High-Energy Fixed-Angle Meson Scattering and Holographic QCD

(to appear soon)

Bartosz Pyszkowski Kyoto University, Yukawa Institute

In collaboration with Adi Armoni (Swansea University), Dorin Weissman (APCTP), and Shigeki Sugimoto (Kyoto University)

Parallel Session at String Pheno '24

< □ > < 同 > < 三 > < 三 >

Motivations

• String theory traces back to 1968, when Veneziano formulated the cross-symmetric, **Regge-behaved** amplitude for low-lying mesons:¹

$$\mathcal{A}(s,t) = \frac{\Gamma(-\alpha(s))\,\Gamma(-\alpha(t))}{\Gamma(-\alpha(s) - \alpha(t))} \tag{1}$$

- Later that year, experiments at SLAC observed partonic behaviour in inelastic electron-proton scattering in the high-energy fixed-angle regime
- Soon after the SLAC experiments, constituent counting rules provided a matching prediction [Brodsky, Farrar '73, Matveev, Muradian, Tavkhelidze '73, ...]
- In the high-energy fixed-angle regime:

Veneziano (String Theory)Constituent Counting Rules (QCD)² $\mathcal{A}(s,t) \sim f(\theta_s)^{-\alpha(s)}$ $\mathcal{A}(s,t) \sim g(\theta_s) \times s^{2-\frac{1}{2}n}$

¹Veneziano explicitly constructed amplitudes for $\pi\pi \to \pi\omega$ and $\pi\eta \to \pi\rho$, and briefly looked at $\pi\pi \to \pi\pi$; Lovelace and Shapiro generalised his findings to the latter process ²Assuming helicity-conserving scattering processes

< ロ > < 同 > < 回 > < 回 >

Synopsis

• We study high-energy fixed-angle scattering of mesons using a bottom-up holographic QCD model via the Polchinski–Strassler (PS) proposal for string amplitudes in AdS space with a hard IR cut-off [Polchinski, Strassler '02]

PS Proposal:
$$\mathcal{A}(s,t,u) \sim \int d\text{vol} \times \mathcal{A}_{\text{string}}\left(\tilde{s},\tilde{t},\tilde{u}\right) \times \prod_{i=1}^{n} \psi_{i}$$
 (2)

- In our approach, 2-to-n pion amplitudes **agree** with constituent counting rules, while amplitudes with ρ -mesons are **zero** at *leading order* in s^3
- We provide predictions for all isospin channels of $\pi\pi\to\pi\pi$ scattering
- For $\pi^+\pi^- \to \pi^+\pi^-$ scattering, we compare our predictions to exp. data
- Recent results on this subject can also be found in [Bianchi et al. '22]⁴

³Herein, the leading order in *s* will always be dictated by the constituent counting rules ⁴The PS proposal was originally formulated for glueballs in [Polchinski, Strassler '02], while [Bianchi et al. '22] also used it to study meson-meson scattering

Background Material: A Holographic QCD Model

 Based on holography, we argue that the following set-up can partially capture the meson sector of a QCD-like theory at the IR scale given that N_c ≫ N_f:⁵

$$S \sim \int d^{d+1}x \sqrt{|g|} \operatorname{Tr} \left[g^{MN} g^{PQ} F_{MP} F_{NQ} \right], \tag{3}$$

$$ds^{2} = \frac{R_{d+1}^{2}}{z^{2}} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \right), \quad 0 \le z \le z_{0},$$
(4)

$$F_{MN} = F^a_{MN} t^a = \partial_M A^a_N t^a - \partial_N A^a_M t^a + g f^{abc} A^b_M A^c_N t^a$$
(5)

To recover d-dimensional physics from eq. (3), expand A_μ and A_z in terms of complete sets {ψ_n}_{n≥1} and {φ_n}_{n≥0}:

$$A_{\mu}(x^{\mu}, z) = \sum_{n=1}^{\infty} B_{\mu}^{(n)}(x^{\mu})\psi_n(z),$$
(6)

$$A_z(x^{\mu}, z) = \varphi^{(0)}(x^{\mu})\phi_0(z) + \sum_{n=1}^{\infty} \varphi^{(n)}(x^{\mu})\phi_n(z)$$
(7)

