String Phenomenology Conference 2024 *Centro Culturale Altinate - San Gaetano - Padova (Italy)*

REALISTIC BRANE-ANTIBRANE INFLATION

Mario Ramos-Hamud University of Cambridge

Thursday, 27th June 2024

COLLABORATION

M. Cicoli C. Hughes A. Rakin

F. Marino F. Quevedo G. Villa

UTLINE

- Motivation
- Perturbative corrections
- Perturbative modulus stabilisation
- Brane anti-brane inflation

• Conclusions

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

UV completion? Several proposals from string theory for the exponential potential such as fibre inflation.

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008] UV completion? Several proposals from string theory for the exponential potential

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008] UV completion? Several proposals from string theory for the exponential potential

For the inverse power potential: brane-antibrane potential is a first example but without modulus stabilisation.

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008] UV completion? Several proposals from string theory for the exponential potential

For the inverse power potential: brane-antibrane potential is a first example but without modulus stabilisation.

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008] UV completion? Several proposals from string theory for the exponential potential

For the inverse power potential: brane-antibrane potential is a first example but without modulus stabilisation.

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008] UV completion? Several proposals from string theory for the exponential potential

For the inverse power potential: brane-antibrane potential is a first example but without modulus stabilisation.

KKLMMT:

- 1. Inflation potential must consider the inflaton and the volume modulus $\mathcal V$.
- 2. Once $\mathcal V$ is considered, generic η problem when stabilising with nonperturbative effects.
- 3. Concrete implementations lead to an inflection point potential (ruled out).

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008] UV completion? Several proposals from string theory for the exponential potential

For the inverse power potential: brane-antibrane potential is a first example but without modulus stabilisation.

 $\text{KKLMMT:}\;$ [S. Krachu, R. Kallosh, A. Linde, J. Maldacena, L. McAllister, S. Trivedi, 2003]

- 1. Inflation potential must consider the inflaton and the volume modulus $\mathcal V$.
- 2. Once $\mathcal V$ is considered, generic η problem when stabilising with nonperturbative effects.
- 3. Concrete implementations lead to an inflection point potential (ruled out).

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008] UV completion? Several proposals from string theory for the exponential potential

For the inverse power potential: brane-antibrane potential is a first example but without modulus stabilisation.

 $\text{KKLMMT:}\;$ [S. Krachu, R. Kallosh, A. Linde, J. Maldacena, L. McAllister, S. Trivedi, 2003]

- 1. Inflation potential must consider the inflaton and the volume modulus $\mathcal V$.
- 2. Once $\mathcal V$ is considered, generic η problem when stabilising with nonperturbative effects.
- 3. Concrete implementations lead to an inflection point potential (ruled out).

We provide concrete examples within string theory with **modulus stabilisation** and inverse power law **inflation** potential in the presence of the **volume modulus.**

Inflation stands as the standard realisation of early universe cosmology. Concave potentials favoured experimentally:

$$
V(\phi) = A - \frac{B}{\phi^n} + \dots \qquad \text{or} \qquad V(\phi) = C - De^{-a\phi} + \dots
$$

Such as fibre inflation. [M. Cicoli, C. P. Burgess, F. Quevedo, 2008] UV completion? Several proposals from string theory for the exponential potential

For the inverse power potential: brane-antibrane potential is a first example but without modulus stabilisation.

 $\text{KKLMMT:}\;$ [S. Krachu, R. Kallosh, A. Linde, J. Maldacena, L. McAllister, S. Trivedi, 2003]

- 1. Inflation potential must consider the inflaton and the volume modulus $\mathcal V$.
- 2. Once $\mathcal V$ is considered, generic η problem when stabilising with nonperturbative effects.
- 3. Concrete implementations lead to an inflection point potential (ruled out).

We provide concrete examples within string theory with **modulus stabilisation** and inverse power law **inflation** potential in the presence of the **volume modulus.**

Leading terms

• 1-loop redefinition of four-cycles ($\tau_{\text{new}} = \tau - \alpha \ln \tau$).

