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ARGYRES-DOUGLAS THEORIES

These are 4-dimensional v = 2 superconformal field theories and
- without a Lagrangian description;

- isolated,; @
- strongly coupled:; : @

We focus on the Coulomb Branch (SSB of U (1)) of moduli t
t ¥,

space @

It is parametrized by the VEVs of CB operators (that are
scalar chiral superconformal primaries) coupling

coupling

weak

The study is devoted to rank-1 theories, meaning
- the CB has complex dimension 1 (u Is the coordinate)
- the SW curve associated to each point of CB is a torus




ARGYRES-DOUGLAS THEORIES

Argyres-Douglas (AD) theories are very special points on the CB, because:
- from a geometrical side, the SW curve associated to them has both 1-cycles simultaneously shrinking

- from a physical side, these points describe theories with mutually non-local degrees of freedom
that are simultaneously massless

This makes a local Lagrangian that could describe their interactions not possible

At points where mutually non-local objects become simultaneously massless the theory is interacting
and conformal

AD theories are in particular superconformal and, since they are interacting and isolated, they are
Intrinsically strongly coupled




MOTIVATION AND EXTREMAL CORRELATORS

We want to compute observable quantities, in particular OPE coefficients between CB operators

It is a challenge: the ideal goal is finding an explicit expression for these quantities in terms of

geometric objects (maybe not possible); at the moment we settle for improving the results I am
going to show

We indicate the CB operators as O; (i € N, related to the R-charge)

The OPE coefficients we are interested in are determined from the 2-points extremal correlators
Gij(x) = (0;(x) 0;(0))

(notice that from the selection rule coming from the conservation of U(1)y part of R-symmetry
at the superconformal point, the two-point functions involving only chiral primaries are trivial)




COMPUTATION WITH LOCALIZATION ON THE 4-SPHERE

* This technique furnishes a formula for the 2-points extremal correlator on the 4-sphere of radius R, G;;(27R),
for any rank

* Itturnsoutthatifi = j, then G;; = 0, while for i = j = n = 1 there Is the following expression

det C [A.Qrassi, Z.Komargodski,
GLoc(27R) = oskisn L.Tizzano, ‘Extremal correlators and
nn det Cy, random matrix theory’, JHEP 04
Osk,lsn—1 (2021) 214, [1908.10306]]

e The matrix C (two-point matrix model integral) isa (n + 1) X (n + 1) whose elements are
_ ,  [ABissi, FFucito, A.Manenti,
_ Jpda 0 (a) 0,(a) |Zgs(a, R)| J.F.Morales, R.Savelli, ‘OPE
kl = [ da|Zga(a, R)|? coefficients in Argyres-Douglas
R theories’, JHEP 06 (2022) 085,
where [2112.11899]]

- a is related to u as u « a?, where d is the conformal dimension of the CB operator
- 0y, is the 1-point function on R* deformed in a particular way dictated by the localization itself

- Z g4 1s the partition function on this space. We write it as Zzs(a, R) = eR* F(a.R)




COMPUTATION WITH LOCALIZATION ON THE 4-SPHERE

« At this point the OPE coefficient can be computed in the following way

Loc
Giyjiv
‘lif,i+f GLocLoc
i -jj

So, from this procedure, it is clear that everything consists in computing the matrix C,;,

Following the passages in a particular ‘approximation’ that we are about to discuss, we get

d 3 [A.Bissi, F.Fucito, A.Manenti, J.F.Morales,
I (7 (k+0)+5d- 1) R.Savelli, ‘OPE coefficients in Argyres-

~ (& R)aUe+D - (3 ) (1) Douglas theories’, JHEP 06 (2022) 085,

1

Cri

5d—1

5 [2112.11899]]

where « Is a constant that depends from the theory, but it is not important in the determination of the
OPE coefficients




LARGE RADIUS EXPANSION

The prepotential can be written using the large radius expansion, according to which the radius
of the 4-sphere iIs taken very ‘large’ (approaching the flat space)

