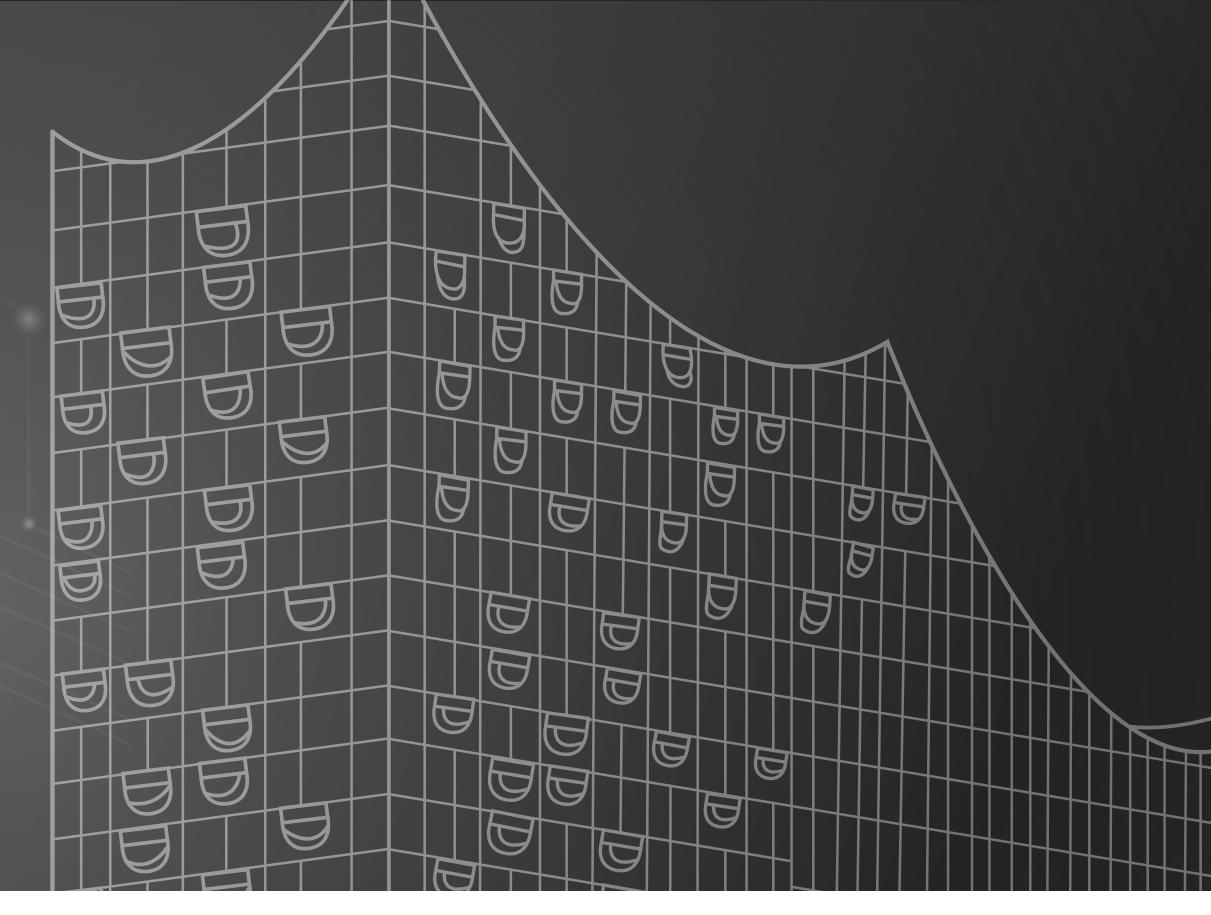
## **STEFANO LANZA UNIVERSITY OF HAMBURG**

# NEURAL NETWORK LEARNING AND QUANTUM GRAVITY



### BASED ON: ARXIV:2403.03245, ARXIV:2311.03437





## • WHY WE NEED MACHINE LEARNING IN QUANTUM GRAVITY

 $\Rightarrow$  The string landscape is **too vast** for a systematic exploration!

This could be beneficial for the **Swampland Program**:

- The number of consistent string theory vacua ranges from  $\sim 10^{500}$  to  $\sim 10^{272,000}$ .

