Tensionless Strings Limits in 4d Conformal Manifolds

José Calderón Infante

Based on ongoing work with Irene Valenzuela

String Phenomenology 2024, Padova, 25/06/2024

[Ooguri, Vafa '06] Swampland Distance Conjecture (SDC)

There is an infinite tower of states becoming light at infinite-distance points in moduli space

$M_{tower} \sim e^{-\alpha \Delta \phi}$ as $\Delta \phi \to \infty$ $(M_{Pl} = 1)$

[Ooguri, Vafa '06] Swampland Distance Conjecture (SDC)

There is an infinite tower of states becoming light at infinite-distance points in moduli space

 $M_{tower} \sim e^{-\alpha \Delta \phi}$ as $\Delta \phi \to \infty$ $(M_{Pl} = 1)$ Distance parameter (today's main protagonist!)

Lots of top-down evidence!

• String theory: [Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19] + many many more!

[Ooguri, Vafa '06] **Swampland Distance Conjecture (SDC)**

There is an infinite tower of states becoming light at infinite-distance points in moduli space

 $M_{tower} \sim e^{-\alpha \Delta \phi}$ as $\Delta \phi \to \infty$ $(M_{Pl} = 1)$ **Distance** parameter (today's main protagonist!)

Lots of top-down evidence!

• String theory: [Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19] + many many more!

[Ooguri, Vafa '06] **Swampland Distance Conjecture (SDC)**

There is an infinite tower of states becoming light at infinite-distance points in moduli space

$M_{tower} \sim e^{-\alpha \Delta \phi}$ as $\Delta \phi \to \infty$ $(M_{Pl} = 1)$

Distance parameter (today's main protagonist!)

+ Bottom-up motivations

[Hamada, Montero, Vafa, Valenzuela '21] [Stout '21+'22] [JCI, Castellano, Herráez, Ibáñez '23]

Lots of top-down evidence!

• String theory: [Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19] + many many more!

[Ooguri, Vafa '06] **Swampland Distance Conjecture (SDC)**

There is an infinite tower of states becoming light at infinite-distance points in moduli space

$M_{tower} \sim e^{-\alpha \Delta \phi}$ as $\Delta \phi \to \infty$ $(M_{Pl} = 1)$

Distance parameter (today's main protagonist!)

+ Bottom-up motivations

[Hamada, Montero, Vafa, Valenzuela '21] [Stout '21+'22] [JCI, Castellano, Herráez, Ibáñez '23]

+ connections to other conjectures, pheno implications,

Lots of top-down evidence!

• String theory:

[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19]

+ many many more!

• AdS/CFT: [Baume, JCI '20+'23] [Ooguri, Wang '24] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

[Ooguri, Vafa '06] Swampland Distance Conjecture (SDC)

There is an infinite tower of states becoming light at infinite-distance points in moduli space

$M_{tower} \sim e^{-\alpha \Delta \phi} \text{ as } \Delta \phi \to \infty \quad (M_{Pl} = 1)$

Distance parameter (today's main protagonist!)

+ Bottom-up motivations

[Hamada, Montero, Vafa, Valenzuela '21] [Stout '21+'22] [JCI, Castellano, Herráez, Ibáñez '23]

+ connections to other conjectures, pheno implications,

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

How does the SDC look like in AdS/CFT **?**

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

How does the SDC look like in AdS/CFT ?

[Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:**

Conformal manifold of local CFT in d>2

I. HS point \longrightarrow Infinite distance **II.** Infinite distance \longrightarrow HS point **III.** $\gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$

Local CFT: Posses stress tensor Dynamical gravity in the bulk!

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

How does the SDC look like in AdS/CFT **?**

[Perlmutter, Rastelli, Vafa, Valenzuela '20] CFT Distance Conjecture:

Conformal manifold of local CFT in d>2

I. HS point \longrightarrow Infinite distance **II.** Infinite distance \longrightarrow HS point **III.** $\gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

How does the SDC look like in AdS/CFT **?**

[Perlmutter, Rastelli, Vafa, Valenzuela '20] CFT Distance Conjecture:

Conformal manifold of local CFT in d>2

I. HS point \longrightarrow Infinite distance **II.** Infinite distance \longrightarrow HS point **III.** $\gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!

Proven / [Ooguri, Wang '24]

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

How does the SDC look like in AdS/CFT **?**

[Perlmutter, Rastelli, Vafa, Valenzuela '20] CFT Distance Conjecture:

Conformal manifold of local CFT in d>2

I. HS point \longrightarrow Infinite distance **II.** Infinite distance \longrightarrow HS point **III.** $\gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!