[A.Bissi, F.Fucito, A.Manenti,
J.F.Morales, R.Savelli, ‘OPE coefficients

F(a,R) = z Fy (@)R™%9 = z fq a’~*9 R™%9 in Argyres-Douglas theories’, JHEP 06
g=0 g=0

(2022) 085, [2112.11899]]

The result (1) is obtained including only F, and F;
The fact is that this expansion is only formal, due to the conformal nature of our original theory
From a mathematical point of view, it means that the series is not perturbative, but asymptotic

In principle, it is not true that F., terms are less important than F, and F

The same argument is valid also for 1-point functions 0O,,, whose higher-order corrections are not
known




EXAMPLES AND APPLICATIONS

Three examples of rank-1 AD theories: Hy, Hy, H, with d = E 35 respectlvely

They are particular points of the moduli space of N =2 SU(2) SQCD with Ny = 1,2,3 respectively

At this point we can use localization formula (1) and all the other formulae in order to get the OPE
coefficients. The first ones are reported in the table

Another technique that can be used for this study is the conformal bootstrap
This last one furnishes the window within which the OPE coefficients have to fall in

Except for the smallest coefficient in }[0, results obtained with the first method are inside the window

OPE METHOD [A.Bissi, F.Fucito
_ :‘]_[ d — - 1 1
112

Loc. 2098 2241 2421 R.Savelli, "'OPE
coefficients in Argyres-

Conf. Boost. 2,142 = 2,167 2,215+ 2,359 2,298 + 2,698 S
Douglas theories’,

Loc. 3,300 3,674 4,175 JHEP 06 (2022) 085,
Conf. Boost 3,192 =~ 3,637 3,217 =+ 4,445 [2112.11899]]




LARGE R-CHARGE LIMIT

«  We study Gx9¢ with only F, and F; in the large R-charge limit (that is large n)

« The reasons to do it are
1) the large radius expansion of above becomes a real perturbative expansion: from the saddle
point method applied to the integral for Cy;, it can be seen that the largest part of the

contribution derives from a > %
2) we can compare the results of this limit with those obtained using the EFT dictionary

« This last strategy gives a formula for the extremal correlator that is perturbatively exact in n™1

3 1
GE,ET = e”ABF<dn+ Ed_§>

where A and B are theory-dependent constants that cannot be captured by the EFT technique




UNIVERSAL QUANTITIES

In order to get rid of these constants, we have focused on the following universal quantities

Lo Loc EF EFT
GU,LOC _ Gn+1 n+1Gn 1n-1 GU,EFT Gn+1 n+1Gn 1n_1

nn (GLOC) no (GEFT

Nowadays it is not possible to get an analytical expression of the correlator G2¢ for AD theories:
the integrals that come out using the Andréief identity for the determinant cannot be solved exactly

Only a numerical study is reachable (another reason to eliminate the constants in our study)

We expected that the difference between the two methods for the perturbative expansion of the
universal quantities would start from n=3 term

L B v _ EFT B 7 _
ngoc_1+n+ﬁ+_+0( ) Gy —1+n+ﬁ+$+0(n 4

2 —3d + d2 (d—1)2 (11 — 14d + 2d?)
V1= 12 d




NUMERICAL STUDY FOR H,

[AC, R.Savelli, In preparation]
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NUMERICAL RESULTS AND COMPARISON

« We managed to determine the coefficient of the n=3 term for £, and H;

6 106
ULoc(}[O) =1+

— _ —4
57 2502 115 T O

2 73
5n 25n%2 9000 n3

6
UEFT(:HO) _ 14+

+0(n™%)

4 1 7

— _ —4
37 on2 32473 70

4 1 37
UEFT(j_[l) =1+

— _ —4
37 9n2 129603 7O

« This behaviour is in agreement with [A.Grassi, Z.Komargodski, L.Tizzano, ‘Extremal correlators and random
matrix theory’, JHEP 04 (2021) 214, [1908.10306]], where the results are explicitly shown for SQCD
with Nr = 4 (d = 2) and reported for In(G,,,,)




