

New Non-supersymmetric Tachyon-Free Strings

Houri Christina Tarazi

Kadanoff Center and KICP University of Chicago

Based on: 2406.00185 and 2406.00129 with Kaan Baykara

25 June 2024

Cumrun Vafa

String Pheno 2024

Geometric string constructions do lots of the heavy lifting!

CY3

wampland

Landscape

String Pheno

Non-geometric

String Landscape

Connections?

Quasicrystalline orbifolds

Today

[88' Harvey, Moore, Vafa]

Non-geometric

Perturbative Narain compactifications

$\Pi^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$

[86' Narain]

Perturbative Narain compactifications

 $\operatorname{Sym}(\Gamma^{d+x;d}) := \operatorname{Aut}(\Gamma^{d+x;d}) \cap \left(O(d+x,\mathbb{R}) \times O(d,\mathbb{R})\right).$ Symmetries:

 $\mathbf{H}^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$ [86' Narain]

Automorphism $\theta \in Aut(\Gamma^{d+x;d})$ integral matrix such that $S\theta S^{-1} \in O(d + x, d, \mathbb{Z})$

Perturbative Narain compactifications

- Symmetries:

 $\theta_R = \theta_L$ Symmetric Action

 $\Pi^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$ [86' Narain]

 $\operatorname{Sym}(\Gamma^{d+x;d}) := \operatorname{Aut}(\Gamma^{d+x;d}) \cap \left(\operatorname{O}(d+x,\mathbb{R}) \times \operatorname{O}(d,\mathbb{R}) \right).$

Automorphism $\theta \in Aut(\Gamma^{d+x;d})$ integral matrix such that $S\theta S^{-1} \in O(d+x,d,\mathbb{Z})$

 $\theta = (\theta_I; \theta_R)$

 $\theta_R \neq \theta_L$ Asymmetric Action

Perturbative Narain compactifications:

 $\operatorname{Sym}(\Gamma^{d+x;d}) := \operatorname{Aut}(\Gamma^{d+x;d}) \cap \left(\operatorname{O}(d+x,\mathbb{R}) \times \operatorname{O}(d,\mathbb{R}) \right).$ Symmetries:

 $\theta_R = \theta_I$ Symmetric Action

Crystallographic Symmetry

 θ_R, θ_I automorphisms

[87' Narain, Sarmadi, Vafa]

 $\Pi^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$ [86' Narain]

Automorphism $\theta \in Aut(\Gamma^{d+x;d})$ integral matrix such that $S\theta S^{-1} \in O(d+x,d,\mathbb{Z})$

 $\theta = (\theta_I; \theta_R)$

 $\theta_R \neq \theta_L$

Asymmetric Action

Quasicrystalograhic Symmetry

 θ_R, θ_I not separately automorphisms

[88' Harvey, Moore, Vafa]

Perturbative Narain compactifications:

 $\operatorname{Sym}(\Gamma^{d+x;d}) := \operatorname{Aut}(\Gamma^{d+x;d}) \cap \left(O(d+x,\mathbb{R}) \times O(d,\mathbb{R})\right).$ Symmetries:

 $\theta_R = \theta_L$ $\theta = (\theta_I; \theta_R)$ **Symmetric** Action

Crystallographic Symmetry

 θ_R, θ_I automorphisms

[87' Narain, Sarmadi, Vafa]

 $\Pi^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$ [86' Narain]

Automorphism $\theta \in Aut(\Gamma^{d+x;d})$ integral matrix such that $S\theta S^{-1} \in O(d+x,d,\mathbb{Z})$

 $\theta_R \neq \theta_L$

Asymmetric Action

Quasicrystalograhic Symmetry

 θ_R, θ_I not separately automorphisms

[88' Harvey, Moore, Vafa]

For \mathbb{Z}_{12} we have $G_{ij} = \alpha' \begin{pmatrix} \sqrt{3} \\ 2 \\ 0 \end{pmatrix}$.

• The location of the symmetry in the target torus $T^d = \mathbb{R}^d / 2\pi \Lambda_d$ is at special locations with G_{ij}, B_{ij} fixed

$$\begin{array}{c} 0\\ \frac{\sqrt{3}}{2} \end{array}, B_{ij} = \alpha' \begin{pmatrix} 0 & \frac{1}{2}\\ -\frac{1}{2} & 0 \end{pmatrix}.$$

So this models are rigid where all internal radii are fixed

Quasicrystalline Symmetry

 $(p_L^1, p_L^2; p_R^1, p_R^2) \in \Gamma_{12}^{2;2}$

Center of ellipsis: (p_L^1, p_L^2)

Orientation and length: (p_R^1, p_R^2)

No translation symmetry

Quasicrystalline Orbifolds

- Choose the starting point: IIA, IIB, Heterotic
- Choose your symmetry: $\theta = (\exp(2\pi i\phi_I), \exp(2\pi i\phi_R))$
- Find your even self-dual lattice: $\Gamma^{D,D}(\mathfrak{g})/\Gamma^{D+16,D}(\mathfrak{g})$

- Twist by θ :
- (v_L, v_R) • Choose the shift:
- Ensure level matching: $N(E_L E_R) \in \mathbb{Z}$
- Compute spectrum

 $[g_L, g_R] = [\exp(2\pi i \phi_L), \exp(2\pi i \phi_R)] \qquad \qquad |p_L, p_R \rangle \rightarrow e^{2\pi i (p_L \cdot v_L - p_R \cdot v_R)} |g_L \cdot p_L, g_R \cdot p_R \rangle$

Let's start with 16 supercharges

Supersymmetric Landscape

Possible ranks in 16 Qs

[01' Boer et al] [20' Montero, Vafa] [19' Kim, HCT, Vafa]

Which geometric conditions are Swampland conditions? Kodaira condition

[23' Baykara, Hamada, HCT, Vafa]

Theta angle

[22' Montero, Parra de Freitas]

Where can non-geometric constructions help us?