- 1-loop redefinition of four-cycles ($\tau_{\text{new}} = \tau \alpha \ln \tau$).
- Tree-level α ³ corrections at leading order in $g_s = s^{-1}$ (BBHL) labelled by ξ .

- 1-loop redefinition of four-cycles ($\tau_{\text{new}} = \tau \alpha \ln \tau$).
- Tree-level α ³ corrections at leading order in $g_s = s^{-1}$ (BBHL) labelled by ξ .
- Logarithmic corrections at 1-loop at order α^3 labelled by *D*.

- 1-loop redefinition of four-cycles ($\tau_{\text{new}} = \tau \alpha \ln \tau$).
- Tree-level α ³ corrections at leading order in $g_s = s^{-1}$ (BBHL) labelled by ξ .
- Logarithmic corrections at 1-loop at order α^3 labelled by *D*.

Leading terms

- 1-loop redefinition of four-cycles ($\tau_{\text{new}} = \tau \alpha \ln \tau$).
- Tree-level α ³ corrections at leading order in $g_s = s^{-1}$ (BBHL) labelled by ξ .
- Logarithmic corrections at 1-loop at order α^3 labelled by *D*.

Sub-leading terms

Leading terms

- 1-loop redefinition of four-cycles $(\tau_{new} = \tau \alpha \ln \tau)$.
- Tree-level α^3 corrections at leading order in $g_s = s^{-1}$ *(BBHL)* labelled by ξ .
- Logarithmic corrections at 1-loop at order α^3 labelled by *D*.

Sub-leading terms

• 1-loop corrections at order α^2 .

Leading terms

- 1-loop redefinition of four-cycles $(\tau_{new} = \tau \alpha \ln \tau)$.
- Tree-level α^3 corrections at leading order in $g_s = s^{-1}$ *(BBHL)* labelled by ξ .
- Logarithmic corrections at 1-loop at order α^3 labelled by D.

Sub-leading terms

- 1-loop corrections at order α^2 .
- $\mathcal{O}(F^4)$ -corrections.

Leading terms

- 1-loop redefinition of four-cycles $(\tau_{new} = \tau \alpha \ln \tau)$.
- Tree-level α ³ corrections at leading order in $g_s = s^{-1}$ (BBHL) labelled by ξ .
- Logarithmic corrections at 1-loop at order α^3 labelled by *D*.

Sub-leading terms

- 1-loop corrections at order α^2 .
- $\mathcal{O}(F^4)$ -corrections.

The leading order **Kähler potential**:

$$
K = -\ln(s) - 3\ln\left(\tau - \alpha\ln[\tau] + \frac{\xi s^2 - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}}\right),\,
$$
 with $\frac{\xi}{D} = \frac{\zeta(3)}{2\zeta(2)\pi}.$

Leading terms

- 1-loop redefinition of four-cycles $(\tau_{new} = \tau \alpha \ln \tau)$.
- Tree-level α^3 corrections at leading order in $g_s = s^{-1}$ *(BBHL)* labelled by ξ .
- Logarithmic corrections at 1-loop at order α^3 labelled by D.

Sub-leading terms

- 1-loop corrections at order α^2 .
- $\mathcal{O}(F^4)$ -corrections.

The leading order **Kähler potential**:

$$
K = -\ln(s) - 3\ln\left(\tau - \alpha\ln[\tau] + \frac{\xi s^2 - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}}\right),\,
$$

with $\frac{\xi}{D} = \frac{\zeta(3)}{2\zeta(2)\pi}.$

The leading order **scalar potential**:

$$
\frac{V_s}{3|W_0|^2} = \frac{\alpha}{\tau^4} + \frac{s^2\xi + \mathcal{O}(1/s^2) - 3D\ln\tau}{4s^{1/2}\tau^{9/2}} + \mathcal{O}\left(\frac{1}{\tau^5}\right),
$$