PROPOSAL FOR IMPROVEMENT OF THE RESULTS

In order to fix this mismatch, the first step we can do is including in the computation from localization
also all the other terms in the prepotential

Ansatz for the partition function that interpolates between the behaviour for large a (known) and small
a (new contribution)

The ansatz cannot change the coefficients of n=1 and n~2 in the universal quantity

The first idea that has come in our mind is (setting R = 1)

Zpe = eToe¥1 g4 (¢ + ad)f°°

witht > 0.

At this point we chose the value of f., for differentd € [%, 4) (AD theories are below this interval) in such
a way that the new coefficient of n=3 term is equal to the one from the EFT formula




NUMERICAL RESULTS FOR THE NEW ANSATZ

[AC, R.Savelli, In preparation]
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CONCLUSIONS AND GOALS

Up to now insertions have been treated classically

Hence the second step we can do is considering SQCD with N = 4 and adding the contribution of
Instantons to the partition function, giving rise to a more complicated dependence from t than the one

just studied

If the EFT formula

_ 3 1
o7 = 4 (e (an + a1

IS correct, then the appearance of instantons should not change the terms with integer powers in the
perturbative expansion of the universal quantities

We are trying to verify this for the theory just mentioned, where everything can be treated analytically
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LARGE RADIUS EXPANSION IN LARGE R-CHARGE LIMIT

Large R-charge limit consists in taking n very large (where we remember that n + 1 is the size of the
matrix Cy;)

Assuming that there exists a saddle point for large a (hence we neglect F;-, ) and using the expressions

of the ingredients entering in C,,,, (k = [ = n), we get, from the numerator (setting R = 1)

Chon = jda q2dn p—2m Im(7) azaﬁ — j da e@dn+pn(a)-2m Im(7) a2
R R

where S is a real number

By applying the saddle point method we gain

2dn + 2dn +

a

—4nlm(r)a=0=>a=\/

finding a consistency with the initial assumption. Hence in the large R-charge limit -, are subleading
w.rt. Fy and F;



APPLICATION OF ANDREIEF IDENTITY

- Andréief identity states that, given two sets of n functions {f; (); gx (¥)}?=5 and a measure du(y), then
n—1
1
det [ du(y) fa()gp») = — f 1_[ du(yy) det(fa(yp)) det(ge(va)) ()
i=0
that is the identity relates a determinant of integrals to a multivariate integral over determinants

* Inour case, we have to compute (modulo some constants that do not care in the comparison with the
EFT formula)

detj da (ad)kH q3(@-1) p-a’
kg

« Hence, by comparing with (#), we identify du(y) © da e a3@-D, £, (y) & a?*, g,(y) & at!
(and, roughly, we replace every a with y;) and hence we get, from the identity of the Vandermonde
determinant

(%c%t (fk(yp)) = C}c%t((yg )k) = n(yf — vy dltsét(gl(yS)) = dl(gt ((ysd )l) = n(y]'d - i)

j<k J<k




APPLICATION OF ANDREIEF IDENTITY

So our determinant becomes

n-—1

k+l _ 2 —v2 3(d-1 2
dkei-tj da (a?) q3(d-1) g—a” — dy; e yj( ) (y]d —-y2)
R ' j=0 <k

Applying the following change of variables (I will be sloppy on the interval of integration, which
should be R%), x; = y&, then we get

2

dkeltj da (a®)"" a¥@ D e=0" = n! e n(xj — 1)
R ' ' <k

If d = 2 these integrals can be solved in an analytical way, finding the known result for SQCD
with Ny = 4 of [A.Grassl, Z.Komargodski, L.Tizzano, ‘Extremal correlators and random matrix

theory’, JHEP 04 (2021) 214, [1908.10306]]; for generic d nowadays we cannot solve these
Integrals analytically