String islands **Check Hector's talk on Thursday** [98' Dabholkar, Harvey]

[22' Fraiman, Parra de Freitas]

Realize all K3 orbifold points [12' Gaberdiel, Volpato]

Large discrete gauge symmetries?

Supersymmetric Landscape

Possible ranks in 16 Qs

[01' Boer et al] [20' Montero, Vafa] [19' Kim, HCT, Vafa]

Which geometric conditions are Swampland conditions? Kodaira condition

[23' Baykara, Hamada, HCT, Vafa]

Theta angle

[22' Montero, Parra de Freitas]

Where can non-geometric constructions help us?

String islands **Check Hector's talk on Thursday** [98' Dabholkar, Harvey]

[22' Fraiman, Parra de Freitas]

Realize all K3 orbifold points

[12' Gaberdiel, Volpato]

Large discrete gauge symmetries?

K3 sigma model moduli space:

 $\mathcal{M}_{K3} = O(\Gamma^{4,20}) \setminus O(4,20) / O(4) \times O(20)$

RR charges NSNS B,G fields

Classify susy preserving automorphisms

[II' Gaberdiel, Volpato]

e.g. orbifold quantum symmetries [89' Vafa]

$\rm Co_0$ -class	<u>1A</u>	<u>2B</u>	$2\mathrm{C}$	<u>3B</u>	3C	4B	<u>4E</u>	$4\mathrm{F}$	$\underline{5B}$	$5\mathrm{C}$	6G	6H	6I	<u>6K</u>	6L	6M	<u>7B</u>
dim fix	24	16	8	12	6	8	10	6	8	4	6	6	6	8	4	4	6
$\operatorname{Tr}_{24}(g)$	24	8	-8	6	-3	8	4	-4	4	-1	-4	4	5	2	-2	-1	3
$ ilde{\phi}(au,0)$	24	24	0	24	0	24	24	0	24	0	0	24	24	24	0	0	24
$\rm Co_0$ -clas	$ \mathbf{s} 8$	D <u>8</u>	<u>G</u> 8	H 9	C 1	$0\mathrm{F}$	10G	10H	11A	<u>1</u> 12	2I 12	2L	12N	120	<u>140</u>	\underline{C} <u>15</u>	D
dim fix		4	6 4	1 4	1	4	4	4	4	4	L 4	4	4	4	4	4	
$\operatorname{Tr}_{24}(g)$		4 2	2 –	$\cdot 2$ \vdots	3 -	-2	2	3	2	2	2	1	-2	2	1	1	
$ ilde{\phi}(au,0)$	2	24 2	24 () 2	4	0	24	24	24	2^{4}	4 2	24	0	24	24	2^{2}	4

K3 sigma model is expected to have the following symmetries:

[12' Gaberdiel, Volpato]

Co_0 -class	<u>1A</u>	<u>2B</u>	20	<u>3</u>	33	<mark>C</mark> 4	В	<u>4E</u>	$4\mathrm{F}$	<u>5B</u>	$5\mathrm{C}$	6G	6H	6I	<u>6K</u>	6L	6M	<u>7B</u>
dim fix	24	16	8	12	2 (6	8	10	6	8	4	6	6	6	8	4	4	6
$\operatorname{Tr}_{24}(g)$	24	8	-8	8 6		-3	8	4	-4	4	-1	-4	4	5	2	-2	-1	3
$ ilde{\phi}(au,0)$	24	24	0	24	1	0 2	24	24	0	24	0	0	24	24	24	0	0	24
$\rm Co_0$ -clas	$\mathbf{s} \mid 8$	D <u>8</u>	G	$8\mathrm{H}$	9C	10F	1	$0\mathrm{G}$	10H	<u>11</u>	<u>A</u> 12	I I I I	2L	12N	120	<u>14C</u>	$\frac{15}{2}$	D
dim fix	4	ł (3	4	4	4		4	4	4	4	. 4	Ł	4	4	4	4	Ļ
$\operatorname{Tr}_{24}(g)$	4	1 2	2	-2	3	-2		2	3	2	2]		-2	2	1	1	
$ ilde{\phi}(au,0)$	2	4 2	4	0	24	0		24	24	24	- 24	1 2	4	0	24	24	2^2	4

K3 sigma model is expected to have the following symmetries:

Toroidal Orbifold

[12' Gaberdiel, Volpato]