⁵This model is similar to [Son, Stephanov '04, Hirn, Sanz '05]

・ロト ・ 同ト ・ ヨト ・ ヨト

Background Material: Polchinski–Strassler Proposal

 For a gauge/string dual pair, the PS proposal relates a field theory amplitude in the high-energy fixed-angle regime to a string amplitude:⁶

$$\mathcal{A}(s,t,u) \sim \int d\mathbf{vol} \times \mathcal{A}_{\mathsf{string}}\left(\tilde{s},\tilde{t},\tilde{u}\right) \times \prod_{i=1}^{n} \psi_{i} \tag{8}$$

• Here, ψ_i are wavefunctions of the scattered states and $\tilde{s}, \tilde{t}, \tilde{u}$ are curved space Mandelstam variables, e.g., for 2-to-2 scattering with momenta $p^{(1)} \sim p^{(4)}$:

$$\tilde{s} = -g^{MN} \left(p_M^{(1)} + p_M^{(2)} \right) \left(p_N^{(1)} + p_N^{(2)} \right) \stackrel{!}{=} -g^{\mu\nu} \left(p_\mu^{(1)} + p_\mu^{(2)} \right) \left(p_\nu^{(1)} + p_\nu^{(2)} \right)$$
(9)

• Essentially, it is the **re-scaling of the string amplitude**⁷ that accounts for recovering power-law behaviour in the high-energy fixed-angle regime

 ^{6}As noted in [Polchinski, Strassler '02], while the LHS of eq. (8) describes high-energy fixed-angle field theory scattering, the RHS includes contributions from all stringy modes ^{7}In other words, replacing $\eta^{\mu\nu}$ with $g^{\mu\nu}$ within each dot product in the amplitude

< ロ > < 同 > < 回 > < 回 >

Results: Recovering Constituent Counting Rules (1/2)

• Take the string amplitude to be a 4-photon amplitude of superstrings:

$$\mathcal{A}_{\text{string}} \propto K\left(k^{(1)\sim(4)}, \zeta^{(1)\sim(4)}\right) \times \frac{\Gamma(-\alpha' s)\,\Gamma(-\alpha' t)}{\Gamma(1-\alpha' s - \alpha' t)} \tag{10}$$

• In the high-energy fixed-angle regime:

$$\frac{\Gamma(-\alpha's)\,\Gamma(-\alpha't)}{\Gamma(1-\alpha's-\alpha't)} \sim s^{q_n} e^{-f(\theta)s} \tag{11}$$

• The factor K in the $n\mbox{-photon}$ generalisation must scale as:

$$K\left(k^{(1)\sim(n)},\zeta^{(1)\sim(n)}\right) \propto T^{\mu_1,\dots,\mu_n,\nu_1,\dots,\nu_n} k^{(1)}_{\mu_1}\dots k^{(n)}_{\mu_n} \zeta^{(1)}_{\nu_1}\dots \zeta^{(n)}_{\nu_n}$$
(12)

- $\bullet~{\rm Taking}~\eta^{MN}\to g^{MN},$ each term in K gets a factor of z^{2n} from contractions
- Each term in K also receives a power of $s^{\frac{n}{2}}$ from the n momenta
- ${\scriptstyle \bullet}$ We also get a factor of $s^{\frac{n_v}{2}}$ from vector meson polarizations ${\scriptstyle ^8}$

4 **A A A A A A A A A**

 $^{^{8}\}mathrm{Axial}$ vector mesons receive the same factor; higher spin states, get factors of $s^{\frac{\mathrm{spin}}{2}}$

Results: Recovering Constituent Counting Rules (2/2)

- The AdS_{d+1} metric gives an explicit factor of $\sqrt{-g} = z^{-d-1}$
- The product of wavefunctions with $\psi_\pi \sim z^{d-3}$ and $\psi_\rho \sim z^{d-2}$ reads:

$$\prod_{i=1}^{n} \psi_i \sim z^{(d-3)n+n_v}$$
(13)

