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WHY WE NEED MACHINE LEARNING IN QUANTUM GRAVITY
The number of consistent string theory vacua ranges from  to . 

 The string landscape is too vast for a systematic exploration!

∼ 10500 ∼ 10272,000

⇒

With Machine Learning we can study big data sets 

of consistent theories and extract relevant information 

This could be beneficial for the Swampland Program:

Test existent conjectures with supervised techniques

Uncover new patterns with unsupervised techniques



WHAT CAN WE ‘LEARN’ IN QUANTUM GRAVITY?

But what can we ‘learn’ in  

Quantum Gravity effective field theories? 
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But what can we ‘learn’ in  

Quantum Gravity effective field theories? 

We address this question with three key tools:

o-minimal structures, defining Quantum Gravity interactions

The shattering dimensions  

A mathematical definition of Learning



WHAT CAN WE ‘LEARN’ IN QUANTUM GRAVITY?

But what can we ‘learn’ in  

Quantum Gravity effective field theories? 

Here, we will focus only on binary supervised problems, namely problems that 
can be answered with a ‘yes’ or a ‘no’.

Example:  

Consider an effective theory with a scalar potential 
. Does it accommodate slow-roll inflation for 

some parameters ?
V(φ, c)

ca

Inflation

No inflation
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1. A DEFINITION FROM STATISTICAL LEARNING THEORY

Inflation

No inflation

Label ‘0’ (= ‘no inflation’)

Label ‘1’ (= ‘inflation’)

➤ The Data space is  with 

input (coordinate) space  ,  output (label) space  

➤ The Data set fed to the algorithm is a discrete subset of the Data space: 

Z = X × Y

X = ⊂ ℝn Y = = {0,1}

Data set = {(xi, yi)} ⊂ X × Y ⊂ ℝn × {0,1} , i = 1,…, Ndata



1. A DEFINITION FROM STATISTICAL LEARNING THEORY

Inflation

No inflation

Function  specifying the boundaryf(c1, c2)
➤ Introduce a set of functions  among which we search for a function 

  

that best models the data, with the smallest possible error. 

➤ A learning algorithm  is a map 

 

that selects a function , within , with the property that, if  is sufficiently large, then  the error 
of  is small enough, , with high enough probability.

ℱ

f(x) : X → Y

ℓ

ℓ : Data setm → ℱ

f ℱ m
f(x) errorP(ℓ) < optP(ℱ) + ϵ

Inflation

No inflation

Label ‘0’ (= ‘no inflation’)
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➤ The Data space is  with 

input (coordinate) space  ,  output (label) space  

➤ The Data set fed to the algorithm is a discrete subset of the Data space: 

Z = X × Y

X = ⊂ ℝn Y = = {0,1}

Data set = {(xi, yi)} ⊂ X × Y ⊂ ℝn × {0,1} , i = 1,…, Ndata



2. THE VAPNIK-CHERVONENKIS DIMENSION
Consider a family of sets  and a set . We say that the set  is ‘shattered’ by the sets of the family  
if all the subsets of  are contained in , namely: 

 contains all the subsets of  

The Vapnik–Chervonenkis dimension of  is the cardinality of the largest set that  can shatter. 

If any set can be shattered by the family of sets , we say that the Vapnik–Chervonenkis dimension of 
 is infinite.

𝒞 S S 𝒞
S 𝒞

𝒞 ∩ S := {C ∩ S | C ∈ 𝒞} S

𝒞 𝒞

𝒞
𝒞
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Example: set of points, with subsets represented as blue circles and orange squares; we want to 
‘shatter’ its subsets via sets separated by a single line

S =
𝒞 =

Our models are lines, such that 
they ‘shatter’ the points as

Below: orange squares 

Above: blue circles 
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Consider a family of sets  and a set . We say that the set  is ‘shattered’ by the sets of the family  
if all the subsets of  are contained in , namely: 

 contains all the subsets of  

The Vapnik–Chervonenkis dimension of  is the cardinality of the largest set that  can shatter. 

