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Warm-up: The Conifold

The Conifold can be defined as:

x2 + y2 = z2 − w2, (x, y, z,w) ∈ C4

The equation can be interpreted as a fibration of a local K3 (A1 : x2 + y2 = z2) over C.

In Type IIA String Theory:

Complex deformations of the ADE singularity are encoded in the background profile of
Φ ∈ Adj(g), g ∈ {A,D,E}.

The Conifold can be obtained by turning on: Φ(w) =

(
w 0
0 −w

)
∈ A1,

Which gives rise to: x2 + y2 = det(z1− Φ(w)) = z2 − w2
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Non-toric flop geometries

In general:

To a given Φ(w) corresponds a non trivial K3 fibration along with its resolution pattern
[Collinucci, De Marco, Sangiovanni, Valandro]:

Φ ̸= const : X g
2 × C{w} −−−→

Φ(w)

Xg,def
2 −→ Xg

3(Φ)
↓
C{w}

We exploit this construction to study:

Simple threefold flops ↔ Non-toric generalizations of the Conifold
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Non-toric flop geometries: Examples

A3 × Cw ⇒ Reid Pagoda

x2 + y2 = z4, ∀w ⇒ x2 + y2 = det(z1− Φ) = z4 − w2 (x, y, z,w) ⊂ C4

Φ(w) =


0 1 0 0
w 0 0 0
0 0 0 1
0 0 −w 0

 ∈ A3

Our aim: Recover the threefold geometry from the moduli space of a D2-brane probe.
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Quiver Varieties from Monopole Deformations

The worldvolume EFT of a D2 on a singular non compact K3 is known [Douglas, Moore]

The EFT on A3 is described by:

δW |2 δW |4

+δW (W±
2 ,W±

4 , ϕ2, ϕ4)

IR

Weff = (A1 − A2)(Y1Z1 + Y2Z2 + 2A1A2)

Y1

Y2

Z1

Z2

A1

A2

WN=4

Monopole deformations have been studied [Giacomelli, Collinucci, Valandro, Savelli; Benini,
Benvenuti, Pasquetti]
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Quiver Varieties from Monopole Deformations

D4 × Cw ⇒ Brown-Wemyss Threefold

x2 + y2z = z3, ∀w ⇒ x2 + y2z = (z − w)(zw2 + (z − w)2) (x, y, z,w) ⊂ C4

IR

Weff = F(M2,M3,M4, q1, q̃1)

q1

q̃1

M2
M3

M4

q̃1
q1

W = WN=4 + δW (W±
2 ,W±

3 ,W±
4 , ϕ2, ϕ3, ϕ4)

Integrating out massive degrees of freedom...

δW |2

δW |4

δW |3
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Quiver Varieties from Monopole Deformations
Towards a systematic construction

Claim: Given the EFT on a trivially fibered ADE surface X g
2 , the theory on X g

3 (Φ) is
obtained by adding a N = 2 preserving deformation:

W = WN=4 + Tr(Φ({ϕi})µ), µ → g-moment map, ϕi → CB chirals

W −→
IR

Weff ⇒ Xg
3(Φ)’s defining equation in C4

Analogous results have been obtained through different approaches [Witten, Klebanov;
Cachazo, Vafa, Katz; Gubser, Nekrasov, Shatashvili]
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Conclusions and Outlook

We provide a simple recipe to extract the N = 2 superpotential of a large class of
non toric CY threefolds.

We propose a physical explanation for a non-commutative geometry algorithm that
derives the quiver and the relations of the threefold from the non-affine [Cachazo,
Katz, Vafa] and the affine [Karmazin] Dynkin diagram of the starting ADE algebra.

We aim at applying our technique to simple flops of any length.

8 / 9



Thanks!
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