• Collecting everything together and applying the PS proposal:

$$\mathcal{A} \sim \int_{0}^{z_{0}} dz \sqrt{-g} \times \mathcal{A}_{\text{string}} \left(\tilde{s}, \tilde{t}, \tilde{u} \right) \times \prod_{i=1}^{n} \psi_{i}$$

$$\sim \int_{0}^{z_{0}} \left[dz z^{-d-1} \right] \left[(z^{2}s)^{q_{n}} e^{-f(\theta_{i})z^{2}s} \right] \left[z^{2n} s^{\frac{1}{2}(n+n_{v})} \right] \left[z^{(d-3)n+n_{v}} \right]$$

$$\sim s^{\frac{d}{2} - \frac{d-2}{2}n} \times \int_{0}^{\sqrt{\alpha's}} d\tilde{z} F(\theta_{i}; \tilde{z})$$

$$(16)$$

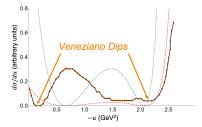
イロト イヨト イヨト

Results: A Novel Prediction for Vector Mesons

- The previous counting argument does not generalise to ρ -mesons!
- Due to a gauge symmetry in our approach, amplitudes with ρ-mesons become zero at leading order in s dictated by the constituent counting rules
- The disagreement manifests itself explicitly in the factor K:

$$K^{\mathsf{naïve}}[\pi\pi \to \rho\rho] \sim K^{\mathsf{naïve}}[\pi\rho \to \pi\rho] \sim s^3 \text{ and } K^{\mathsf{naïve}}[\rho\rho \to \rho\rho] \sim s^4, \quad (17)$$
$$K^{\mathsf{actual}}[\pi\pi \to \rho\rho] \sim K^{\mathsf{actual}}[\pi\rho \to \pi\rho] \sim s^2 \text{ and } K^{\mathsf{actual}}[\rho\rho \to \rho\rho] \sim s^3 \quad (18)$$

• Hence, our approach offers a testable prediction for future experiments:⁹


$$\frac{\mathcal{A}(\pi\pi \to \pi\pi)}{\mathcal{A}(\pi\pi \to \rho\rho)} \sim \frac{\mathcal{A}(\pi\pi \to \pi\pi)}{\mathcal{A}(\pi\rho \to \pi\rho)} \sim \frac{\mathcal{A}(\pi\pi \to \pi\pi)}{\mathcal{A}(\rho\rho \to \rho\rho)} \sim \mathcal{O}\left(s^{-1}\right)$$
(19)

⁹However, it may be more accurate to identify this as a prediction for a strongly coupled CFT

< ロ > < 同 > < 回 > < 回 >

Results: Pion-Pion Scattering Phenomenology

- We compared our model with exp. data for $\pi^+\pi^- o \pi^+\pi^-$ [Grayer et al. '74]
- Data available is at relatively low energies, going up to only $\sqrt{s} = 1.79$ GeV, while our predictions are expected to be valid when $\alpha's \gg 1^{10}$
- Also, our results are (roughly) a leading-order N_c result in the 't Hooft limit

The black line plots the exp. data and the dashed lines are the theoretical fit both for $\sqrt{s} = 1.79$ GeV; the two theoretical fits differ by the choice of a proportionality constant (the red dashed line is fitted to the lower end of the domain, while the blue dashed line fit covers the entire domain)

4 D K 4 B K 4 B K 4

 10 The effective Regge slope lpha' is set to its phenomenological value of roughly $0.9~{
m GeV}^{-2}$

Comments, Conclusions & Future Directions

- **Comments**: I did not describe how to construct pion-pion invariant scattering amplitudes, regularize them, or explicitly motivate the PS proposal
- **Conclusions**: we found a testable prediction, but our holographic model is expected to be dual to a strongly coupled CFT in the UV limit, while QCD has a weak and slowly varying coupling constant in this regime
- **Future Directions**: a top-down construction that recovers the PS proposal, cross-over to Regge regime, proton-proton scattering, and much more!

Thank You for Listening

< □ > < 同 > < 三 > < 三 >