combinations of ta∂baV , ta∂taV , uµ∂ξµV

and uµ∂uµV to extract relevant information.

Focusing on the NSNS sector we find 4 no-go conditions for dS vacua.

K2ρ̃2

9
+ R̃ −

S̃
3

+
K2

18
cµν ρ̃µρ̃ν − cµνρµρν ≤ 0 ,

R− S + 4ρ20 + 2cµνρµρν −
K2

36
cµν ρ̃µρ̃ν ≤ 0 ,

R
2

−
S
2

+ R̃ −
S̃
3

+
K2

24
cµν ρ̃µρ̃ν ≤ 0 ,

2R− 2S + R̃ −
S̃
3

+ 3cµνρµρν ≤ 0 .

R ≡
(
c̃µνtatb + gabuµuν

)
ρaµρbν −

4K2

9
ρ̃aρ̃bgab , S ≡c̃µνKaρµρ̃

a
ν ,

R̃ ≡
(
c̃µν

Ka

2

Kb

2
+

4K2

9
gabu

µuν
)
ρ̃aµρ̃

b
ν − gabρaρb , S̃ ≡Kc̃µνtaρaµρ̃ν .

Whenever one of these inequalities is verified, de Sitter vacua is ruled out.
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Searching de Sitter with Non-Geometric Fluxes

Ansatz dS no-go conditions

We obtain much more analytical control once we introduce the stability motivated ansatz.

{DaW ,DµW } ∝ {∂aK , ∂µK}

Non-geo

local global Geo NSNS

ρ̃µ ρ̃a
µ ρaµ ρµ dS No-go

0

0

0
0 ✗

- ✗

-
0 ✗

- ✗

-

0
0 ✗

- ? ρ̃ = 0

-
0 ✗

- ? ρ̃ = 0

Non-geo

local global Geo NSNS

ρ̃µ ρ̃a
µ ρaµ ρµ dS No-go

-

0

0
0 ✗

- ?

-
0 ? ρ0 = 0

- ?

-

0
0 ✗

- ?

-
0 ? ρ0 = 0

- ?
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Searching de Sitter with Non-Geometric Fluxes

Refining the analysis in the Ansatz

Scalar potential can be written in terms of 8 quantities.

γ1 = ρ0, γ2 = ρat
a, γ3 =

1

2
Kaρ̃

a, γ4 =
K
6
ρ̃,

λ1 = ρµu
µ, λ2 = ρaµt

a uµ, λ3 =
1

2
Kaρ̃

a
µu

µ, λ4 =
K
6
ρ̃µu

µ.

Use this to account for the RR sector contribution and perform a complete study of the

256 cases. 227 of the are excluded (most of the simplest ones).

Simplest non-excluded case:

γ1 = γ2 = γ3 = λ2 = λ4 = 0 , λ1 = −
γ4

4
, λ3 = −

9

4
γ4 , γ4 ≥ 0 ,

N = Q = 0 , P = −
3

2
γ4 , M = −

9

16
γ4 .
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Conclusions

Conclusions

Bilinear formalism is a powerful tool to systematically study phenomenological properties

of flux vacua.

Scale separation found in Type IIA orientifolds with no Romans mass and rank-one metric

fluxes. Generalizes the model built by Cribiori et al. ’21 to elliptic fibrations.

Still need better understanding of 10d uplift and localized sources.

To avoid dS no-go’s a complex interplay between RR, NSNS, geometric and

non-geometric fluxes in very generic configurations is needed.

Flux quantization and tadpole bound will impose additional constraints.

There are some particularly simple configurations that are good candidates for a detailed

numerical analysis.

Thanks for your attention!!
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