Co_0 -class	<u>1A</u>	<u>2</u> B	2	C	<u>3B</u>	3C	4B	<u>4</u> E	$4\mathrm{F}$	<u>5B</u>	$5\mathrm{C}$	6G	6H	6I	<u>6K</u>	6L	6 M	<u>7B</u>
dim fix	24	16		8	12	6	8	10	6	8	4	6	6	6	8	4	4	6
$\operatorname{Tr}_{24}(g)$	24	8	-	-8	6	-3	8	4	-4	4	-1	-4	4	5	2	-2	-1	3
$ ilde{\phi}(au,0)$	24	24	:	0 2	24	0	24	24	0	24	0	0	24	24	24	0	0	24
$\rm Co_0$ -clas	$\mathbf{s} \mid 8$	D	<u>8G</u>	8H	90	2 10)F	10G	10H	11I	<u>A</u> 12	I 12	$^{2}\mathrm{L}$	12N	120	<u>14C</u>	<u> </u>	<u>)</u>
dim fix		4	6	4	4	2	1	4	4	4	4	. 4	Ł	4	4	4	4	
$\operatorname{Tr}_{24}(g)$		4	2	-2	3	_	-2	2	3	2	2	1	-	-2	2	1	1	
$ ilde{\phi}(au,0)$		24	24	0	24	. ()	24	24	24	- 24	4 2	4	0	24	24	24	

K3 sigma model is expected to have the following symmetries:

Toroidal Orbifold

[12' Gaberdiel, Volpato]

	Q = 16 Quasicrystalline Orbifolds							
Dimension	Lattice	Twist	IIA	IIB				
6	$\Gamma_{5}^{2,2}\Gamma_{5}^{2,2}[11]$ $\Gamma_{8}^{2,2}\Gamma_{8}^{2,2}[11]$ $\Gamma_{10}^{2,2}\Gamma_{10}^{2,2}[11]$ $2\Gamma_{12}^{2,2}$	$\mathbb{Z}_5 : (1,1;2,2)/5$ $\mathbb{Z}_8 : (1,1;3,3)/8$ $\mathbb{Z}_{10} : (1,1;3,3)/10$ $\mathbb{Z}_{12} : (1,1;5,5)/12$	$\mathcal{N}=(1,1)$ G+20V	$\mathcal{N} = (2,0)$ G + 21T				

	Q = 16 Quasicrystalline Orbifolds							
Dimension	Lattice	Twist	IIA	IIB				
6	$\Gamma_{5}^{2,2}\Gamma_{5}^{2,2}[11]$ $\Gamma_{8}^{2,2}\Gamma_{8}^{2,2}[11]$ $\Gamma_{10}^{2,2}\Gamma_{10}^{2,2}[11]$ $2\Gamma_{12}^{2,2}$	$\mathbb{Z}_5 : (1,1;2,2)/5$ $\mathbb{Z}_8 : (1,1;3,3)/8$ $\mathbb{Z}_{10} : (1,1;3,3)/10$ $\mathbb{Z}_{12} : (1,1;5,5)/12$	$\mathcal{N} = (1,1)$ G + 20V	$\mathcal{N} = (2,0)$ G + 21T				

Quasicrystalline orbifold	${\cal Q} \ { m charges}$	Co_0 class	$\Gamma^{4;20}$	Symmetries
\mathbb{Z}_5	$(1^5, 2^5)/5$	5C	HM122	$5^{1+2}: \mathbb{Z}_4$
\mathbb{Z}_8	$(1^2, 2^3, 3^2, 4^3)/8$	8H	HM143	$\mathbb{Z}_8.\mathbb{Z}_2^3$
\mathbb{Z}_{10}	$(1, 2^3, 3^1, 4^3, 5^2)/10$	10F	HM159	D_{20}
\mathbb{Z}_{12}	$(1, 2, 3^2, 4^3, 5, 6^2)/12$	12N	HM157	D_{24}

[89' Vafa]

K3 Moduli space [89' Eguchi, Ooguri,, Taormina, Yang]

[21' Baykara, Harvey] [15' Hoehn, Mason]

	Q = 16 Quasicrystalline Orbifolds								
Dimension	Lattice	Twist	IIA	IIB					
6	$\Gamma_{5}^{2,2}\Gamma_{5}^{2,2}[11]$ $\Gamma_{8}^{2,2}\Gamma_{8}^{2,2}[11]$ $\Gamma_{10}^{2,2}\Gamma_{10}^{2,2}[11]$ $2\Gamma_{12}^{2,2}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\mathcal{N} = (1, 1)$ G + 20V	$\mathcal{N} = (2,0)$ G + 21T					

There are also points in the K3 moduli space that are not quasicrystalline orbifold points, but are dual to heterotic quasicrystalline

K3 Moduli space [89' Eguchi, Ooguri,, Taormina, Yang]

	Q = 16 Quasicrystalline Orbifolds							
Dimension	Lattice	Twist	IIA	IIB				
6	$\Gamma_{5}^{2,2}\Gamma_{5}^{2,2}[11]$ $\Gamma_{8}^{2,2}\Gamma_{8}^{2,2}[11]$ $\Gamma_{10}^{2,2}\Gamma_{10}^{2,2}[11]$ $2\Gamma_{10}^{2,2}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mathcal{N}=(1,1)$ G+20V	$\mathcal{N} = (2,0)$ G + 21T				

There are also points in the K3 moduli space that are not quasicrystalline orbifold points, but are dual to heterotic quasicrystalline