  - With Machine Learning we can study **big data sets** of consistent theories and extract relevant information
  - Test existent conjectures with supervised techniques
  - Uncover new patterns with unsupervised techniques



### • WHAT CAN WE 'LEARN' IN QUANTUM GRAVITY?

### But what can we 'learn' in Quantum Gravity effective field theories?



### • WHAT CAN WE 'LEARN' IN QUANTUM GRAVITY?

### We address this question with three key tools:

A mathematical definition of Learning

The shattering dimensions

- But what can we 'learn' in Quantum Gravity effective field theories?

### o-minimal structures, defining Quantum Gravity interactions



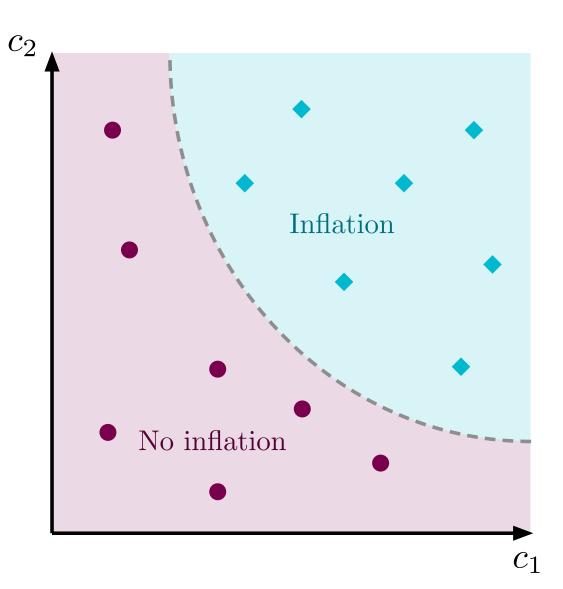
### • WHAT CAN WE 'LEARN' IN QUANTUM GRAVITY?

Here, we will focus only on **binary supervised problems**, namely problems that can be answered with a 'yes' or a 'no'.

### **Example:**

Consider an effective theory with a scalar potential  $V(\varphi, c)$ . Does it accommodate slow-roll inflation for some parameters  $c^a$ ?

### But what can we 'learn' in Quantum Gravity effective field theories?





### • 1. A DEFINITION FROM STATISTICAL LEARNING THEORY



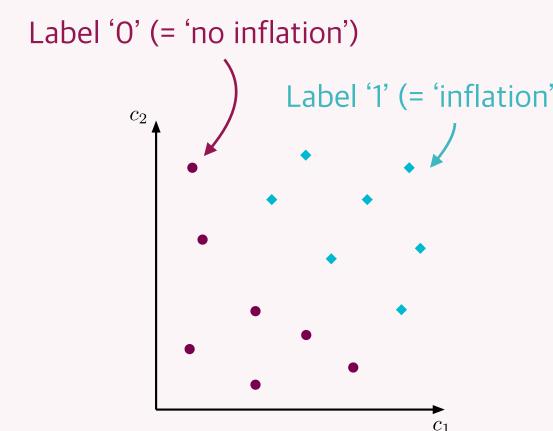
## • 1. A DEFINITION FROM STATISTICAL LEARNING THEORY

### > The Data space is $Z = X \times Y$ with

X =input (coordinate) space  $\subset \mathbb{R}^n$ , Y =output (label) space  $= \{0,1\}$ 

The Data set fed to the algorithm is a discrete subset of the Data space:

Data set = { $(x_i, y_i)$ }  $\subset X \times Y \subset \mathbb{R}^n \times \{0, 1\}$ ,



$$i = 1, ..., N_{data}$$

## • 1. A DEFINITION FROM STATISTICAL LEARNING THEORY

### $\blacktriangleright$ The Data space is $Z = X \times Y$ with

X = input (coordinate) space  $\subset \mathbb{R}^n$ , Y = output (label) space  $= \{0, 1\}$ 

> The Data set fed to the algorithm is a discrete subset of the Data space:

Data set = { $(x_i, y_i)$ }  $\subset X \times Y \subset \mathbb{R}^n \times \{0, 1\}$ ,

Introduce a set of functions  $\mathcal{F}$  among which we search for a function

f(x): X

that best models the data, with the smallest possible error.

