Loop Blow-Up Inflation

A novel way to inflate with the Kähler moduli

Luca Brunelli University of Bologna and INFN String Phenomenology 2024, Padova

Istituto Nazionale di Fisica Nucleare

Based on: S. Bansal, LB, M. Cicoli, A. Hebecker, R. Kuespert: 2403.04831

See Hebecker's talk

Slow-Roll Inflation

- Standard Slow-Roll: Scalar field with almost-flat direction in the potential
- Possible form of the potential:

 $V(\varphi) = V_0[1 - f(\varphi)]$

with $f(\varphi) \to 0$ as $\varphi \to +\infty$.

Kähler Moduli Inflation

- Type IIB String Compactifications Moduli with leading-order flat potential
- Kähler moduli: Tree level no-scale + 1-loop extended no-scale [Cicoli, Conlon, Quevedo: 2008]
- Volume \mathcal{V} : lifted by leading-order corrections:

> BBHL: $V_{\alpha'^3}(\mathcal{V})$ [Becker, Becker, Haack, Louis: 2002] > Uplifting: $V_{up}(\mathcal{V})$ (anti-D3, T-branes, ...)

- Other Kähler moduli: LO flat directions \longrightarrow good inflaton candidates τ_{φ} !
- Need: Subleading quantum corrections (loops, non-perturbative effects)

Classification of Inflationary Models

- Classification of inflationary models with Kähler moduli based on:
 - a) Topology (bulk/local): determines the canonical normalization $\tau_{\varphi}(\varphi)$
 - b) Lifting Effects (perturbative/non-perturbative): determine the shape of the potential
- All models give a potential of the form:

$$V(\varphi) = V_0[1 - f(\varphi)]$$

with $f(\varphi)$ depending on topology + lifting effects and such that $f(\varphi) \ll 1$ for $\varphi \gg 1$.

Lifting Effect	Non-Perturbative:	Perturbative:		
Topology	$V(\tau) \sim e^{-a\tau} (a > 0)$	$V(\tau) \sim \frac{1}{\tau^{\beta}}$ ($\beta > 0$)		
Bulk (fibre)	Non-Perturbative Fibre Inflation:	Loop Fibre Inflation		
$\tau(\varphi) = e^{k\varphi}$	f(φ) ∝ e ^{-ae^{kφ}} [Cicoli, Pedro, Tasinato: 2011] [Lüst, Zhang: 2013]	$f(\varphi) \propto e^{-\beta k \varphi}$ [Cicoli, Burgess, Quevedo: 2008] [Broy, Ciupke, Pedro Westphal: 2015] [Cicoli, Ciupke, de Alwis, Muia: 2016]		
Local (Blow-up)	Non-Perturbative Blow-Up Inflation	Loop Blow-Up Inflation		
$\tau(\varphi) = \gamma \mathcal{V}^{2/3} \varphi^{4/3}$	$f(\varphi) \propto e^{-a\gamma \mathcal{V}^{2/3} \varphi^{4/3}}$ [Conlon, Quevedo: 2006] [Bond, Kofman, Prokushkin, Vaudrevange: 2006]	$f(\varphi) \propto \frac{1}{\mathcal{V}^{2\beta/3} \varphi^{4\beta/3}}$ [Bansal, LB, Cicoli, Hebecker, Kuespert: 2024] New!		
		5		

Non-Perturbative Blow-Up Inflation

• Calabi-Yau volume:

 $\mathcal{V} = \tau_b^{3/2} - \tau_s^{3/2} - \tau_\phi^{3/2} \simeq \tau_b^{3/2} \qquad \text{with} \qquad T_i = \tau_i + i\vartheta_i$

• LVS stabilisation: $O(\alpha'^3)$ correction to Kähler potential and non-perturbative correction to W:

$$K = -2\ln\left(\mathcal{V} - \frac{\xi}{2g_s^{3/2}}\right) \qquad \qquad W = W_0 + A_s e^{-a_s T_s} + A_{\varphi} e^{-a_{\varphi} T_{\varphi}}$$

