CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

UΗ

<u>GRAZEATIONAL</u> AXIVERSE SPECTROSCOPY

Margherita Putti StringPheno2024

Seeing The Forest For The Axions

Workwith E. Dimastrogiovani, M. Fasiello, J. Leedom, A. Westphal arXiv:2312.13431

Summary

How can we tie string theory to experiments?

AXIONS

INFLATION

Summary

How can we tie string theory to experiments?

 String axiverse does not need to couple to SM Can be coupled to hidden gauge fields

INFLATION

Spectator axions coupled to gauge fields during inflation produce ζ and GW

GWs from the AXIVERSE

Filippo + Gonzalo

Detecting the Axiverse

If axions couple to SM

Axion - photon coupling $g_{a\gamma}$ \Rightarrow Axion - nucleon coupling g_N

However, string axions may not be

- Light enough
- ♦ DM
- Coupled to SM

What about the rest of the axiverse?

Spectator Mechanism

 \mathcal{L}_{inf}

$\dot{\chi} \neq 0 \longrightarrow \delta A$ $\delta A + \delta A \rightarrow \zeta, \delta h_{\pm}$

Enhancement of primordial perturbations. For non-Abelian spectators spectra remains flat.

[Peloso et al..] [Dimastrogiova

anni	et	al]

Spectator Mechanism

 \mathcal{L}_{inf}

 $\dot{\chi} \neq 0 \longrightarrow \delta A$ $\delta A + \delta A \rightarrow \zeta, \ \delta h_{\pm}$

Enhancement of primordial perturbations. For Abelian spectators signal present a peak.

Inflationary Axiverse

A multitude of abelian spectators

$$P_{\zeta,GW} = P_{\zeta,GW}^{(vac)} + \sum_{i=1}^{n} P_{\zeta,GW}^{(src)i}$$

Peak parameters determined by: λ CS coupling: height m_{γ} Axion mass: width χ_{in} Initial condition: position

Inflationary Axiverse

Axion properties determine GW features: Gravitational spectroscopy

UV Embedding

We motivated the GW forest via the existence of the string axiverse Can we actually embed this in string theory?

How generic can the spectator mechanism be?
Does the landscape allow observable signals?

Candidates

Type IIB orientifold compactification

• C_2 or C_4 axions from 10D p-form fields Candidates:

$$S = C_0 + ie^{-\alpha}$$
$$G^a = c^a - Sb^a$$
$$T_\alpha = \tau_\alpha - i(\rho_\alpha)$$

Volume modulus

 A_{μ} , gauge fields from D7-brane

 $M_{10} \rightarrow M_4 \times \tilde{X}_3$

 $\tilde{X}_3 = X_3 / \Omega$ X_3 CY 3-fold

D

 $\alpha - \kappa_{\alpha b c} c^{b} b^{c} + \frac{i}{2} S \kappa_{\alpha b c} b^{b} b^{c}$

 ρ_{α} 4-form even axion

c^a 2-form odd axion

Gauge theory

D7-brane wrapping divisor $\tilde{\mathcal{D}}$ of \tilde{X}_3

 $\mathscr{L}_{gauge} \supset -\frac{1}{4} Re[f_{\tilde{D}}],$ $f_{\tilde{D}} = \frac{w^{\alpha}}{2\pi} (\tau_{\alpha} + i\rho_{\alpha} + .$

$$g^{-2} = \langle Re[f_{\tilde{D}}] \rangle \longrightarrow A_{\mu} \to gA$$

Worlvolume theory:
$$\mathcal{N} = 1$$
 gauge theory
Automatically coupled to ρ_{α}
 $|F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}Im[f_{\tilde{D}}]F_{\mu\nu}\tilde{F}^{\mu\nu}$
...) $w^{\alpha} = \int_{D^{+}} \tilde{\omega}^{\alpha}$

 A_{μ} canonical normalization: $\lambda_{\rho} \sim \frac{1}{\langle \tau \rangle}$