> A learning algorithm  $\ell$  is a map

 $\ell$ : Data se

that selects a function f, within  $\mathcal{F}$ , with the property that, if m is sufficiently large, then the error of f(x) is small enough,  $\operatorname{error}_{P}(\mathscr{C}) < \operatorname{opt}_{P}(\mathscr{F}) + \epsilon$ , with high enough probability.

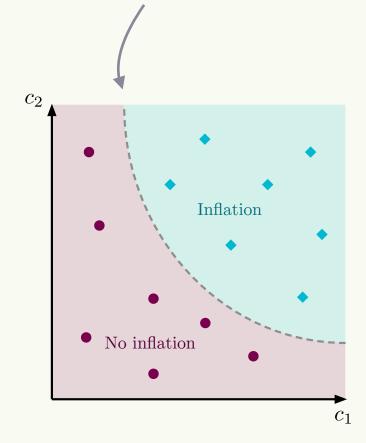
$$i = 1, \dots, N_{data}$$

$$\rightarrow Y$$

Label '0' (= 'no inflation')  
Label '1' (= 'inflation')  

$$c_2$$
  
 $c_2$   
 $c_2$   
 $c_2$   
 $c_2$   
 $c_2$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_4$   
 $c_4$   
 $c_5$   
 $c_6$   
 $c_6$   
 $c_6$   
 $c_6$   
 $c_6$   
 $c_6$   
 $c_7$   
 $c_7$   
 $c_7$   
 $c_7$   
 $c_8$   
 $c_7$   
 $c_8$   
 $c_7$   
 $c_8$   
 $c_9$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_1$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_3$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_3$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_4$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_3$   
 $c_4$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_4$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_4$   
 $c_1$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_1$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_1$   
 $c_2$   
 $c_2$   
 $c_3$   
 $c_2$   
 $c_3$   
 $c_2$   
 $c_3$   
 $c_3$   
 $c_3$   
 $c_4$   
 $c_5$   
 $c_5$   

Function  $f(c_1, c_2)$  specifying the boundary



$$\mathfrak{t}_m \to \mathscr{F}$$

## 2. THE VAPNIK-CHERVONENKIS DIMENSION

Consider a family of sets  $\mathscr{C}$  and a set S. We say that the set S is 'shattered' by the sets of the family  $\mathscr{C}$ if all the subsets of S are contained in  $\mathscr{C}$ , namely:

The Vapnik-Chervonenkis dimension of  $\mathscr{C}$  is the cardinality of the largest set that  $\mathscr{C}$  can shatter.

*C* is infinite.

- $\mathscr{C} \cap S := \{C \cap S \mid C \in \mathscr{C}\}$  contains all the subsets of S
- If any set can be shattered by the family of sets  $\mathscr{C}$ , we say that the Vapnik-Chervonenkis dimension of

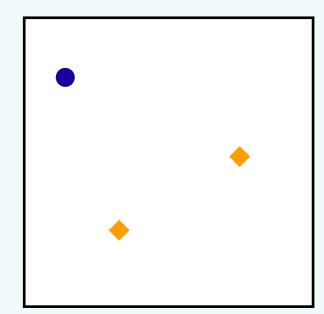
## 2. THE VAPNIK-CHERVONENKIS DIMENSION

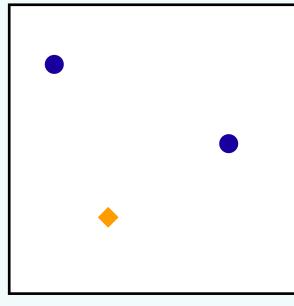
Consider a family of sets  $\mathscr{C}$  and a set S. We say that the set S is 'shattered' by the sets of the family  $\mathscr{C}$ if all the subsets of S are contained in  $\mathscr{C}$ , namely:

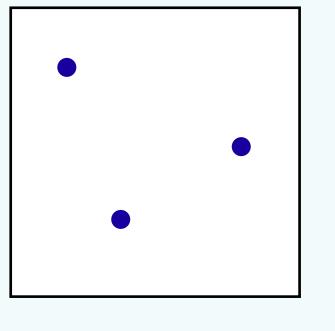
The Vapnik-Chervonenkis dimension of  $\mathscr{C}$  is the cardinality of the largest set that  $\mathscr{C}$  can shatter.