• Scalar Potential:
$$V = V_{LVS} + V_{\varphi}$$

 $V_{LVS}(\mathcal{V}, \tau_s) = \tilde{V} \left(B_s \frac{\sqrt{\tau_s} e^{-2a_s\tau_s}}{\mathcal{V}} - C_s \frac{\tau_s e^{-a_s\tau_s}}{\mathcal{V}^2} + \frac{3\xi}{4g_s^{3/2}\mathcal{V}^3} + \frac{D}{\mathcal{V}^2} \right)$
 $V_{\varphi}(\mathcal{V}, \tau_{\varphi}) = \tilde{V} \left(B_{\varphi} \frac{\sqrt{\tau_{\varphi}} e^{-2a_{\varphi}\tau_{\varphi}}}{\mathcal{V}} - C_{\varphi} \frac{\tau_{\varphi} e^{-a_{\varphi}\tau_{\varphi}}}{\mathcal{V}^2} \right)$ with $a_{\varphi}^{3/2} \gg a_s^{3/2}$
 $\longrightarrow < \tau_{s,\varphi} > \sim \xi^{2/3} g_s^{-1}$ and $< \mathcal{V} > \sim e^{a_s\tau_s} \sim e^{a_{\varphi}\tau_{\varphi}}$

• Inflationary potential [Conlon, Quevedo: 2006] :

$$\tau = \left(\frac{3\nu}{4}\right)^{\prime} \varphi^{4/3}$$

$$V(\tau_{\varphi}) \simeq V_0 [1 - \mathcal{C}_{\varphi} \mathcal{V} \tau_{\varphi} e^{-a_{\varphi} \tau_{\varphi}}] \longrightarrow V(\varphi) = V_0 [1 - \tilde{\mathcal{C}}_{\varphi} \mathcal{V}^{5/3} \varphi^{4/3} e^{-a_{\varphi} \mathcal{V}^{2/3} \varphi^{4/3}}]$$

(222) 2/3

with $V_0 = \tilde{V} \frac{\beta}{\nu^3}$

Exponentially Flat Plateau!

Loop Corrections

- No exact computation of loop corrections on CY background
- 1-loop corrections computed on toroidal orientifolds [Berg, Haack, Körs: 2005]
- Conjectured generalization to CY orientifold [Berg, Haack, Pajer: 2007]
- Two kinds of corrections to *K*:

• For a Blow-Up mode τ:

1. Kaluza-Klein (KK):
$$\delta K^{(KK)} = g_s \sum_i \frac{C_i^{(KK)} t_i}{v} \longrightarrow$$
Extended no-scale in V
[Cicoli, Conlon, Quevedo: 2008]
2. Winding (W): $\delta K^{(W)} = \sum_i \frac{C_i^{(W)}}{v t_i}$

See Hebecker's talk for details

- $\delta K(\tau) \simeq \frac{c_{loop}}{\nu \sqrt{\tau}} \longrightarrow \delta V(\tau) \simeq \frac{c_{loop}}{\nu^3 \sqrt{\tau}}$
- EFT understanding from 1-loop corrections to 2-point functions and V [Von Gersdorff, Hebecker: 2005] [Cicoli, Conlon, Quevedo: 2008] [Gao, Hebecker, Schreyer, Venken: 2022]

Loop Blow-Up Inflation

• Potential for τ_{ϕ} including loop corrections:

$$V = \tilde{V} \left[\frac{\beta}{\nu^3} + B_{\varphi} \frac{\sqrt{\tau_{\varphi}} e^{-2a_{\varphi}\tau_{\varphi}}}{\nu} - C_{\varphi} \frac{\tau_{\varphi} e^{-a_{\varphi}\tau_{\varphi}}}{\nu^2} - \frac{c_{loop}}{\nu^3 \sqrt{\tau_{\varphi}}} \right]$$

• Non-perturbative Blow-Up inflation if:

 $c_{loop} \ll 10^{-6}$

- If $c_{loop} \gtrsim 10^{-6} \implies$ Loops dominate
- Inflationary potential:

$$V \simeq V_0 \left(1 - \frac{c_{loop}}{\beta \sqrt{\tau_{\varphi}}} \right) = V_0 \left(1 - \frac{b c_{loop}}{\mathcal{V}^{1/3} \varphi^{2/3}} \right)$$

with $b = \frac{1}{\beta} \left(\frac{4}{3}\right)^{1/3}$.