K3 Moduli space [89' Eguchi, Ooguri,, Taormina, Yang]

[89' Vafa]

- They are obtained by the orbifold of the LG model
 - $W = z_1^3 + z_2^7 + z_3^{42}$
 - Corresponds to a \mathbb{Z}_{42} quasicrystal with $2\Gamma_{42}^{2;10}$

	Q = 16 Quasicrystalline Orbifolds							
Dimension	Lattice	Twist	IIA	IIB				
6	$\Gamma_{5}^{2,2}\Gamma_{5}^{2,2}[11]$ $\Gamma_{8}^{2,2}\Gamma_{8}^{2,2}[11]$ $\Gamma_{10}^{2,2}\Gamma_{10}^{2,2}[11]$ $2\Gamma_{12}^{2,2}$	\mathbb{Z}_5 : $(1,1;2,2)/5$ \mathbb{Z}_8 : $(1,1;3,3)/8$ \mathbb{Z}_{10} : $(1,1;3,3)/10$ \mathbb{Z}_{12} : $(1,1;5,5)/12$	$\mathcal{N} = (1,1)$ G + 20V	$\mathcal{N} = (2,0)$ G + 21T				
5	$\begin{split} &\Gamma_5^{2,2}\Gamma_5^{2,2}[11] + \Gamma^{1,1} \\ &\Gamma_8^{2,2}\Gamma_8^{2,2}[11] + \Gamma^{1,1} \\ &\Gamma_{10}^{2,2}\Gamma_{10}^{2,2}[11] + \Gamma^{1,1} \\ &\Gamma_{10}^{2,2} + \Gamma^{1,1} \\ &2\Gamma_{12}^{2,2} + \Gamma^{1,1} \end{split}$	$\mathbb{Z}_5 : (1,1;2,2)/5$ $\mathbb{Z}_8 : (1,1;3,3)/8$ $\mathbb{Z}_{10} : (1,1;3,3)/10$ $\mathbb{Z}_{12} : (1,1;5,5)/12$	\mathcal{N} = G +	= 2 - 1V				

Free action

K3 Moduli space

String Islands?

[98' Dabholkar, Harvey] [22' Fraiman, Parra de Freitas]

2407.XXX [Baykara, Parra de Freitas, HCT]

Check Hector's talk on Thursday

Let's go to

0 supercharges

Non-Supersymmetric Landscape

Where can non-geometric constructions help us?

Landscape of tachyon free theories

Minimize number of moduli?

IOd Example

•Heterotic $O(16) \times O(16)$ string

positive leading cosmological constant, chiral matter, no tachyons and one neutral scalar

[Dixon, Harvey; Alvarez-Gaume, Ginsparg, Moore, Vafa]

How about in d < 10?

•Heterotic $O(16) \times O(16)$ string on $S^1 \rightarrow 8$ special points with no tachyons and $\Lambda > 0$

[23' Fraiman, Grana, Parra de Freitas, Sethi]

How about in d = 4?

Massless Spectrum

	$SO(10) \times SU(5) \times SU(3) \times SU(2) \times U(1)^4$ reps					
Sector	Complex scalars	Left handed Weyl fermions				
	$({f 1},{f 1},{f 1},{f 1},{f 1})_{0,0,0,0}$	$9(1,1,1,1)_{0,0,0,0}$				
	$3(16,1,1,1,1)_{0,0,0,-15}$	$({f 16},{f 1},{f 1},{f 1})_{0,0,0,-15}$				
	$3(10,1,\mathbf{ar{3}},1)_{0,0,0,10}$	$({f 10},{f 1},{f ar 3},{f 1})_{0,0,0,10}$				
	$3(1,5,1,1)_{-2,-10,-2,0}$	$(1, 5, 1, 1)_{-2, -10, -2, 0}$				
Untwisted	$3(1,\overline{10},1,2)_{-1,5,-1,0}$	$({f 1}, \overline{{f 10}}, {f 1}, {f 2})_{-1,5,-1,0}$				
Cittwisted	$3(1,1,1,2)_{5,-5,5,0}$	$({f 1},{f 1},{f 1},{f 2})_{5,-5,5,0}$				
		$3(16,1,3,1)_{0,0,0,5}$				
		$3(1,10,1,1)_{-4,0,-4,0}$				
		$3(1,1,\mathbf{ar{3}},1)_{0,0,0,-20}$				
		$3(1, 5, 1, 2)_{3, 5, 3, 0}$				
		$3(1, \mathbf{ar{5}}, 1, 1)_{2,-10,2,0}$				
		$15(1,1,1,2)_{-1,-3,-1,12}$				
		$15(1,1,1,1,1)_{-2,7,1,12}$				
		$15(1,1,1,1,1)_{0,7,-3,12}$				
		$5(1,1,1,2)_{1,-3,-5,12}$				
$\hat{g}+\hat{g}^4$		$5(1,1,1,2)_{-3,-3,3,12}$				
		$5(1,5,1,1)_{2,2,2,12}$				
		$5({f 1},{f ar 5},{f 1},{f 1})_{2,-3,-1,12}$				
		$5(1, \mathbf{ar{5}}, 1, 1)_{0, -3, 3, 12}$				
		$5(1,1,\mathbf{ar{3}},2)_{-1,-3,-1,-8}$				
		$5({f 1},{f 1},ar{f 3},{f 1})_{0,7,-3,-8}$				
		$5({f 1},{f 1},{f ar 3},{f 1})_{-2,7,1,-8}$				
	$15(1,1,\mathbf{ar{3}},1)_{4,-1,1,4}$	$5(1,1,\mathbf{ar{3}},1)_{4,-1,1,4}$				
$\hat{g}^2 + \hat{g}^3$	$15(1,1,\mathbf{ar{3}},1)_{2,-1,5,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{2,-1,5,4}$				
	$15(1,1,\mathbf{ar{3}},1)_{-2,-6,-2,4}$	$5(1,1,\mathbf{ar{3}},1)_{-2,-6,-2,4}$				