*C* is infinite.

'shatter' its subsets via  $\mathscr{C}$  = sets separated by a single line

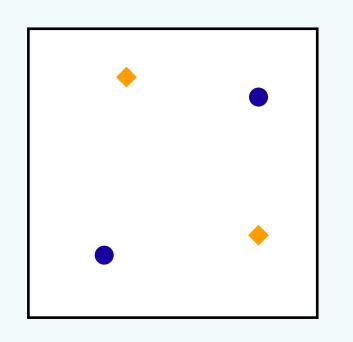




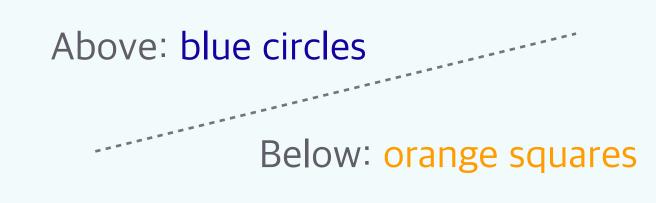


- $\mathscr{C} \cap S := \{C \cap S \mid C \in \mathscr{C}\}$  contains all the subsets of S
- If any set can be shattered by the family of sets  $\mathscr{C}$ , we say that the Vapnik-Chervonenkis dimension of

**Example:** S = set of points, with subsets represented as blue circles and orange squares; we want to



Our models are lines, such that they 'shatter' the points as





## 2. THE VAPNIK-CHERVONENKIS DIMENSION

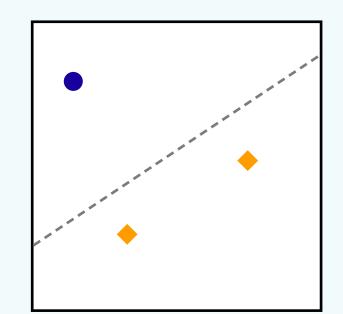
Consider a family of sets  $\mathscr{C}$  and a set S. We say that the set S is 'shattered' by the sets of the family  $\mathscr{C}$ if all the subsets of S are contained in  $\mathscr{C}$ , namely:

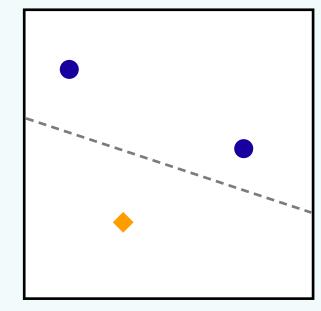
 $\mathscr{C} \cap S := \{C \cap S \mid C \in \mathscr{C}\}$  contains all the subsets of S

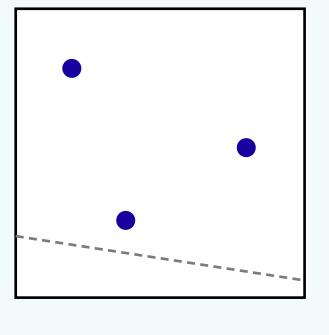
The Vapnik-Chervonenkis dimension of  $\mathscr{C}$  is the cardinality of the largest set that  $\mathscr{C}$  can shatter.

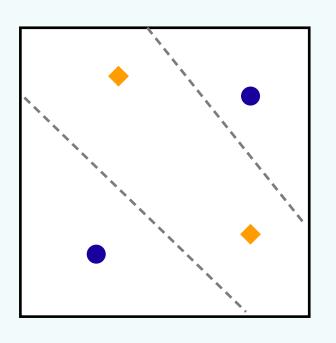
If any set can be shattered by the family of sets  $\mathscr{C}$ , we say that the Vapnik-Chervonenkis dimension of *C* is infinite.

Example: the set of lines can 'shatter' (separate) set of three (non-collinear) points with any label is assignment, but not set of four points  $\Rightarrow$  The Vapnik-Chervonenkis dimension of the set of lines is three.