8

Gauge theory

D7-brane wrapp

ing divisor
$$\tilde{D}$$
 of \tilde{X}_{3}
Worlvolume theory: $\mathcal{N} = 1$ gauge theory:
Automatically coupled to ρ_{α}
 $\mathscr{L}_{gauge} \supset -\frac{1}{4}Re[f_{\tilde{D}}]F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}Im[f_{\tilde{D}}]F_{\mu\nu}\tilde{F}^{\mu\nu}$
 $f_{\tilde{D}} = \frac{w^{\alpha}}{2\pi}(\tau_{\alpha} + i\rho_{\alpha} + \dots)$ $w^{\alpha} = \int_{D^{+}} \tilde{\omega}^{\alpha}$

$$g^{-2} = \langle Re[f_{\tilde{D}}] \rangle \longrightarrow A_{\mu} \to gA$$

Introduce odd flux: $\frac{1}{2\pi}F_2 = m^a \omega_a \longrightarrow \text{coupling with } c^a$ $f_{\tilde{D}} = \frac{w^{\alpha}}{2\pi} \left[(\tau_{\alpha} + \dots) \right]$

 A_{μ} canonical normalization: $\lambda_{\rho} \sim \frac{1}{\langle \tau \rangle}$

$$+ i(\rho_{\alpha} + \kappa_{\alpha b c} c^{b} m^{c} + ...)]$$

 $\lambda_c \propto w g^2 \kappa m$

Stückelberg

 $\bullet \mathcal{D}$ and \mathcal{D} ' divisors that map into each other under Ω

+ If D7 branes wrap both \mathcal{D} and \mathcal{D} ' axion symmetries can be gauged

Stückelberg terms, gauge field becomes massive

geometric dc

flux-induced $d\rho$

$$c^{a} \to \nabla c^{a} = dc^{a} - q^{a}A, \qquad q^{a} \sim w^{a}$$

 $\rho_{\alpha} \to \nabla \rho_{\alpha} = d\rho_{\alpha} - iq_{\alpha}A, \qquad q_{\alpha} \sim \kappa_{\alpha b c} m^{b} w^{c}$

Lose candidate axions

Spectator mechanism doesn't work with massive gauge fields

Avoiding Stückelberg

Class I: $[\mathcal{D}] = [\mathcal{D}']$ Same homology class

U(1) from D7 brane wrapping \tilde{D} of \tilde{X}_3

$$w^a = 0$$

Candidate axions: c^a and ρ_{α}

No Stückelberg: $\nabla c^a = dc^a$ and $\nabla \rho_\alpha = d\rho_\alpha$

$$\mathscr{L}_{EFT} \supset -\frac{\lambda}{4f_{\chi}}\chi$$

1. Perturbative control $\frac{\alpha}{2\pi} \lesssim 1$, where $\alpha = \frac{1}{2w\langle \tau \rangle}$ 2. Control of ED1: $2\pi v \gtrsim \mathcal{O}(1) \rightarrow \frac{\pi^2}{\kappa w \alpha} \gtrsim 1$, where $\tau = \frac{1}{2}\kappa v^2$

3. Control of ED3: $2\pi \langle \tau \rangle \gtrsim 2$

 $\chi F_{\mu\nu}\tilde{F}^{\mu\nu} \qquad \lambda \sim \mathcal{O}(10)$

 $\lambda_{\rho} \sim \frac{1}{\langle \tau \rangle}$ Signal very low For 3. $\lambda_{\rho} \lesssim \mathcal{O}(1)$ Not observable

$$\mathscr{L}_{EFT} \supset -\frac{\lambda}{4f_{\chi}}\chi$$

1. Perturbative control $\frac{\alpha}{2\pi} \lesssim 1$, where $\alpha = \frac{1}{2w\langle \tau \rangle}$ 2. Control of ED1: $2\pi v \gtrsim \mathcal{O}(1) \rightarrow \frac{\pi^2}{\kappa w \alpha} \gtrsim 1$, where $\tau = \frac{1}{2}\kappa v^2$

3. Control of ED3: $2\pi \langle \tau \rangle \gtrsim 2$

4. Induced D3 Tadpole

Can be boosted by w, κ, m

Not for free!