String Phenomenology Conference 2024 Mininum: $\tau_* = \exp\left(\frac{5.5}{3D} + \frac{2}{9} - 2\mathcal{W}_0\left[\frac{6}{e}\right]\right)$ with $\theta := \frac{16}{27}D^{-1}s^{1/2}\alpha e^{\frac{5.5}{6D} + \frac{10}{9}}$ and *s*2 *ξ* 3*D* + 2 $\frac{1}{9}$ – 2W₀ $\left\{ \theta \atop e \right\}$ $\left\{ \theta \right\}$ with $\theta := \frac{16}{27}$ *D*−¹ *s*1/2 *α e* $rac{s^2 \xi}{6D} + \frac{10}{9}$ $\alpha \sim \frac{D}{\sqrt{2}}$ *sτ** .

PERTURBATIVE STABILISATION

Only-leading-term perturbative corrections:

Including all known perturbative corrections:

* In the plots $W_0 = 1$ and $s = 10$. We get $\tau \sim 350$ and $V_{\text{min}} \ll 10^{-14}$.

PERTURBATIVE STABILISATION

Only-leading-term perturbative corrections:

Including all known perturbative corrections:

In both cases, increasing values of *θ* moves AdS → dS → runaway.

* In the plots $W_0 = 1$ and $s = 10$. We get $\tau \sim 350$ and $V_{\text{min}} \ll 10^{-14}$.

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\gamma/2/3}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\gamma/2/3}\right)^{1/2}ds_{CY}^{2}
$$

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\gamma^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\gamma^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

$$
\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right)
$$

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\gamma^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\gamma^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\gamma^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\gamma^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

$$
\left(\frac{1}{2}\right)
$$

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\gamma^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\gamma^{2/3}}\right)^{1/2} ds_{CY}^{2}
$$

$$
\left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}\right)
$$
Type IIB string theory compactified on a CY threefold in the presence of fluxes.

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2} ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2} ds_{CY}^{2}
$$

The corresponding inter-brane potential is given by

$$
\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right)
$$

Type IIB string theory compactified on a CY threefold in the presence of fluxes.

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

The corresponding inter-brane potential is given by

$$
V = 2T_3 e^{-4\rho(0)} \gamma^{2/3} \left(1 - \frac{T_3 e^{-4\rho(0)} \gamma^{2/3}}{r^4} \right).
$$

$$
\left(\begin{array}{c}\bullet\\\bullet\\\bullet\\\bullet\\\bullet\\\bullet\end{array}\right)
$$

Type IIB string theory compactified on a CY threefold in the presence of fluxes.

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

The corresponding inter-brane potential is given by

$$
V = 2T_3 e^{-4\rho(0)} \gamma^{2/3} \left(1 - \frac{T_3 e^{-4\rho(0)} \gamma^{2/3}}{r^4} \right).
$$

Nilpotent superfield framework:

$$
\left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}\right)
$$

Type IIB string theory compactified on a CY threefold in the presence of fluxes.

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

The corresponding inter-brane potential is given by

$$
V = 2T_3 e^{-4\rho(0)} \gamma^{2/3} \left(1 - \frac{T_3 e^{-4\rho(0)} \gamma^{2/3}}{r^4} \right).
$$

Nilpotent superfield framework:

Type IIB string theory compactified on a CY threefold in the presence of fluxes.

$$
ds^{2} = \tilde{g}_{MN}dx^{M}dx^{N} = \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{-1/2}ds_{4}^{2} + \left(1 + \frac{e^{4\rho(y)}}{\mathcal{V}^{2/3}}\right)^{1/2}ds_{CY}^{2}
$$

The corresponding inter-brane potential is given by

$$
V = 2T_3 e^{-4\rho(0)} \gamma^{2/3} \left(1 - \frac{T_3 e^{-4\rho(0)} \gamma^{2/3}}{r^4} \right).
$$

Nilpotent superfield framework:

The setup can be studied using non-linear SUSY with a **goldstino** superfield X breaking SUSY:

$$
K = -3\ln\left(f(\tau) + (X + \overline{X})g(\tau) + X\overline{X}h(\tau)\right),
$$

and

$$
W = W_0 + XW_X.
$$

So we divided our study in two scenarios:

- Case with $g(\tau) \neq 0$.
- Case with $g(\tau) = 0$.