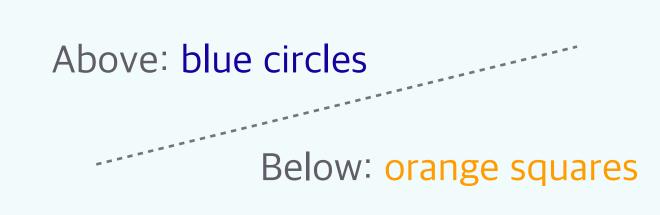








Our models are lines, such that they 'shatter' the points as





## 3. O-MINIMALITY AND QUANTUM GRAVITY

• Consider a generic effective field theory of string theory:

The Tameness Conjecture [Grimm 2021] asserts that all the couplings and the interactions appearing in the effective theory need to be 'tame', namely definable in a given o-minimal structure.

 $S^{(D)} = \left[ \left( \frac{1}{2} R \star 1 - \frac{1}{2} G_{ab}(\varphi, \lambda) \mathrm{d}\varphi^a \wedge \star \mathrm{d}\varphi^b - \frac{1}{2} f_{IJ}(\varphi, \lambda) F_{p_I+1}^I \wedge \star F_{p_J+1}^J - V(\varphi, \lambda) \star 1 + \dots \right) \right]$ 



## **3. O-MINIMALITY AND QUANTUM GRAVITY**

• Consider a generic effective field theory of string theory:

The Tameness Conjecture [Grimm 2021] asserts that all the couplings and the interactions appearing in the effective theory need to be 'tame', namely definable in a given o-minimal structure.

Namely, any coupling  $g(\varphi, \lambda)$  can be written as unions, intersections or complements of a finite number of loci:

with  $x_k$  auxiliary variables, and  $f_a$  restricted analytic functions.

 $S^{(D)} = \left[ \left( \frac{1}{2} R \star 1 - \frac{1}{2} G_{ab}(\varphi, \lambda) \mathrm{d}\varphi^a \wedge \star \mathrm{d}\varphi^b - \frac{1}{2} f_{IJ}(\varphi, \lambda) F_{p_I+1}^I \wedge \star F_{p_J+1}^J - V(\varphi, \lambda) \star 1 + \dots \right) \right]$ 

 $\exists x_1, ..., x_l: \qquad P_i(\varphi, \lambda, x, g, f_1, ..., f_m) = 0, \qquad Q_i(\varphi, \lambda, x, g, f_1, ..., f_m) > 0,$ 

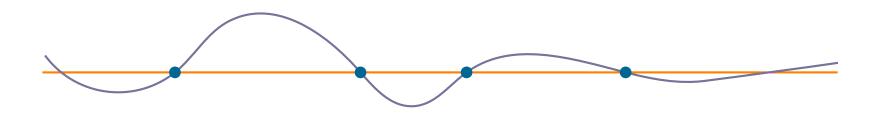


## 3. O-MINIMALITY AND QUANTUM GRAVITY

• Consider a generic effective field theory of string theory:

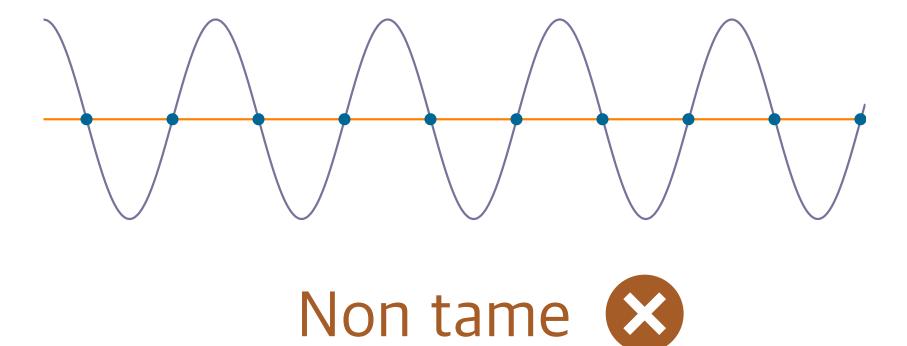
The Tameness Conjecture [Grimm 2021] asserts that all the couplings and the interactions appearing in the effective theory need to be 'tame', namely definable in a given o-minimal structure.

