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Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand "19]

KK modes — Decompactification
Leading tower <

Excitations of weakly-coupled string

KK tower — No higher-spin fields String tower — Higher-spin fields

X v

=P Expectation: Higher-spin point <> tensionless string

Problem: < RX;S — String in a highly-curved background... hard to study!

=P Rely on CFT results and extract clues !
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In the paper: First SDC Convex Hull in AdS/CFT
N Sharpened SDC non-trivially satisfied!
+ Connection to no scale separation

See Irene’s talk!
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Problem: How to detect a string from the CFT?

Instead, look for physical properties that are controlled only by « !

1. Ratio between a and ¢ central charges

2. Hagedorn temperature at large N
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CFT Distances vs Hagedorn Temperature
2T)= ) e = J

states

Hagedorn temperature: 7, —— Controls exponential density of states at high energies!

=P Expectation: Hagedorn temperature should only depend on a! Confirmed /

Possible caveat: Trouble with large numbers of flavors at large N

WORK
IN
PROGRESS

L

|Gadde, Pomoni, Rastelli ‘'09] — Restrict to flavor singlets! «

Preliminary prescription/result!

Hagedorn 5 1 2 : ,
condition |7+ 3 (3= 40%) 2Ty + 22(Ty)" = 1§ still worlks! v

sl T it _ Ach Bc Lo bo<ns - g, = Dbk _ A d- Log _frosBa s BRI A WO N A 2l

Stay tuned!
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Bonus Track: A New AdS String from Top-down?

Setup: AdSs X S°/Z; < = 2 necklace quivers
SS

S! of orbifold singularities

A very peculiar limit:

Driven by only axions — Typically finite distance
But! CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]
Stringy origin?

Fundamental string remains tensionful...

/(D?) wrapping blow-up 2-cycle/become tensionless! [Aharony, Berkooz, Rey “15]

String propagating in AdSs X S'! Candidate for new emergent string in AdS? [Baume, JCI '20]



Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !



Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !

CFT side



Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !

CFT side

Prove rest of CFT Distance Conjecture ?



Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !

CFT side

Prove rest of CFT Distance Conjecture ?

Distance in N-direction ?



Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !

CFT side Stringy side

Prove rest of CFT Distance Conjecture ?

Distance in N-direction ?



Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !

CFT side Stringy side

Prove rest of CFT Distance Conjecture ? New strings in AdS ?

Distance in N-direction ?



Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !

CFT side Stringy side

Prove rest of CFT Distance Conjecture ? New strings in AdS ?

Distance in N-direction ? Building them: D3 wrapping blow-ups in AdS ?



Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !

CFT side Stringy side
Prove rest of CFT Distance Conjecture ? New strings in AdS ?
Distance in N-direction ? Building them: D3 wrapping blow-ups in AdS ?

- Thank you for your attention!