 $\sqrt{D^3}$

*D*3

LINEAR TERM INCLUDED

$$
\left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}\right)
$$

LINEAR TERM INCLUDED

The Kähler potential with the computed corrections is

$$
K = -\ln(s) - 3\ln\left[\tau - \alpha\ln(\tau) + \frac{s^2\xi - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}} + (X + \overline{X})\frac{a\ln(\tau)}{s} - \frac{1}{2}X\overline{X}\right],
$$

meanwhile the scalar potential becomes

$$
\frac{V}{W_0^2} = \mathcal{A}\frac{\delta^2}{\tau^2} + \mathcal{B}\frac{\delta}{\tau^3} + \mathcal{C}\frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

$$
\left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}\right)
$$

LINEAR TERM INCLUDED

The Kähler potential with the computed corrections is

$$
K = -\ln(s) - 3\ln\left[\tau - \alpha\ln(\tau) + \frac{s^2\xi - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}} + (X + \overline{X})\frac{a\ln(\tau)}{s} - \frac{1}{2}X\overline{X}\right],
$$

meanwhile the scalar potential becomes

$$
\frac{V}{W_0^2} = \mathcal{A} \frac{\delta^2}{\tau^2} + \mathcal{B} \frac{\delta}{\tau^3} + \mathcal{C} \frac{1}{\tau^4} , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

1. At leading order with $\alpha = 0$:
$$
\frac{V}{W_0^2} = \frac{1}{3s\tau^2} \left(\delta - \frac{3a}{s\tau} \right)^2 \to \text{Minkowski: } \tau = \frac{3a}{s\delta}.
$$

2. We uplift to dS by considering the value of V_{NLO} at this minimum and restore α .

Linear term included

The Kähler potential with the computed corrections is

$$
K = -\ln(s) - 3\ln\left[\tau - \alpha\ln(\tau) + \frac{s^2\xi - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}} + (X + \overline{X})\frac{a\ln(\tau)}{s} - \frac{1}{2}X\overline{X}\right],
$$

meanwhile the scalar potential becomes

$$
\frac{V}{W_0^2} = \mathcal{A} \frac{\delta^2}{\tau^2} + \mathcal{B} \frac{\delta}{\tau^3} + \mathcal{C} \frac{1}{\tau^4} , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

1. At leading order with $\alpha = 0$:
$$
\frac{V}{W_0^2} = \frac{1}{3s\tau^2} \left(\delta - \frac{3a}{s\tau} \right)^2 \to \text{Minkowski: } \tau = \frac{3a}{s\delta}.
$$

2. We uplift to dS by considering the value of V_{NLO} at this minimum and restore α .

Linear term included

The Kähler potential with the computed corrections is

$$
K = -\ln(s) - 3\ln\left[\tau - \alpha\ln(\tau) + \frac{s^2\xi - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}} + (X + \overline{X})\frac{a\ln(\tau)}{s} - \frac{1}{2}X\overline{X}\right],
$$

meanwhile the scalar potential becomes

$$
\frac{V}{W_0^2} = \mathcal{A} \frac{\delta^2}{\tau^2} + \mathcal{B} \frac{\delta}{\tau^3} + \mathcal{C} \frac{1}{\tau^4} , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

1. At leading order with $\alpha = 0$:
$$
\frac{V}{W_0^2} = \frac{1}{3s\tau^2} \left(\delta - \frac{3a}{s\tau} \right)^2 \to \text{Minkowski: } \tau = \frac{3a}{s\delta}.
$$

2. We uplift to dS by considering the value of V_{NLO} at this minimum and restore α .

Figure.- Parameter space: $s = 15$, $a = 1$, $W_0 = 1$, $\delta = 10^{-6}$, $\xi = 0.1$, $A = 1$. NNLO terms are suppressed.