Today: Stringy origin of HS points at infinite distance **?** [JCI, Valenzuela '24]

Strings in the Conformal Manifold

- **Inspiration:** Emergent String Conjecture [Lee, Lerche, Weigand '19]
 - KK modes \rightarrow Decompactification
 - ' Excitations of weakly-coupled string

Strings in the Conformal Manifold

KK tower \rightarrow No higher-spin fields

- **Inspiration:** Emergent String Conjecture [Lee, Lerche, Weigand '19]
 - KK modes \rightarrow Decompactification
 - Excitations of weakly-coupled string
 - String tower \rightarrow Higher-spin fields

Strings in the Conformal Manifold

KK tower \rightarrow No higher-spin fields

Problem: $T_s \lesssim R_{AdS}^{-2} \longrightarrow$ String in a highly-curved background... hard to study!

- **Inspiration:** Emergent String Conjecture [Lee, Lerche, Weigand '19]

 - KK modes → Decompactification
 Excitations of weakly-coupled string
 - String tower \rightarrow Higher-spin fields
 - **Expectation:** Higher-spin point \leftrightarrow tensionless string

- Rely on CFT results and extract clues

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{1}{n} \text{ Decompactif}}{n \text{ extra dim}}$$

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \begin{array}{l} \text{Decompactifi}\\ n \text{ extra dime} \end{array}$$

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

nd for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{1}{n} \text{ Decompactified}}$$

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]
- From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{1}{n} \text{ Decompactified}}$$

Three different values:
$$\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} \right\}$$

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

- **Caveat:** Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]
- From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

 $\left\{\frac{7}{12}, \frac{1}{\sqrt{2}}\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20]

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{1}{n} \text{ Decompactified}}$$

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]
- From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{1}{n} \text{ Decompactified}}$$

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]
- From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}} \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] Out of 21 theories! Suggests three different strings in AdS

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{1}{n} \text{ Decompactified}}$$

But...
$$\alpha \neq \frac{1}{\sqrt{3}}$$
 for all of them?

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]
- From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}} \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] Out of 21 theories! Suggests three different strings in AdS

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{1}{n} \text{ Decompactified}}$$

Three different values:
$$\alpha = \begin{cases} \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} \end{cases}$$

Out of 21 theories!

But...
$$\alpha \neq \frac{1}{\sqrt{3}}$$
 for all of them? Actual \rightarrow Decomp

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]
- From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

 $\left\{\frac{\sqrt{7}}{12}, \frac{1}{\sqrt{2}}\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] Suggests three different strings in AdS

Ily... Match $n = \{3, 4, 6\}$ pactification to $D = \{8,9,11\}$?

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{1}{n} \text{ Decompactified}}$$

Three different values:
$$\alpha = \begin{cases} \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} \end{cases}$$

Out of 21 theories!

But...
$$\alpha \neq \frac{1}{\sqrt{3}}$$
 for all of them? Actual \rightarrow Decomp

In flat space: Value of $\alpha \rightarrow$ Nature of the tower (see e.g. [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22])

- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]
- From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

 $\left\{\frac{\sqrt{7}}{12}, \frac{1}{\sqrt{2}}\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] Suggests three different strings in AdS

Ily... Match $n = \{3,4,6\}$ pactification to $D = \{8,9,11\}$?

So... What is going on?!

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}} \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] E.g. $\mathcal{N} = 4$ SYM \checkmark Type IIB on AdS₅ × S⁵

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left(\frac{1}{\sqrt{2}} \right) \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] E.g. $\mathcal{N} = 4$ SYM \checkmark Type IIB on AdS₅ × S⁵

Goal: Understand why $\alpha \neq \frac{1}{\sqrt{3}}$ in this case!

In the paper: First SDC Convex Hull in AdS/CFT

Sharpened SDC non-trivially satisfied!

+ Connection to no scale separation

See Irene's talk!

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

New strings? Or same string, weirder background?

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Problem: How to detect a string from the CFT?

New strings? Or same string, weirder background?

- Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left(\frac{1}{\sqrt{2}} \right) \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] ($\sqrt{3}\sqrt{12}\sqrt{2}$) E.g. $\mathcal{N} = 4$ SYM \checkmark Type IIB on AdS₅ × S⁵ **Goal:** Understand why $\alpha \neq \frac{1}{\sqrt{3}}$ in this case!
 - New strings? Or same string, weirder background?
 - **Problem:** How to detect a string from the CFT?
 - Instead, look for physical properties that are controlled only by α

- Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left(\frac{1}{\sqrt{2}} \right) \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] ($\sqrt{3}\sqrt{12}\sqrt{2}$) E.g. $\mathcal{N} = 4$ SYM \checkmark Type IIB on AdS₅ × S⁵ **Goal:** Understand why $\alpha \neq \frac{1}{\sqrt{3}}$ in this case!
 - New strings? Or same string, weirder background?
 - **Problem:** How to detect a string from the CFT?
 - Instead, look for physical properties that are controlled only by α
 - **1.** Ratio between *a* and *c* central charges

- Three different values: $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left(\frac{1}{\sqrt{2}} \right) \right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20] ($\sqrt{3}\sqrt{12}\sqrt{2}$) E.g. $\mathcal{N} = 4$ SYM \checkmark Type IIB on AdS₅ × S⁵ **Goal:** Understand why $\alpha \neq \frac{1}{\sqrt{3}}$ in this case!
 - New strings? Or same string, weirder background?
 - **Problem:** How to detect a string from the CFT?
 - Instead, look for physical properties that are controlled only by α
 - **1.** Ratio between a and c central charges
 - 2. Hagedorn temperature at large N
[Perlmutter, Rastelli, Vafa, Valenzuela '20] $\alpha = \sqrt{\frac{2c}{\dim G}}$

[Perlmutter, Rastelli, Vafa, Valenzuela '20] $\alpha = \sqrt{\frac{1}{\text{di}}}$

$$\frac{\overline{2c}}{\dim G} \xrightarrow{\dim G = f(a,c)} \alpha = \frac{1}{\sqrt{4\frac{a}{c} - 2}}$$

[Perlmutter, Rastelli, Vafa, Valenzuela '20] $\alpha = \sqrt{\frac{1}{\text{dis}}}$

$$\frac{1}{\operatorname{im} G} \xrightarrow{\dim G = f(a, c)} \alpha = \frac{1}{\sqrt{4 \frac{a}{c} - 2}}$$

Relevant for various aspects of low energy EFT!

Relevant for various aspects of low energy EFT!

```
[Henningson, Skenderis '98]
```

Most notably: $a \neq c$ (at large N) \leftrightarrow No weakly-coupled Einstein gravity at low energies

[Henningson, Skenderis '98] Most notably: $a \neq c$ (at large N) \leftrightarrow No weakly-coupled Einstein gravity at low energies

Relevant for various aspects of low energy EFT!

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE$$

 $Z(T) = \sum e^{-E/T} = \int \rho(E) e^{-E/T} dE \xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$ states

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies!

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

- **Hagedorn temperature:** $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α
- 4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond

 $\mathcal{N} = 1 v$

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

lition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector \mathcal{I}

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond

 $\mathcal{N} = 1 v$

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

lition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector $\mathcal{N} = 1$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! **Expectation:** Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter: $12 \alpha^2 - 3$

 $\xrightarrow{\Gamma \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

lition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector $\mathcal{N} = 1$

$$= n_{Ad} + \frac{1}{2} \left(n_S + n_{\bar{S}} + n_A + n_{\bar{A}} \right) + n_F + n_{\bar{F}}$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow Expectation: Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter: $12 \alpha^2 - 3 =$

 $\xrightarrow{\Gamma \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

lition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector \mathcal{N} **Nice**

$$= n_{Ad} + \frac{1}{2} \left(n_{S} + n_{\bar{S}} + n_{A} + n_{\bar{A}} \right) + n_{F} + n_{\bar{F}}$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow Expectation: Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter: $12 \alpha^2 - 3 =$

 $\xrightarrow{T} \to T_H \longrightarrow \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

dition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector \mathcal{I}
Nice ... but not enough!
 $\mathcal{I} = 1$

$$= n_{Ad} + \frac{1}{2} \left(n_{S} + n_{\bar{S}} + n_{A} + n_{\bar{A}} \right) + n_{F} + n_{\bar{F}} = 0$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow Expectation: Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter: $12 \alpha^2 - 3 =$

(+) Conformal manifold
$$\rightarrow \beta_{1-loop} = 0$$

 $\xrightarrow{T} \to T_H \longrightarrow \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

dition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector \mathcal{I}
Nice ... but not enough!
 $\mathcal{I} = 1$

$$= n_{Ad} + \frac{1}{2} \left(n_{S} + n_{\bar{S}} + n_{A} + n_{\bar{A}} \right) + n_{F} + n_{\bar{F}} = 0$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter: $12 \alpha^2 - 3$