 $\Rightarrow$  Couplings and interactions have regular, monotonic tails and finite critical loci:





 $S^{(D)} = \left[ \left( \frac{1}{2} R \star 1 - \frac{1}{2} G_{ab}(\varphi, \lambda) \mathrm{d}\varphi^a \wedge \star \mathrm{d}\varphi^b - \frac{1}{2} f_{IJ}(\varphi, \lambda) F_{p_I+1}^I \wedge \star F_{p_J+1}^J - V(\varphi, \lambda) \star 1 + \dots \right) \right]$ 





### • COMBINING ALL THE INGREDIENTS



### • COMBINING ALL THE INGREDIENTS

The tameness of Quantum Gravity effective field theories implies that **the set of functions**  $\mathscr{F}$  among which the 'true' model resides have to be **definable in a given o-minimal structure**:

 $\Rightarrow f: X \rightarrow Y$  has to have 'regular' tails, and be non-periodic



### • COMBINING ALL THE INGREDIENTS

The tameness of Quantum Gravity effective field theories implies that **the set of functions**  $\mathcal{F}$  among which the 'true' model resides have to be **definable in a given o-minimal structure**:

 $\Rightarrow f: X \rightarrow Y$  has to have 'regular' tails, and be non-periodic

Every o-minimal structure is characterized by **finite Vapnik-Chervonenkis dimension** [Laskowski 1990].

Notice that an infinite shattering dimension would imply an infinite amount of information to learn the function!



## • THE LEARNABILITY OF QUANTUM GRAVITY

### **Fundamental Theorem of Statistical Learning**

Consider a set of functions  $\mathcal{F}$  with binary output, then:

 $\mathscr{F}$  is **learnable** if and only if  $\mathscr{F}$  has **finite Vapnik-Chervonenkis dimension**;

 $\blacktriangleright$  there exist two constants  $c_1$ ,  $c_2$  such that the **complexity** of the data set is **bounded** as

 $\frac{c_1}{\epsilon^2} \log \frac{1}{\delta} < r$ 

$$\min_{\ell} m < \frac{c_2}{\epsilon^2} \log \frac{1}{\delta}$$

## • THE LEARNABILITY OF QUANTUM GRAVITY

### **Fundamental Theorem of Statistical Learning**

Consider a set of functions  $\mathcal{F}$  with binary output, then:

 $\mathscr{F}$  is **learnable** if and only if  $\mathscr{F}$  has **finite Vapnik-Chervonenkis dimension**;

 $\blacktriangleright$  there exist two constants  $c_1$ ,  $c_2$  such that the **complexity** of the data set is **bounded** as

 $\frac{c_1}{\epsilon^2} \log \frac{1}{\delta} < r$ 

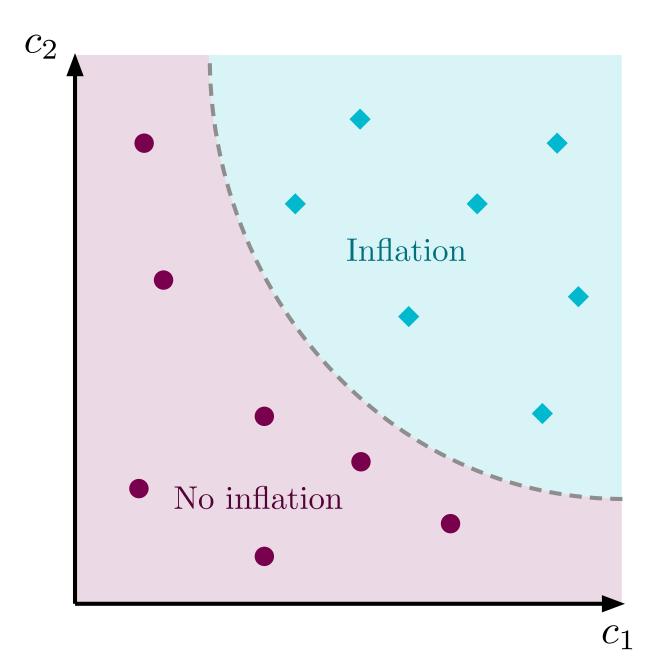
 $\Rightarrow$  In every low-energy effective theory of Quantum Gravity, any **binary classification problem** (involving the tame interactions of the theory) is learnable.