WITHOUT LINEAR TERM

WITHOUT LINEAR TERM

The potential during inflation is

$$
\frac{V}{W_0^2} = \mathcal{A} \frac{\delta^2}{\tau^2} + \mathcal{C} \frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

1. The leading order terms are:
$$
\frac{V_S}{|W_0|^2} \simeq \frac{\delta^2}{3\tau^2} + \frac{3\alpha}{\tau^4} + \frac{3s^2\xi - 9D\ln\tau}{4s^{1/2}\tau^{9/2}}.
$$

2. When W_X vanishes, the potential is of the form of the late time potential.

3. We uplift to dS by considering the value of V_{NLO} .

W<u>ithout</u> linear term

$$
\frac{V}{W_0^2} = \mathcal{A} \frac{\delta^2}{\tau^2} + \mathcal{C} \frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

1. The leading order terms are:
$$
\frac{V_S}{|W_0|^2} \simeq \frac{\delta^2}{3\tau^2} + \frac{3\alpha}{\tau^4} + \frac{3s^2\xi - 9D\ln\tau}{4s^{1/2}\tau^{9/2}}.
$$

- 2. When W_X vanishes, the potential is of the form of the late time potential.
- 3. We uplift to dS by considering the value of V_{NLO} .

$$
\mathbf{K}_{\mathcal{S}}^{\mathcal{I}}
$$

W<u>ithout</u> linear term

$$
\frac{V}{W_0^2} = \mathcal{A} \frac{\delta^2}{\tau^2} + \mathcal{C} \frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

1. The leading order terms are:
$$
\frac{V_S}{|W_0|^2} \simeq \frac{\delta^2}{3\tau^2} + \frac{3\alpha}{\tau^4} + \frac{3s^2\xi - 9D\ln\tau}{4s^{1/2}\tau^{9/2}}.
$$

- 2. When W_X vanishes, the potential is of the form of the late time potential.
- 3. We uplift to dS by considering the value of V_{NLO} .

W<u>ithout</u> linear term

$$
\frac{V}{W_0^2} = \mathcal{A} \frac{\delta^2}{\tau^2} + \mathcal{C} \frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

1. The leading order terms are:
$$
\frac{V_S}{|W_0|^2} \simeq \frac{\delta^2}{3\tau^2} + \frac{3\alpha}{\tau^4} + \frac{3s^2\xi - 9D\ln\tau}{4s^{1/2}\tau^{9/2}}.
$$

- 2. When W_X vanishes, the potential is of the form of the late time potential.
- 3. We uplift to dS by considering the value of V_{NLO} .

ITHOUT LINEAR TERM

$$
\frac{V}{W_0^2} = \mathcal{A} \frac{\delta^2}{\tau^2} + \mathcal{C} \frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|}.
$$

1. The leading order terms are:
$$
\frac{V_S}{|W_0|^2} \simeq \frac{\delta^2}{3\tau^2} + \frac{3\alpha}{\tau^4} + \frac{3s^2\xi - 9D\ln\tau}{4s^{1/2}\tau^{9/2}}.
$$

- 2. When W_X vanishes, the potential is of the form of the late time potential.
- 3. We uplift to dS by considering the value of V_{NLO} .

The minimum is at $V_{\min}^{\text{inf}} \sim 10^{-13}$ and late minimum is approximately Minkowski.

Consistency constraints for inflation

RESULTS

SUMMARY AND CONCLUSIONS

• We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.

• We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.

• We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.
- This scenario offers an interesting possibility for reviving the much studied brane-antibrane inflation.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.
- This scenario offers an interesting possibility for reviving the much studied brane-antibrane inflation.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.
- This scenario offers an interesting possibility for reviving the much studied brane-antibrane inflation.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.
- This scenario offers an interesting possibility for reviving the much studied brane-antibrane inflation.
- Many interesting implications for future work: end of inflation, detailed studied of reheating, presence of stringy cosmic strings, etc.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.
- This scenario offers an interesting possibility for reviving the much studied brane-antibrane inflation.
- Many interesting implications for future work: end of inflation, detailed studied of reheating, presence of stringy cosmic strings, etc.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.
- This scenario offers an interesting possibility for reviving the much studied brane-antibrane inflation.
- Many interesting implications for future work: end of inflation, detailed studied of reheating, presence of stringy cosmic strings, etc.