- Narain Lattice: $\Gamma(E_8) \bigoplus L\Gamma_5^{2,2} \bigoplus \Gamma_5^{2,2}\Gamma_5^{2,2}$
- Twist by: $\phi = (4,4,4,0^8;2,2,2)/5$
- Shift by: v = (2,0,3,0,1,4,0,0,4,3,0,3,3,3,4,0)/5

No tachyon at tree level

Massless Spectrum

	$SO(10) \times SU(5) \times SU(3) \times SU(2) \times U(1)^4$ reps					
Sector	Complex scalars	Left handed Weyl fermions				
	$(1,1,1,1,1)_{0,0,0,0}$	$9(1,1,1,1)_{0,0,0,0}$				
	$3(16,1,1,1,1)_{0,0,0,-15}$	$({f 16},{f 1},{f 1},{f 1})_{0,0,0,-15}$				
	$3(10,1,\mathbf{ar{3}},1)_{0,0,0,10}$	$({f 10},{f 1},{f ar 3},{f 1})_{0,0,0,10}$				
	$3(1,5,1,1)_{-2,-10,-2,0}$	$({f 1},{f 5},{f 1},{f 1})_{-2,-10,-2,0}$				
Untwisted	$3(1,\overline{10},1,2)_{-1,5,-1,0}$	$(1,\overline{10},1,2)_{-1,5,-1,0}$				
Untwisted	$3(1,1,1,2)_{5,-5,5,0}$	$({f 1},{f 1},{f 1},{f 2})_{5,-5,5,0}$				
		$3(16,1,3,1)_{0,0,0,5}$				
		$3(1,10,1,1)_{-4,0,-4,0}$				
		$3({f 1},{f 1},{f ar 3},{f 1})_{0,0,0,-20}$				
		$3(1, 5, 1, 2)_{3, 5, 3, 0}$				
		$3(1, \mathbf{ar{5}}, 1, 1)_{2,-10,2,0}$				
		$15(1,1,1,2)_{-1,-3,-1,12}$				
		$15(1,1,1,1,1)_{-2,7,1,12}$				
		$15(1,1,1,1,1)_{0,7,-3,12}$				
		$5(1,1,1,2)_{1,-3,-5,12}$				
$\hat{g}+\hat{g}^4$		$5(1,1,1,2)_{-3,-3,3,12}$				
		$5(1,5,1,1)_{2,2,2,12}$				
		$5({f 1},{f ar 5},{f 1},{f 1})_{2,-3,-1,12}$				
		$5({f 1},{f ar 5},{f 1},{f 1})_{0,-3,3,12}$				
		$5({f 1},{f 1},{f ar 3},{f 2})_{-1,-3,-1,-8}$				
		$5({f 1},{f 1},{f ar 3},{f 1})_{0,7,-3,-8}$				
		$5({f 1},{f 1},{f ar 3},{f 1})_{-2,7,1,-8}$				
	$15(1,1,\mathbf{ar{3}},1)_{4,-1,1,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{4,-1,1,4}$				
$\hat{g}^2 + \hat{g}^3$	$15(1,1,\mathbf{ar{3}},1)_{2,-1,5,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{2,-1,5,4}$				
	$15(1,1,\mathbf{ar{3}},1)_{-2,-6,-2,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{-2,-6,-2,4}$				