Inflationary Parameters

• Slow-roll parameters:

$$V = V_0 \left(1 - \frac{b \, c_{loop}}{\mathcal{V}^{1/3} \varphi^{2/3}} \right)$$

$$\begin{cases} \epsilon = \frac{1}{2} \left(\frac{V_{,\phi}}{V} \right)^2 \simeq \frac{2}{9} \frac{\left(bc_{loop} \right)^2}{\mathcal{V}^{2/3} \phi^{10/3}} \\ \\ \eta = \frac{V_{,\phi\phi}}{V} \simeq -\frac{10}{9} \frac{bc_{loop}}{\mathcal{V}^{1/3} \phi^{8/3}} \end{cases}$$

• Cosmological parameters:

$$N_e = \int_{\varphi_e}^{\varphi_*} \frac{1}{\sqrt{2\epsilon}} \, d\varphi \simeq \frac{2}{9} \frac{\mathcal{V}^{1/3} \varphi_*^{8/3}}{bc_{loop}}$$
$$\hat{A}_s = \frac{V^3}{V_{,\varphi}^2} = \frac{9V_0}{4} \frac{\mathcal{V}^{2/3} \varphi_*^{10/3}}{(bc_{loop})^2} \equiv 2.5 \times 10^{-7}$$

$$c_{loop} = 1/(16 \pi^2)$$

$$\begin{cases} \varphi_* = 0.06 N_e^{7/22} \\ \mathcal{V} = 1743 N_e^{5/11} \end{cases}$$

• $r - n_s$ relation:

$$\begin{split} n_{s} &= 1 + 2\eta_{*} - 6\epsilon_{*} \simeq 1 - \frac{20}{9} \frac{bc_{loop}}{v^{1/3} \varphi_{*}^{8/3}} \\ r &\simeq 16\epsilon_{*} \simeq \frac{32}{9} \frac{(bc_{loop})^{2}}{v^{2/3} \varphi_{*}^{10/3}} \end{split}$$

Post-Inflationary Evolution

• N_e from post-inflationary dynamics [Dutta, Maharana: 2015]:

$$N_e \simeq 57 + \frac{1}{4} \ln r - \frac{1}{4} (N_{\varphi} + N_{\chi}) + \frac{1}{4} \ln \left(\frac{\rho_*}{\rho_{end}} \right)$$

• N_{φ} , N_{χ} : e-folds of inflaton and volume domination

depend on SM realization

• Decay of last dominant modulus ψ drives reheating:

 ψ

SM fields (Higgs, gauge bosons) big cycle axions ϑ_b : Dark Radiation

 $\Delta N_{eff} \lesssim 0.2 - 0.5 \quad 95\% \text{ CL}$ [Planck: 2018] $\Delta N_{eff} = \frac{43}{7} \left(\frac{10.75}{g_*(T_{rh})}\right)^{1/3} \frac{\Gamma_{\psi \to \vartheta \vartheta}}{\Gamma_{\psi \to SMSM}}$

[Higaki, Takahashi: 2012] [Cicoli, Conlon, Quevedo: 2013] 11

SM Realization and Scenarios

• SM D7-branes cannot wrap τ_s [Blumehagen, Moster, Plauschinn: 2007] nor τ_{φ} (FI terms would make it too heavy) introduce τ_{SM} and τ_{int}

$$\mathcal{V} = \tau_b^{3/2} - \tau_s^{3/2} - \tau_{\varphi}^{3/2} - \tau_{SM}^{3/2} - \lambda(\tau_{int} - \tau_{SM})^{3/2}$$

• D-term stabilization ($\xi_{FI} = 0$):

$$\tau_{SM} = \lambda^2 (\tau_{int} - \tau_{SM})$$

 $\lambda = 0 \implies \tau_{SM} \to 0: \text{SM on D3-branes at singularity}$ $\lambda \neq 0 \implies \tau_{int} \text{ fixed in terms of } \tau_{SM}, \text{ still flat. Fixed by loop potential [Cicoli, Mayrhofer, Valandro: 2011]:}$

$$V_{loop}(\tau_{SM}) = \frac{W_0^2}{v^3} \left(\frac{\gamma}{\sqrt{\tau_{SM}}} - \frac{\delta}{\sqrt{\tau_{SM}} - \sqrt{\tau_s}} \right) \quad \Longrightarrow \quad \text{SM on D7-branes}$$