- We reconsidered the original brane-antibrane inflation proposal in string theory incorporating modulus stabilisation within the EFT controlled regime.
- In contrast to KKLMMT, we stabilised the volume modulus perturbatively with the know corrections in the literature, so the *η*-problem is avoided.
- We found a considerable region of the parameter space to achieve inflation in agreement with experimental data.
- This scenario offers an interesting possibility for reviving the much studied brane-antibrane inflation.
- Many interesting implications for future work: end of inflation, detailed studied of reheating, presence of stringy cosmic strings, etc.

For extra details and further questions please visit the homonymous poster session by Ahmed.

"The invisible and the non-existent look very much alike." -S. Weinberg.

> GRATZIE Mario Ramos Hamud Email: mr895@cam.ac.uk DAMTP University of Cambridge

Man Maissine

String Phenomenology Conference 2024

MANUFACTURE COMPANY PROPERTY
BACKUP SLIDES

η-problem

η-problem

Consider the Kähler potential

$$
K \simeq -3\ln[\tau-\phi\bar{\phi}+\cdots].
$$

when *τ* is fixed by **non-perturbative effects**, $\phi\bar{\phi}$ induces a correction to the inflaton potential given by

$$
V_{\text{correction}} \sim \frac{V_{\text{original}}}{\tau^3} \phi \bar{\phi},
$$
 with V_{original} fixing the Hubble scale during inflation: $H_I^2 \sim \frac{V_{\text{original}}}{\tau^3}$.

\n- The mass contribution of the inflaton is
$$
m_{\phi}^2 \sim \frac{V_{\text{original}}}{\tau^3} \sim H_I^2
$$
\n- Slow roll parameter: $\eta \sim \frac{V''}{V} \sim \frac{m_{\phi}^2}{H_I^2} \sim 1 \Rightarrow \text{No longer slow-roll inflation!}$
\n

-problem can be avoided by doing a **perturbative stabilisation of the** *η***volume modulus.**

LINEAR TERM PART I

LINEAR TERM PART I

The Kähler potential is

$$
K = -\ln(s) - 3\ln\left[\tau - \alpha\ln(\tau) + \frac{s^2\xi - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}} + (X + \overline{X})\frac{a\ln(\tau)}{s} - \frac{1}{2}X\overline{X}\right],
$$

meanwhile the scalar potential becomes

$$
\frac{V}{W_0^2} = \mathcal{A}\frac{\delta^2}{\tau^2} + \mathcal{B}\frac{\delta}{\tau^3} + \mathcal{C}\frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|},
$$

where

•
$$
\mathscr{A} = \frac{1}{3s} + \frac{a^2 (1 - 2 \ln(\tau) + 3 \ln(\tau)^2) + 2\alpha s^2 \ln(\tau) - 2As}{3s^3 \tau} + ...,
$$

\n• $\mathscr{B} = -\frac{2a}{s^2} - \frac{2a[a^2 (1 - 2 \ln(\tau) + 3 \ln(\tau)^2) - s \ln(\tau)(3A - \alpha s) - 2s(A - \alpha s)]}{s^4 \tau} + ...,$

$$
\bullet \ \mathcal{C} = \frac{3\left(a^2 + \alpha s^2\right)}{s^3} + \frac{3\left(\xi s^2 + 8D + 3\sigma - 3D\ln(\tau)\right)}{4s^{3/2}\tau^{1/2}} + + \frac{3\left(3a^4\ln^2(\tau) + a^4 - 2a^2s(A - 2\alpha s) - 2\ln(\tau)\left(a^4 + 3a^2As - \alpha^2s^4\right) + s^2\left(3A^2 - 2\alpha As + 3\alpha^2s^2\right)\right)}{s^{5}\tau}
$$