Massless Spectrum

	$SO(10) \times SU(5) \times SU(3) \times SU(2) \times U(1)^4$ reps					
Sector	Complex scalars	Left handed Weyl fermions				
	$(1,1,1,1,1)_{0,0,0,0}$	$9(1,1,1,1)_{0,0,0,0}$				
	$3(16,1,1,1,1)_{0,0,0,-15}$	$({f 16},{f 1},{f 1},{f 1})_{0,0,0,-15}$				
	$3(10,1,\mathbf{ar{3}},1)_{0,0,0,10}$	$({f 10},{f 1},{f ar 3},{f 1})_{0,0,0,10}$				
	$3(1,5,1,1)_{-2,-10,-2,0}$	$({f 1},{f 5},{f 1},{f 1})_{-2,-10,-2,0}$				
Untwisted	$3(1,\overline{10},1,2)_{-1,5,-1,0}$	$(1,\overline{10},1,2)_{-1,5,-1,0}$				
Ontwisted	$3(1,1,1,2)_{5,-5,5,0}$	$({f 1},{f 1},{f 1},{f 2})_{5,-5,5,0}$				
		$3(16,1,3,1)_{0,0,0,5}$				
		$3(1,10,1,1)_{-4,0,-4,0}$				
		$3({f 1},{f 1},{f ar 3},{f 1})_{0,0,0,-20}$				
		$3(1, 5, 1, 2)_{3, 5, 3, 0}$				
		$3(1, \mathbf{ar{5}}, 1, 1)_{2,-10,2,0}$				
		$15(1,1,1,2)_{-1,-3,-1,12}$				
		$15(1,1,1,1,1)_{-2,7,1,12}$				
		$15(1,1,1,1,1)_{0,7,-3,12}$				
		$5(1,1,1,2)_{1,-3,-5,12}$				
$\hat{g}+\hat{g}^4$		$5(1,1,1,2)_{-3,-3,3,12}$				
		$5(1,5,1,1)_{2,2,2,12}$				
		$5({f 1},{f ar 5},{f 1},{f 1})_{2,-3,-1,12}$				
		$5({f 1},{f ar 5},{f 1},{f 1})_{0,-3,3,12}$				
		$5({f 1},{f 1},{f ar 3},{f 2})_{-1,-3,-1,-8}$				
		$5({f 1},{f 1},{f ar 3},{f 1})_{0,7,-3,-8}$				
		$5({f 1},{f 1},{f ar 3},{f 1})_{-2,7,1,-8}$				
	$15(1,1,\mathbf{ar{3}},1)_{4,-1,1,4}$	$5(1,1,\mathbf{ar{3}},1)_{4,-1,1,4}$				
$\hat{g}^2 + \hat{g}^3$	$15(1,1,\mathbf{ar{3}},1)_{2,-1,5,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{2,-1,5,4}$				
	$15(1,1,\mathbf{ar{3}},1)_{-2,-6,-2,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{-2,-6,-2,4}$				

 $B \wedge F_4$

Massless Spectrum

	$SO(10) \times SU(5) \times SU(3) \times SU(2) \times U(1)^4$ reps	
Sector	Complex scalars Left handed Weyl fermio	
	$(1,1,1,1,1)_{0,0,0,0}$	$9(1,1,1,1)_{0,0,0,0}$
	$3(16,1,1,1,1)_{0,0,0,-15}$	$({f 16},{f 1},{f 1},{f 1})_{0,0,0,-15}$
	$3(10,1,\mathbf{ar{3}},1)_{0,0,0,10}$	$({f 10},{f 1},{f ar 3},{f 1})_{0,0,0,10}$
	$3(1,5,1,1)_{-2,-10,-2,0}$	$({f 1},{f 5},{f 1},{f 1})_{-2,-10,-2,0}$
Untwisted	$3(1,\overline{10},1,2)_{-1,5,-1,0}$	$(1,\overline{10},1,2)_{-1,5,-1,0}$
Ontwisted	$3(1,1,1,2)_{5,-5,5,0}$	$({f 1},{f 1},{f 1},{f 2})_{5,-5,5,0}$
		$3(16,1,3,1)_{0,0,0,5}$
		$3(1,10,1,1)_{-4,0,-4,0}$
		$3({f 1},{f 1},{f ar 3},{f 1})_{0,0,0,-20}$
		$3(1, 5, 1, 2)_{3, 5, 3, 0}$
		$3(1, \mathbf{ar{5}}, 1, 1)_{2,-10,2,0}$
		$15(1,1,1,2)_{-1,-3,-1,12}$
		$15(1,1,1,1,1)_{-2,7,1,12}$
		$15(1,1,1,1,1)_{0,7,-3,12}$
		$5(1,1,1,2)_{1,-3,-5,12}$
$\hat{g}+\hat{g}^4$		$5(1,1,1,2)_{-3,-3,3,12}$
		$5(1,5,1,1)_{2,2,2,12}$
		$5({f 1},{f ar 5},{f 1},{f 1})_{2,-3,-1,12}$
		$5({f 1},{f ar 5},{f 1},{f 1})_{0,-3,3,12}$
		$5({f 1},{f 1},{f ar 3},{f 2})_{-1,-3,-1,-8}$
		$5({f 1},{f 1},{f ar 3},{f 1})_{0,7,-3,-8}$
		$5({f 1},{f 1},{f ar 3},{f 1})_{-2,7,1,-8}$
	$15(1,1,\mathbf{ar{3}},1)_{4,-1,1,4}$	$5(1,1,\mathbf{ar{3}},1)_{4,-1,1,4}$
$\hat{g}^2 + \hat{g}^3$	$15(1,1,\mathbf{ar{3}},1)_{2,-1,5,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{2,-1,5,4}$
	$15(1,1,\mathbf{ar{3}},1)_{-2,-6,-2,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{-2,-6,-2,4}$