If any set can be shattered by the family of sets , we say that the Vapnik–Chervonenkis dimension of 
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𝒞 S S 𝒞
S 𝒞

𝒞 ∩ S := {C ∩ S | C ∈ 𝒞} S

𝒞 𝒞

𝒞
𝒞

Example: the set of lines can ‘shatter’ (separate) set of three (non-collinear) points with any label 
assignment, but not set of four points  The Vapnik-Chervonenkis dimension of the set of lines is three.⇒

Our models are lines, such that 
they ‘shatter’ the points as

Below: orange squares 

Above: blue circles 



3. O-MINIMALITY AND QUANTUM GRAVITY
Consider a generic effective field theory of string theory: 

 

The Tameness Conjecture [Grimm 2021] asserts that all the couplings and the 
interactions appearing in the effective theory need to be ‘tame’, namely definable in 
a given o-minimal structure.

S(D) = ∫ (1
2

R ⋆ 1 −
1
2

Gab(φ, λ)dφa ∧ ⋆dφb −
1
2

fIJ(φ, λ)FI
pI+1 ∧ ⋆FJ

pJ+1 − V(φ, λ) ⋆ 1 + …)
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Namely, any coupling  can be written as unions, intersections or 
complements of a finite number of loci: 

 

with  auxiliary variables, and  restricted analytic functions.

g(φ, λ)

∃ x1, …, xl : Pi(φ, λ, x, g, f1, …, fm) = 0 , Qj(φ, λ, x, g, f1, …, fm) > 0 ,

xk fa



3. O-MINIMALITY AND QUANTUM GRAVITY
Consider a generic effective field theory of string theory: 

 

The Tameness Conjecture [Grimm 2021] asserts that all the couplings and the 
interactions appearing in the effective theory need to be ‘tame’, namely definable in 
a given o-minimal structure.

S(D) = ∫ (1
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R ⋆ 1 −
1
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 Couplings and interactions have regular, monotonic tails and finite critical loci:⇒

Tame  Non tame  
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COMBINING ALL THE INGREDIENTS

The tameness of Quantum Gravity effective field theories implies that the 
set of functions  among which the ‘true’ model resides have to be 
definable in a given o-minimal structure: 

  has to have ‘regular’ tails, and be non-periodic

ℱ

⇒ f : X → Y



COMBINING ALL THE INGREDIENTS

The tameness of Quantum Gravity effective field theories implies that the 
set of functions  among which the ‘true’ model resides have to be 
definable in a given o-minimal structure: 

  has to have ‘regular’ tails, and be non-periodic

ℱ

⇒ f : X → Y

Every o-minimal structure is characterized by finite Vapnik-Chervonenkis 
dimension  [Laskowski 1990].  

Notice that an infinite shattering dimension would imply an infinite amount 
of information to learn the function!  



THE LEARNABILITY OF QUANTUM GRAVITY
Fundamental Theorem of Statistical Learning  

Consider a set of functions  with binary output, then: 

➤  is learnable if and only if  has finite Vapnik-Chervonenkis dimension; 

➤ there exist two constants ,  such that the complexity of the data set is bounded as 

ℱ

ℱ ℱ

c1 c2

c1

ϵ2
log

1
δ

< min
ℓ

m <
c2

ϵ2
log

1
δ
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 In every low-energy effective theory of Quantum Gravity, any 
binary classification problem (involving the tame interactions of 
the theory) is learnable. 

Similarly, also more general Quantum Gravity regression problems 
can be shown to be learnable.

⇒



EXAMPLE OF LEARNING PROBLEMS

Inflation

No inflation

Can an EFT support inflation  
for some choice of parameters?

What is the predicted value 
of a gauge coupling?

Which kinds of states first 
break down an EFT?

ARXIV:2311.03437

predicted model



CONCLUSIONS AND OUTLOOK
➤ We have seen that binary classification problems formulated within Quantum 

Gravity effective field theories are learnable; 

➤ Similarly, more general regression or interpolation problems can be shown to 
be learnable. 

 The usage of neural network to machine-learn critical properties of 
Quantum Gravity is justified by the geometrical structures of Quantum Gravity. 

It would be interesting to further investigate: 

➤ the learnability via unsupervised techniques and the Swampland Conjectures; 

➤ relations with decidability and the halting problem.

⇒



Thank you!