联盟

NEAR TERM PART I

The Kähler potential is

$$
K = -\ln(s) - 3\ln\left[\tau - \alpha\ln(\tau) + \frac{s^2\xi - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}} + (X + \overline{X})\frac{a\ln(\tau)}{s} - \frac{1}{2}X\overline{X}\right],
$$

meanwhile the scalar potential becomes

$$
\frac{V}{W_0^2} = \mathcal{A}\frac{\delta^2}{\tau^2} + \mathcal{B}\frac{\delta}{\tau^3} + \mathcal{C}\frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|},
$$

where

LINEAR TERM PART II

LINEAR TERM PART II

Leading contribution comes from C at $\mathcal{O}\left(\frac{1}{\sqrt{\tau}}\right)$. The most important at large τ . 1 $\frac{1}{\tau}$). The most important at large τ

$$
\frac{V_{LO}}{|W_0|^2} = \frac{\delta^2}{3s\tau^2} - \frac{2a\delta}{s^2\tau^2} + \frac{3\left(a^2 + \alpha s^2\right)}{s^3\tau^4} = \frac{|W_0|^2}{3s\tau^2} \left(\delta - \frac{3a}{s\tau}\right)^2 + \frac{3\left|W_0\right|^2 \alpha}{s\tau^4},
$$
\n
$$
\frac{V_{NLO}}{|W_0|^2} = \frac{3\left(\xi s^2 + 8D + 3\sigma - 3D\ln(\tau)\right)}{4s^{3/2}\tau^{9/2}},
$$
\n
$$
\frac{V_{NNLO}}{|W_0|^2} \sim \frac{\delta^a}{\tau^b} \text{ with } a+b = 5.
$$

LINEAR TERM PART II

Leading contribution comes from C at $\mathcal{O}\left(\frac{1}{\sqrt{\tau}}\right)$. The most important at large τ . 1 $\frac{1}{\tau}$). The most important at large τ

$$
\frac{V_{LO}}{|W_0|^2} = \frac{\delta^2}{3s\tau^2} - \frac{2a\delta}{s^2\tau^2} + \frac{3(a^2 + as^2)}{s^3\tau^4} = \frac{|W_0|^2}{3s\tau^2} \left(\delta - \frac{3a}{s\tau}\right)^2 + \frac{3|W_0|^2 \alpha}{s\tau^4},
$$

$$
\frac{V_{NLO}}{|W_0|^2} = \frac{3(\xi s^2 + 8D + 3\sigma - 3D\ln(\tau))}{4s^{3/2}\tau^{9/2}},
$$

$$
\frac{V_{NNLO}}{|W_0|^2} \sim \frac{\delta^a}{\tau^b} \text{ with a+b = 5.}
$$

Figure.- Parameter space: $s = 15$, $a = 1$, $W_0 = 1$, $\delta = 10^{-6}$, $\xi = 0.1$, $A = 1$. NNLO terms are suppressed.

LINEAR TERM PART III

Linear term part iii

Some remarks about the competing terms:

$$
V_{LO} \sim \frac{\mathcal{O}(1)}{\tau^2 s} - \frac{\mathcal{O}(1)}{\tau^3 s^2} + \frac{\mathcal{O}(1)}{\tau^4 s^3} \sim s
$$

and

$$
V_{NLO} \sim \frac{\mathcal{O}(1)e^{-s}}{\tau^4 s^{3/2}} + \frac{\mathcal{O}(1)}{\tau^{9/2} s^{3/2}} + \frac{\mathcal{O}(1)s^{1/2}}{\tau^{9/2}} + \frac{\mathcal{O}(1)\ln(\tau)}{\tau^{9/2} s^{3/2}} \sim s^{5/2} e^{-s} + s^3 + s^5 + s^3 \ln s.
$$

For increasing *s* we have some implications:

- The inverse dependence $\tau \sim s^{-1}$ implies that position of the minimum will move to smaller τ . Hierarchies between V_{LO} and V_{NLO} reduced by expansion in $\frac{1}{\tau}$. 1 *τ*
- Coefficients in the NLO terms will increase more rapidly than the coefficients of the LO terms.
- NLO become dominant and therefore, for arbitrarily large *s*, the NLO corrections to the potential will become too strong leading to a runaway potential.
- To compensate for larger values of $s \rightarrow$ greater hierarchy between the LO and NLO terms \rightarrow smaller $\delta \rightarrow$ larger τ at the minimum.
- Arbitrarily large $s \Rightarrow$ arbitrarily large $\tau \rightarrow$ cosmological moduli problem.

Linear term part iii

Some remarks about the competing terms:

$$
V_{LO} \sim \frac{\mathcal{O}(1)}{\tau^2 s} - \frac{\mathcal{O}(1)}{\tau^3 s^2} + \frac{\mathcal{O}(1)}{\tau^4 s^3} \sim s
$$

and

$$
V_{NLO} \sim \frac{\mathcal{O}(1)e^{-s}}{\tau^4 s^{3/2}} + \frac{\mathcal{O}(1)}{\tau^{9/2} s^{3/2}} + \frac{\mathcal{O}(1)s^{1/2}}{\tau^{9/2}} + \frac{\mathcal{O}(1)\ln(\tau)}{\tau^{9/2} s^{3/2}} \sim s^{5/2} e^{-s} + s^3 + s^5 + s^3 \ln s.
$$

For increasing *s* we have some implications:

- The inverse dependence $\tau \sim s^{-1}$ implies that position of the minimum will move to smaller τ . Hierarchies between V_{LO} and V_{NLO} reduced by expansion in $\frac{1}{\tau}$. 1 *τ*
- Coefficients in the NLO terms will increase more rapidly than the coefficients of the LO terms.
- NLO become dominant and therefore, for arbitrarily large *s*, the NLO corrections to the potential will become too strong leading to a runaway potential.
- To compensate for larger values of $s \rightarrow$ greater hierarchy between the LO and NLO terms \rightarrow smaller $\delta \rightarrow$ larger τ at the minimum.
- Arbitrarily large $s \Rightarrow$ arbitrarily large $\tau \rightarrow$ cosmological moduli problem.

[K. J. Bae, H. Baer, V. Barger, and R. W. Deal, 2022]

WITHOUT LINEAR TERM

Without linear term

The Kähler potential is

$$
K = -\ln(s) - 3\ln\left[\tau - \alpha\ln(\tau) + \frac{s^2\xi - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}} - \frac{1}{2}X\overline{X}\right],
$$

meanwhile the scalar potential becomes

$$
\frac{V}{W_0^2} = \mathcal{A}\frac{\delta^2}{\tau^2} + \mathcal{C}\frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|},
$$

where coefficients as in case with linear term but $a = 0$:

Without linear term

The Kähler potential is

$$
K = -\ln(s) - 3\ln\left[\tau - \alpha\ln(\tau) + \frac{s^2\xi - 3D\ln(\tau)}{3s^{1/2}\tau^{1/2}} - \frac{1}{2}X\overline{X}\right],
$$

meanwhile the scalar potential becomes

$$
\frac{V}{W_0^2} = \mathcal{A}\frac{\delta^2}{\tau^2} + \mathcal{C}\frac{1}{\tau^4} \quad , \quad \delta = \frac{|W_X|}{|W_0|},
$$

where coefficients as in case with linear term but $a = 0$:

GEOMETRICAL TOOLKIT

$$
\left(\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}\right)
$$

G<u>eometri</u>cal toolkit

Parameters for inflation, α and ξ, are constrained:

- ξ (and therefore *D*) is determined by the Euler characteristic χ .
- Kreuzer-Skarke CY database favours: | *χ*| < 200 ⇒ 0 < |*ξ*| < 5.
- α is a one-loop beta function coefficient and is expected to be suppressed.