Massless Spectrum

	$SO(10) \times SU(5) \times SU(3) \times SU(2) \times U(1)^4$ reps	
Sector	Complex scalars Left handed Weyl fermior	
	$({f 1},{f 1},{f 1},{f 1},{f 1})_{0,0,0,0}$	$9(1,1,1,1,1)_{0,0,0,0}$
	$3(16,1,1,1,1)_{0,0,0,-15}$	$({f 16},{f 1},{f 1},{f 1},{f 1})_{0,0,0,-15}$
	$3(10,1,\mathbf{ar{3}},1)_{0,0,0,10}$	$({f 10},{f 1},{f ar 3},{f 1})_{0,0,0,10}$
	$3(1,5,1,1)_{-2,-10,-2,0}$	$({f 1},{f 5},{f 1},{f 1})_{-2,-10,-2,0}$
Untwisted	$3(1,\overline{10},1,2)_{-1,5,-1,0}$	$(1,\overline{10},1,2)_{-1,5,-1,0}$
Chiwisted	$3(1,1,1,2)_{5,-5,5,0}$	$({f 1},{f 1},{f 1},{f 2})_{5,-5,5,0}$
		$3(16,1,3,1)_{0,0,0,5}$
		$3(1,10,1,1)_{-4,0,-4,0}$
		$3({f 1},{f 1},{f ar 3},{f 1})_{0,0,0,-20}$
		$3(1, 5, 1, 2)_{3,5,3,0}$
		$3(1, \mathbf{ar{5}}, 1, 1)_{2,-10,2,0}$
		$15(1,1,1,2)_{-1,-3,-1,12}$
		$15(1,1,1,1,1)_{-2,7,1,12}$
		$15(1,1,1,1,1)_{0,7,-3,12}$
		$5(1,1,1,2)_{1,-3,-5,12}$
$\hat{g}+\hat{g}^4$		$5(1,1,1,2)_{-3,-3,3,12}$
		$5(1,5,1,1)_{2,2,2,12}$
		$5({f 1},{f ar 5},{f 1},{f 1})_{2,-3,-1,12}$
		$5({f 1},{f ar 5},{f 1},{f 1})_{0,-3,3,12}$
		$5({f 1},{f 1},{f ar 3},{f 2})_{-1,-3,-1,-8}$
		$5({f 1},{f 1},{f ar 3},{f 1})_{0,7,-3,-8}$
		$5({f 1},{f 1},{f ar 3},{f 1})_{-2,7,1,-8}$
	$15(1,1,\mathbf{ar{3}},1)_{4,-1,1,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{4,-1,1,4}$
$\hat{g}^2 + \hat{g}^3$	$15(1,1,\mathbf{ar{3}},1)_{2,-1,5,4}$	$5(1,1,\mathbf{ar{3}},1)_{2,-1,5,4}$
	$15(1,1,\mathbf{ar{3}},1)_{-2,-6,-2,4}$	$5({f 1},{f 1},{f ar 3},{f 1})_{-2,-6,-2,4}$

4d Non-Susy \mathbb{Z}_5 Quasicrystalline orbifold

- No Tachyons at tree level
- Chiral Matter
- Positive CC
- One neutral scalar

 $V_{1-loop}(\hat{\phi}) \approx e^{-2\sqrt{2}\hat{\phi}} (3.13 \times 10^{-2}) M_s^4$

How about in other dimensions?

6d Non-Susy \mathbb{Z}_5 asymmetric orbifold

	Sector	$SU(5) \times SU(5) \times SU(5) \times SU(5) \times U(1)^4$ reps		
		$^{R}(10,5,1,1)_{0,0,0,0}$		
		$^{R}(\overline{f 5}, {f 10}, {f 1}, {f 1})_{0,0,0,0}$		Chart
		$^{L}(1,1,10,5)_{0,0,0,0}$	•	Starti
		$^{L}(1,1,5,\overline{10})_{0,0,0,0}$		
		$^{R}(1,1,1,1)_{-1,3,2,6}$		
	Untwisted	$^{R}(1,1,1,1)_{0,8,-3,1}$	•	Narai
	Chitwisted	$^{R}(1,1,1,1)_{1,-7,-3,1}$		
		$^{R}(1,1,1,1)_{-2,-2,2,4}$		
		$^{R}(1,1,1,1)_{2,-2,2,-4}$		Traint
		$^{L}(1,1,1,1)_{1,1,4,2}$	•	IVVISL
		$^{L}(1,1,1,1)_{0,-4,-1,7}$		
		$^{L}(1,1,1,1)_{2,6,-1,-3}$		
		$^{L}(1,1,1,1)_{-1,-9,-1,-3}$	•	Shift b
		$^{L}(1,1,1,1)_{-2,6,-1,-3}$		
		$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{0, -4, 0, -2}$		
	• • • • 1	$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{0,0,2,0}$		
	$\hat{g} + \hat{g}^*$	$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{1,1,-1,-1}$		
		$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{-1,3,0,0}$		
		$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{0,0,-1,3}$		
		$^{L}(1,5,5,1)_{1,1,1,-1}$		
$\hat{g}^2 + \hat{g}^3$	A2 A3	$^{L}(1,5,5,1)_{0,-4,-1,1}$		
	$\hat{g}^2 + \hat{g}^3$	$^{L}(1,5,5,1)_{-1,-1,0,-2}$		
		$^{L}(1,5,5,1)_{0,0,1,3}$		
		$^{L}(1,5,5,1)_{0,4,-1,-1}$		

fermions+bosons

- ng point: Heterotic string
- in Lattice: $\Gamma(E_8 \times E_8) \oplus \Gamma^{4;4}(A_4)$
- by: $\phi = (0^{10}; 2, 4)/5$
- by: v = (3,3,1,4,4,1,2,2,4,4,1,1,2,4,2,3,3,3,2,3)/5.
- Chiral Matter

