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How does the SDC look like in AdS/CFT?
[Baume, JCI ’20] [Perlmutter, Rastelli, Vafa, Valenzuela ’20]

Analogous statement for 2d CFTs

Proven [Ooguri, Wang ’24]

Moreover:

Today: Stringy origin of HS points at infinite distance? [JCI, Valenzuela ’24] 

Proven [Baume, JCI ’23]

No extra assumption, e.g., no supersymmetry 
+ existence of stress tensor is crucial!!



Strings in the Conformal Manifold
Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand ‘19]

Leading tower
Excitations of weakly-coupled string

KK modes  Decompactification→



Strings in the Conformal Manifold
Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand ‘19]

Leading tower
Excitations of weakly-coupled string

KK modes  Decompactification→

KK tower  No higher-spin fields→ String tower  Higher-spin fields→

Expectation: Higher-spin point  tensionless string↔



Strings in the Conformal Manifold
Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand ‘19]

Leading tower
Excitations of weakly-coupled string

KK modes  Decompactification→

KK tower  No higher-spin fields→ String tower  Higher-spin fields→

Expectation: Higher-spin point  tensionless string↔

Problem: Ts ≲ R−2
AdS String in a highly-curved background… hard to study!

Rely on CFT results and extract clues!
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Three different values: α = { 2
3
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E.g.  SYM𝒩 = 4 Type IIB on AdS5 × S5

Goal: Understand why  in this case!α ≠
1

3
In the paper: First SDC Convex Hull in AdS/CFT

Sharpened SDC non-trivially satisfied!

+ Connection to no scale separation

See Irene’s talk!
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Problem: How to detect a string from the CFT?

Instead, look for physical properties that are controlled only by α!
1. Ratio between  and  central chargesa c

2. Hagedorn temperature at large N

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values: α = { 2
3
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dim G = f(a, c)
α =

1
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a
c

=
1
2

+
1

4α2

Depends 
on  onlyα !

Relevant for various aspects of low energy EFT!Physical meaning? 

[Henningson, Skenderis ’98] 
Most notably:  (at large N)    No weakly-coupled Einstein gravity at low energiesa ≠ c ↔

Only theories with  have Einstein gravity dualsα =
1

2
!

[Perlmutter, Rastelli,  
Vafa, Valenzuela ‘20]
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Long story short…   Hagedorn condition: Z(T) → ∞ ↔ zv(TH) + {nAd +
1
2

(nS + nS̄ + nA + nĀ)} zc(TH) = 1
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Nice

Controls Hagedorn temperature

… but not enough!

:(

+ Conformal manifold  → β1−loop = 0



CFT Distances vs Hagedorn Temperature
Z(T) = ∑

states

e−E/T = ∫ ρ(E) e−E/TdE
T → TH ∞ ρ(E) ∼ eE/TH Stringy!

Hagedorn temperature: TH Controls exponential density of states at high energies!

Expectation: Hagedorn temperature should only depend on α!
4d  SU(N) gauge theory𝒩 = 1 7 parameters: {nAd, nF, nF̄, nA, nĀ, nS, nS̄} # chiral multiplets
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Long story short…   Hagedorn condition: Z(T) → ∞ ↔ zv(TH) + {nAd +
1
2

(nS + nS̄ + nA + nĀ)} zc(TH) = 1
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e−E/T = ∫ ρ(E) e−E/TdE
T → TH ∞ ρ(E) ∼ eE/TH Stringy!

Hagedorn temperature: TH Controls exponential density of states at high energies!

Confirmed

[Gadde, Pomoni, Rastelli ’09]  Restrict to flavor singlets!→

Possible caveat: Trouble with large numbers of flavors at large N

Expectation: Hagedorn temperature should only depend on α!

Preliminary prescription/result!

Hagedorn  
condition Still works!

Stay tuned!

zv(TH) + 3 (3 − 4α2) zc(TH) +
1
2

zc(TH)2 = 1
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Setup:  necklace quiversAdS5 × S5/Zk ↔ 𝒩 = 2

S5

 of orbifold singularitiesS1

A very peculiar limit:
Driven by only axions  Typically finite distance→

But! CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey ’15]

Stringy origin?
Fundamental string remains tensionful…

D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey ’15]

String propagating in !AdS5 × S1 Candidate for new emergent string in AdS? [Baume, JCI ’20]
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Conclusions and More Questions
There is much to learn about/from the Distance Conjecture in AdS/CFT!

Prove rest of CFT Distance Conjecture? New strings in AdS?
CFT side Stringy side

Distance in N-direction? Building them: D3 wrapping blow-ups in AdS?

Thank you for your attention!