- 3 Scenarios:
 - i. Scenario I: SM on D7, τ_{φ} wrapped by hidden-sector D7s
 - ii. Scenario II: SM on D7, τ_{φ} not wrapped
 - iii. Scenario III: SM on D3

Scenario I

Scenario II

	$\Gamma(\varphi \to AA) = \left(\frac{N_g W_0^3 (\ln \mathcal{V})^{9/2}}{8 \pi}\right) \frac{M_p}{\mathcal{V}^4}$ $N_{\varphi} \simeq \frac{2}{3} ln \left(\frac{H_{inf}}{\Gamma_{\varphi \to AA}}\right) \simeq 8$ $\Delta N_{eff} \simeq 0.14$	$\frac{H(t_{eq})}{\Gamma(\chi \to hh)} \ll 1$ $N_{\chi} = 0$		
Inflation	Inflaton domination	Radiation Domination	Matter Domination	Dark Energy
$N_e \simeq 52$	$ \begin{array}{c} & \phi_* \simeq 0.2 \\ & \mathcal{V} \simeq 10525 \end{array} \end{array} $	$n_s \simeq 0.97$ $r \simeq 1.7 \times 10^{-10}$ $T_{rh} \simeq 3 \times 10^{-10}$	'61 10 ⁻⁵ 1 ² GeV	

Scenario IIIa

Scenario IIIb

Conclusions

- New inflationary model: Loop Blow-up Inflation
- Inflaton: blow-up mode with potential from 1-loop corrections
- Loop corrections from BHP conjecture and low-energy EFT considerations
- Inflationary potential:

$$V(\varphi) \simeq V_0 \left(1 - \frac{c_{loop}}{v^{1/3} \varphi^{2/3}}\right)$$

- Interesting predictions:
 - 1. Microscopic parameters: $\mathcal{V} \sim \mathcal{O}(10^4)$, $\varphi_* \simeq 0.2$ with EFT under control
 - 2. Number of e-foldings: $51.5 \leq N_e \leq 53$
 - 3. Cosmological Parameters: $n_s \simeq 0.976$, $r \simeq 2 \times 10^{-5}$, $0 \leq \Delta N_{eff} \leq 0.36$

Thank you for your attention!

Control over EFT

- EFT always under control: τ_{φ} is within Kähler cone throughout inflation.
- For $51.5 \leq N_e \leq 53$: $\mathcal{V} \sim \mathcal{O}(10^4)$, $\varphi_* \simeq 0.2$ \implies Need to check!
- Explicit CY example [Cicoli, Krippendorf, Mayrhofer, Quevedo, Valandro: 2012]:

$$\mathcal{V} = \frac{1}{9} \sqrt{\frac{2}{3}} \left(\tau_b^{3/2} - \sqrt{3} \tau_s^{3/2} - \sqrt{3} \tau_{\varphi}^{3/2} \right) \qquad \text{with} \qquad \tau_b = \frac{27}{2} t_b^2, \ \tau_s = \frac{9}{2} t_s^2, \ \tau_{\varphi} = \frac{9}{2} t_{\varphi}^2$$

• Kähler cone conditions:

$$t_b + t_s > 0$$
, $t_b + t_{\varphi} > 0$, $t_s < 0$, $t_{\varphi} < 0$

• Canonical normalization:

$$\tau_{\varphi} = \left(\frac{\sqrt{3}}{2}\right)^{2/3} \mathcal{V}^{2/3} \varphi^{4/3} \simeq \left(\frac{1}{18\sqrt{2}}\right)^{2/3} \tau_b \, \varphi^{4/3}$$

• At horizon exit:

Comments on Spectral Index

• Possible improvements: include additional corrections

F⁴ corrections [Cicoli, Licheri, Piantadosi, Quevedo, Shukla: 2023]
 Subleading loop corrections