Sector	$\mathrm{SU}(5) \times \mathrm{SU}(5) \times \mathrm{SU}(5) \times \mathrm{SU}(5) \times \mathrm{U}(1)^4 \text{ reps}$		
$^{R}(10,5,1,1)_{0,0,0,0}$			
	$^{R}(\overline{f 5}, {f 10}, {f 1}, {f 1})_{0,0,0,0}$		
	$^{L}(1,1,10,5)_{0,0,0,0}$		
	$^{L}(1,1,5,\overline{10})_{0,0,0,0}$		
	$^{R}(1,1,1,1)_{-1,3,2,6}$		
Untwisted	$^{R}(1,1,1,1)_{0,8,-3,1}$		
	$^{R}(1,1,1,1)_{1,-7,-3,1}$		
	$^{R}(1,1,1,1)_{-2,-2,2,4}$		
	$^{R}(1,1,1,1)_{2,-2,2,-4}$		
	$^{L}(1,1,1,1)_{1,1,4,2}$		
	$^{L}(1,1,1,1)_{0,-4,-1,7}$		
	$^{L}(1,1,1,1)_{2,6,-1,-3}$		
	$^{L}(1,1,1,1)_{-1,-9,-1,-3}$		
	$^{L}(1,1,1,1)_{-2,6,-1,-3}$		
	$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{0, -4, 0, -2}$		
<u>a</u> <u>a</u> <u>a</u> <u>4</u>	$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{0,0,2,0}$		
$g+g^{-}$	$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{1,1,-1,-1}$		
	$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{-1,3,0,0}$		
	$^{R}(\overline{f 5}, {f 1}, {f 1}, {f 5})_{0,0,-1,3}$		
	$^{L}(1,5,5,1)_{1,1,1,-1}$		
$\hat{g}^2 + \hat{g}^3$	$^{L}(1,5,5,1)_{0,-4,-1,1}$		
	$^{L}(1,5,5,1)_{-1,-1,0,-2}$		
	$^{L}(1,5,5,1)_{0,0,1,3}$		
	$^{L}(1,5,5,1)_{0,4,-1,-1}$		

- No Tachyons at tree level
- One neutral scalar •
- Chiral Matter •
- Positive CC

• $V(\hat{\phi})|_{-|oop|} \approx e^{-3\hat{\phi}} (2.89 \times 10^{-3}) M_s^6$.

8d Non-Susy \mathbb{Z}_3 asymmetric orbifold

Sector	$SU(9) \times SU(9) \times U(1)^2$ reps	
	$(84,1)_{0,0}$	
TT J J J	$(1, 84)_{0,0}$	
Untwisted	$({f 1},{f 1})_{0,-6}$	
	$(1,1)_{-3,3}$	
	$(1,1)_{3,3}$	
	$(9,9)_{-1,1}$	
$\hat{g} + \hat{g}^2$	$(9,9)_{1,1}$	
	$(9,9)_{0,-2}$	

- Narain Lattice: $\Gamma(E_8 \times E_8) \oplus \Gamma^{2;2}(A_2)$
- Twist by : $\phi = (0^9; 2/3)$
- Shift by: $v = (2,1,0,2^3,1,2,0,2,0,2^2,0,2^2,1,0)/3$

 $(2\pi)^5 I_{10} = \frac{1}{12} X_6 Y_4$

Chiral Matter

Sector	$SU(9) \times SU(9) \times U(1)^2$ reps	
	$(84,1)_{0,0}$	
TT J J J	$(1, 84)_{0,0}$	
Untwisted	$({f 1},{f 1})_{0,-6}$	
	$(1,1)_{-3,3}$	
	$(1,1)_{3,3}$	
	$(9,9)_{-1,1}$	
$\hat{g} + \hat{g}^2$	$(9,9)_{1,1}$	
	$(9,9)_{0,-2}$	

- No Tachyons at tree level
- One neutral scalar •
- Chiral Matter •
- Positive CC: •

 $V_{1-loop}(\hat{\phi}) \approx e^{\frac{-8}{\sqrt{6}}\hat{\phi}} \left(1.26 \times 10^{-4}\right) M_s^8$

So we have three theories in 4, 6 and 8 dimensions

We have no tree level tachyons

They all have chiral matter

They all have positive CC

Questions and future direction

Do all tachyon free theories with one neutral scalar have chiral fermions and positive leading order potential?

Duality relation to 10d non-susy strings on T^n ?

How many of these theories can we get?

Higher order fate of the theories?

Thank you very much

Construct irreducible unimodular quasicrystals

For m = 12 we have $\phi(12) = 4$ so it acts irreducibly and crystallographically in 4 dimensions

• Construct lattice with this symmetry and basis $v_n = \theta^{n-1}v$ with $v \in \mathbb{R}^{r,s}$ For m = 12 we have the Narain Lattice $\Gamma^{2;2}$ with $v = \frac{1}{\sqrt[4]{3}}$ (1,0;1,0)

• Show $\Gamma^{r,s}$ is even and unimodular

General proof

• Fix the order m of θ then $\phi(m) = r + s$ gives the dimension of the Narain Lattice $\Gamma^{r,s}$

Based on [20' Bayer-Fluckiger, Taelman]