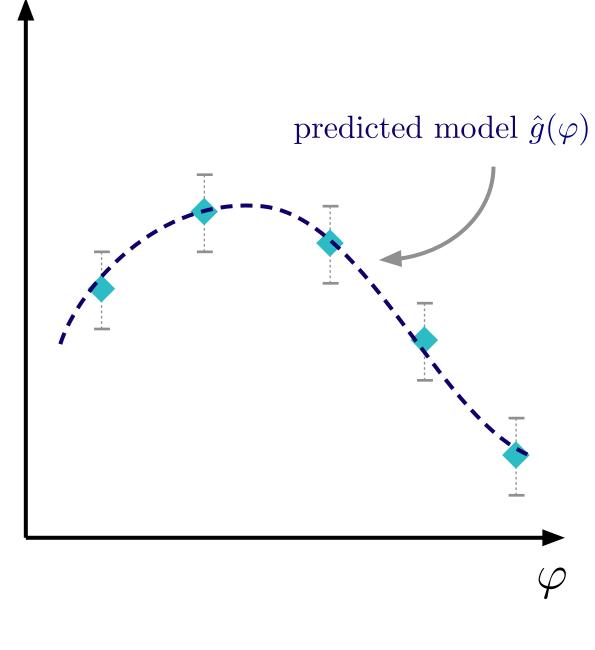
Similarly, also more general Quantum Gravity regression problems can be shown to be learnable.

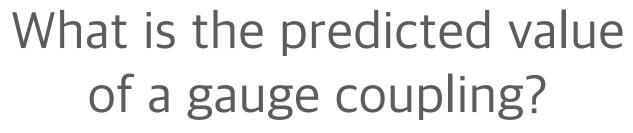
$$\min_{\ell} m < \frac{c_2}{\epsilon^2} \log \frac{1}{\delta}$$

### • EXAMPLE OF LEARNING PROBLEMS

Can an EFT support inflation for some choice of parameters?

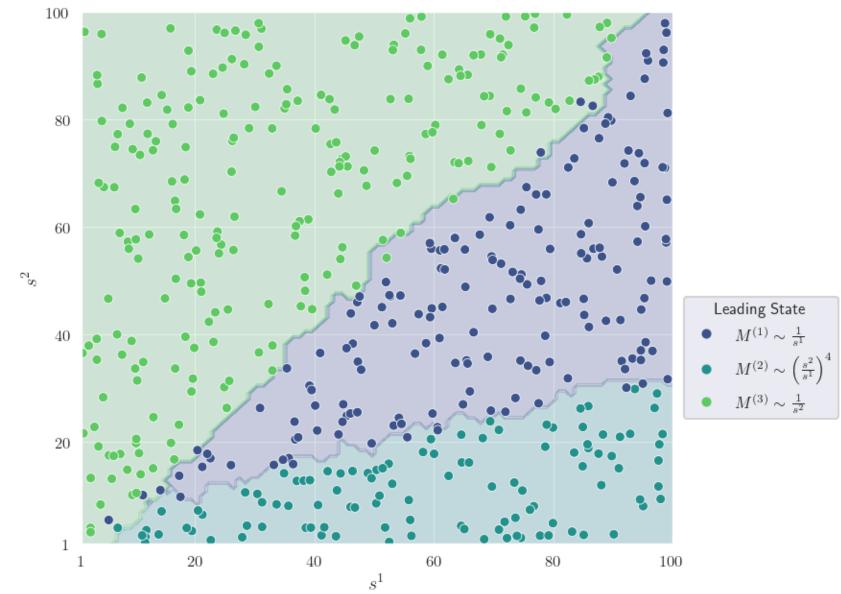








### Which kinds of states first break down an EFT?







## CONCLUSIONS AND OUTLOOK

- We have seen that **binary classification problems** formulated within Quantum Gravity effective field theories are **learnable**;
  - > Similarly, more general regression or interpolation problems can be shown to be **learnable**.

It would be interesting to further investigate: > relations with **decidability** and the **halting problem**.

 $\Rightarrow$  The usage of neural network to machine-learn critical properties of Quantum Gravity is justified by the geometrical structures of Quantum Gravity.

- > the learnability via unsupervised techniques and the Swampland Conjectures;



Thank you!