(+) Conformal manifold $\rightarrow \beta_{1-loop} = 0$ –

 $\xrightarrow{\Gamma \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

lition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector \mathcal{I}
Nice ... but not enough!
 $\mathcal{I} = 1$

$$= \left[n_{Ad} + \frac{1}{2} \left(n_{S} + n_{\bar{S}} + n_{A} + n_{\bar{A}} \right) + n_{F} + n_{\bar{F}} \right] : ($$

$$n_F + n_{\bar{F}} = 6 - 2\left(n_{Ad} + \frac{1}{2}\left(n_A + n_{\bar{A}} + n_S + n_{\bar{S}}\right)\right)$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter: $12 \alpha^2 - 3 =$

(+) Conformal manifold $\rightarrow \beta_{1-loop} = 0$

 $\xrightarrow{\Gamma \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

dition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector \mathcal{I}
Nice ... but not enough!
 $\mathcal{I} = 1$

$$= \left[n_{Ad} + \frac{1}{2} \left(n_S + n_{\bar{S}} + n_A + n_{\bar{A}} \right) + n_F + n_{\bar{F}} \right] : ($$

$$= n_F + n_{\bar{F}} = 6 - 2\left(n_{Ad} + \frac{1}{2}\left(n_A + n_{\bar{A}} + n_S + n_{\bar{S}}\right)\right)$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter $(+) \beta_{1-loop} =$

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

lition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector $\mathcal{N} = 1$

$$0: 3 (3 - 4\alpha^2) = n_{Ad} + \frac{1}{2} (n_S + n_{\bar{S}} + n_A + n_{\bar{A}})$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

CFT Distance Parameter $(+) \beta_{1-loop} =$

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! **Expectation:** Hagedorn temperature should only depend on α

lition:
$$z_v(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_c(T_H) = 1$$

vector \mathcal{N} Nice... and enough!
 $\mathcal{N} = 1$
 $\mathcal{N} = 1$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

4d $\mathcal{N} = 1$ SU(N) gauge theory \rightarrow 7 parameters: $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}}\}$ # chiral multiplets

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn cond $\mathcal{N} = 1 v$

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow Expectation: Hagedorn temperature should only depend on α

$$\mathcal{S} \text{ short...} Z(T) \to \infty \leftrightarrow \text{Hagedorn condition: } z_v(T_H) + \left\{ \begin{array}{l} n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \\ \mathcal{N} = 1 \text{ vector } \end{array} \right\} \begin{array}{l} z_c(T_H) = 1 \\ \mathcal{N} = 1 \text{ vector } \end{array}$$

$$\text{Nice... and enough!} \begin{array}{l} \mathcal{N} = 1 \\ \mathcal{N} = 1 \end{array}$$

$$\text{CFT Distance Parameter } \mathbf{f} \beta_{1-loop} = 0 \text{: } 3\left(3 - 4\alpha^2\right) = \left[n_{Ad} + \frac{1}{2}\left(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}\right) \right] \text{ :)}$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

- **Hagedorn temperature:** $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α
- 4d $\mathcal{N} = 1$ USp(2N)/SO(2N) gauge theory \rightarrow 3 parameters: $\{n_F, n_A, n_S\}$ # chiral multiplets

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! **Expectation:** Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ USp(2N)/SO(2N) gauge theory \rightarrow 3 parameters: $\{n_F, n_A, n_S\}$ # chiral multiplets

Controls Hagedorn temperature Long story short... $Z(T) \to \infty \leftrightarrow$ Hagedorn condition: $z_v(T_H) + \{n_S + n_A\} z_c(T_H) = 1$ $\mathcal{N} = 1 \text{ vector } \mathcal{N} = 1 \text{ chirals}$

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H}$ Stringy!

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

4d $\mathcal{N} = 1$ USp(2N)/SO(2N) gauge theory \rightarrow 3 parameters: $\{n_F, n_A, n_S\}$ # chiral multiplets

Controls Hagedorn temperature Long story short... $Z(T) \to \infty \leftrightarrow$ Hagedorn condition: $z_v(T_H) + \{n_S + n_A\} z_c(T_H) = 1$ $\mathcal{N} = 1 \text{ vector } \mathcal{N} = 1 \text{ chirals}$ **CFT Distance Parameter** $(+) \beta_{1-loop} = 0$: $3(3 - 4\alpha^2) = [n_S + n_A]$:)

 $\rightarrow T_H \longrightarrow \infty \longrightarrow \rho(E) \sim e^{E/T_H}$ Stringy!