 $\chi F_{\mu\nu}\tilde{F}^{\mu\nu} \qquad \lambda \sim \mathcal{O}(10)$

 $\lambda_c \sim w^{\alpha} \kappa_{\alpha b d} m^{b}$

$$\mathscr{L}_{EFT} \supset -\frac{\lambda}{4f_{\chi}}\chi$$

1. Perturbative control $\frac{\alpha}{2\pi} \lesssim 1$, where $\alpha = \frac{1}{2w}$ 2. Control of ED1: $2\pi v \gtrsim \mathcal{O}(1) \rightarrow \frac{\pi^2}{\kappa w \alpha} \gtrsim 1$, w

3. Control of ED3: $2\pi \langle \tau \rangle \gtrsim 2$

4. Induced D3 Tadpole

$$Q_{D3} \simeq w\kappa m^2 N_{D7}$$

F-theory picture:
$$N_{D3} + \int_{Y_4} G_4 \wedge G_4 = \frac{\chi(q_4)}{2}$$

 $\chi F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad \lambda \sim \mathcal{O}(10)$

$$\frac{1}{w\langle \tau \rangle}$$
where $\tau = \frac{1}{2}\kappa \eta$

lelas et al..]

Parameter space for c^a with magnetized D7 brane to reach PTA amplitudes in GW signal

Conclusions

String Theory Axiverse

Connect string theory to experiments

• Spectator mechanism \rightarrow GW

 \bullet Different axions \rightarrow different peaks

CS coupling very constrained

- ✦ Big tadpole (D3 charge)
- ✦ Large Euler characteristic
- ✦ Big Hodge number
- ✦ Many axions → smaller peaks

Backup - Non Abelian

Flat signal: very very large peak

- ◆If the gauge field dies huge instability
- Non-Abelian case needs very large CS coupling ($\lambda \sim O(10^2)$) \rightarrow huge tadpole

◆Kähler inflation: $(N_{D7}, m, w) = (10^5, 10^4, 25) \rightarrow Q_{D3} \sim O(10^{10} - 10^{14})$

◆Fibre inflation: $(N_{D7}, m, w) = (10^3, 10^2, 1) \rightarrow Q_{D3} \sim O(10^5 - 10^7)$

- Holland et al. tried to embed in String Inflation

 - Non Abelian spectators are swamplandish

Backup-Avoiding Stückelberg

- Class I: $[\mathcal{D}] = [\mathcal{D}']$
 - $w^a = 0$ \longrightarrow No Stückelberg (q^a and $q_\alpha \propto w^a$) Candidate axions: c^a and ρ_{α}
- Class II: $[\mathcal{D}] \neq [\mathcal{D}']$ $U(N) = SU(N) \times U(1)$ $w^a \neq 0$ -----> Geometric Stückelberg: A eats c^a $m^a = 0$ — No flux Stückelberg ρ_{α} axion, break SU(N) to get U(1)
- Class III: $\mathcal{D} = \mathcal{D}'$ pointwise
 - $w^a = 0$ \longrightarrow No Stückelberg Sp(N) or SO(N) gauge theory break group to get U(1)

Backup - Model parameters

◆ Gauge coupling: Vev of kähler moduli

Axion decay constants: kinetic terms

$$S_{EFT} \supset M_p^2 \int \left(\frac{1}{\mathcal{V}^2} G^{\alpha\beta} d\rho_\alpha \wedge \star \rho_\beta - e^{\phi} G_{ab} dc^a \wedge \star dc^b \right)$$

$$G_{ab} = -\frac{\mathcal{T}_{ab}}{4\mathcal{V}^2} \qquad G_{\alpha\beta} = \frac{1}{4\mathcal{V}^2} \left(\frac{\tau_\alpha \tau_\beta}{\mathcal{V}^2} - \mathcal{T}_{\alpha\beta} \right) \qquad \qquad \mathcal{T}_{AB} = \kappa_{AB\gamma} v^{\gamma} \qquad \mathcal{V} = \frac{1}{6} \kappa_{\alpha\beta\gamma} v^{\alpha} v^{\beta} v^{\gamma}$$

Axion masses: ED3, ED1, ED1s dissolved in an ED3 or Gaugino condensation

$$W_{ED3} \sim Ae^{-2\pi T} \rightarrow \delta V_{ED3} \simeq e^{-2\pi \tau} \cos(\chi_e/f)$$

$$K_{ED1} \sim -3\ln(T + \overline{T} + \dots) \rightarrow \delta V_{ED1} \simeq e^{-2\pi \nu} \cos(\chi_o/f)$$