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies! \rightarrow **Expectation:** Hagedorn temperature should only depend on α

4d $\mathcal{N} = 1$ USp(2N)/SO(2N) gauge theory \rightarrow 3 parameters: $\{n_F, n_A, n_S\}$ # chiral multiplets

Controls Hagedorn temperature Long story short... $Z(T) \to \infty \leftrightarrow$ Hagedorn condition: $z_v(T_H) + \{n_S + n_A\} z_c(T_H) = 1$ $\mathcal{N} = 1 \text{ vector } \mathcal{N} = 1 \text{ chirals}$ **CFT Distance Parameter** $(+) \beta_{1-loop} = 0$: $3(3 - 4\alpha^2) = [n_S + n_A]$:)

 $\rightarrow T_H \longrightarrow \infty \longrightarrow \rho(E) \sim e^{E/T_H}$ Stringy!

$$-4\alpha^2$$
 $z_c(T_H) = 1$ **Expectation confirmed**

Same as for SU(N)

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Expectation: Hagedorn temperature should only depend on α **Confirmed**

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies!

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Expectation: Hagedorn temperature should only depend on α **Confirmed**

Possible caveat: Trouble with large numbers of flavors at large N

Hagedorn temperature: $T_H \longrightarrow$ Controls exponential density of states at high energies!

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

[Gadde, Pomoni, Rastelli '09] \rightarrow Restrict to flavor singlets! (

- **Hagedorn temperature:** $T_H \longrightarrow$ Controls exponential density of states at high energies!
 - **Expectation:** Hagedorn temperature should only depend on α **Confirmed**

 - **Possible caveat:** Trouble with large numbers of flavors at large N

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

[Gadde, Pomoni, Rastelli '09] → Restrict to flavor singlets!

Setup: $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

Setup: $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

 $s \leftrightarrow \mathcal{N} = 2$ necklace quivers

 \rightarrow S¹ of orbifold singularities

Setup: $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

 S^1 of orbifold singularities

A very peculiar limit:

Driven by only axions \rightarrow Typically finite distance

Setup: $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

 S^1 of orbifold singularities

A very peculiar limit:

- Driven by only axions \rightarrow Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

Setup: $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

 S^1 of orbifold singularities

A very peculiar limit:

- Driven by only axions \rightarrow Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

Stringy origin?

Fundamental string remains tensionful...

Setup: $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

 S^1 of orbifold singularities

A very peculiar limit:

- Driven by only axions \rightarrow Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

Stringy origin?

- Fundamental string remains tensionful...
- D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]
Bonus Track: A New AdS String from Top-down?

String propagating in $AdS_5 \times S^1$!

Setup: $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

 S^1 of orbifold singularities

A very peculiar limit:

- Driven by only axions \rightarrow Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

Stringy origin?

- Fundamental string remains tensionful...
- D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]

Bonus Track: A New AdS String from Top-down?

String propagating in AdS₅ × S¹! Candidate for new emergent string in AdS \mathbf{Z} [Baume, JCI '20]

Setup: $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$ necklace quivers

 S^1 of orbifold singularities

A very peculiar limit:

- Driven by only axions \rightarrow Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

Stringy origin?

- Fundamental string remains tensionful...
- D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]

There is much to learn about/from the Distance Conjecture in AdS/CFT

There is much to learn about/from the Distance Conjecture in AdS/CFT

CFT side

There is much to learn about/from the Distance Conjecture in AdS/CFT

CFT side

There is much to learn about/from the Distance Conjecture in AdS/CFT

CFT side

Prove rest of CFT Distance Conjecture **?**

Distance in N-direction **?**

There is much to learn about/from the Distance Conjecture in AdS/CFT

CFT side

Prove rest of CFT Distance Conjecture **?**

Distance in N-direction **?**

Stringy side

There is much to learn about/from the Distance Conjecture in AdS/CFT

CFT side

Prove rest of CFT Distance Conjecture **?**

Distance in N-direction **?**

Stringy side

There is much to learn about/from the Distance Conjecture in AdS/CFT

CFT side

Prove rest of CFT Distance Conjecture **?**

Distance in N-direction **?**

Stringy side

New strings in AdS **?**

Building them: D3 wrapping blow-ups in AdS **?**

There is much to learn about/from the Distance Conjecture in AdS/CFT

CFT side

Prove rest of CFT Distance Conjecture **?**

Distance in N-direction **?**

Chank you for your attention!

Stringy side

New strings in AdS **?**

Building them: D3 wrapping blow-ups in AdS **?**