Holography for KKLT: Anatomy of a Flow

String Phenomenology 2024, Padua, Italy

MPI Munich

Work to appear with I. Bena and S. Lüst

Scale separation and de Sitter

No scale-separated AdS vacua

[D. Lüst, Palti, Vafa '19]

As $\Lambda \to 0$, \exists tower of states s.t.

$$m \sim |\Lambda|^{\alpha}$$

No long-lived dS vacua

[Obied, Ooguri, Spodyneiko, Vafa '18] [Ooguri, Palti, Shiu, Vafa '18]

 $V(\phi)$ in consistent EFT should satisfy

$$|\nabla V| \geq \frac{c}{M_p} \cdot V \qquad \text{or} \qquad \min\left(\nabla_i \nabla_j V\right) \leq -\frac{c'}{M_p^2} \cdot V$$

Scale separation and de Sitter

No scale-separated AdS vacua

[D. Lüst, Palti, Vafa '19]

As $\Lambda \to 0$, \exists tower of states s.t.

$$m \sim |\Lambda|^{\alpha}$$

No long-lived dS vacua

[Obied, Ooguri, Spodyneiko, Vafa '18] [Ooguri, Palti, Shiu, Vafa '18]

 $V(\phi)$ in consistent EFT should satisfy

$$|\nabla V| \geq \frac{c}{M_p} \cdot V \qquad \text{or} \qquad \min\left(\nabla_i \nabla_j V\right) \leq -\frac{c'}{M_p^2} \cdot V$$

Counter-example (?):

KKLT

[Kachru, Kallosh, Linde, Trivedi '03]

[See talks by A. Schachner and L. McAllister]

The KKLT scenario

Two-step procedure:

- Stabilise CY moduli with fluxes
 - + non-perturbative corrections
- \rightarrow SUSY, scale-separated AdS $\Lambda < 0$

- 2. Raise the C.C. to a positive value:
 - add $\overline{D3}$ branes at bottom of warped throat
- \rightarrow dS vacuum with broken SUSY

$$\Lambda > 0$$

The KKLT scenario

Two-step procedure:

- 1. Stabilise CY moduli with fluxes
 - + non-perturbative corrections
- → SUSY, scale-separated AdS

$$\Lambda < 0$$

- 2. Raise the C.C. to a positive value:
 - add $\overline{D3}$ branes at bottom of warped throat
- → dS vacuum with broken SUSY

$$\Lambda > 0$$

Study this step through holography and domain walls

KKLT 101

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

$$W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$

$$W_{\mathrm{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^{i}, G_{3}) e^{-2\pi k^{\alpha} T_{\alpha}}$$

$$\mathrm{need\ to\ be\ } \ll 1$$

KKLT 101

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

$$W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$

$$W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^i, G_3) e^{-2\pi k^{\alpha} T_{\alpha}}$$

$$\text{need to be} \ll 1$$

• Get C.C. in terms of stabilised Kähler modulus σ_0

$$\Lambda_{\text{AdS}} = -3 \left(e^{K} |W|^{2} \right) \Big|_{D_{a}W=0} = -\frac{a^{2} \mathcal{A}^{2} e^{-2a\sigma_{0}}}{6\sigma_{0}} < 0$$

$$\Rightarrow |\Lambda_{AdS}| \ll 1$$

KKLT 101

- Complex-structure deformations (3-cycles) stabilised by fluxes,
- Kähler moduli (2- and 4-cycles) stabilisation need D3 instanton corrections

$$W_{\text{GVW}} = \int_{X_3} G_3 \wedge \Omega_3 \qquad G_3 = F_3 - \tau H_3$$

$$W_{\text{n.p.}} = \sum_{\mathbf{k}} \mathcal{A}_{\mathbf{k}}(z^{i}, G_{3}) e^{-2\pi k^{\alpha} T_{\alpha}}$$

$$\text{need to be } \ll 1$$

• Get C.C. in terms of stabilised Kähler modulus σ_0

$$\Lambda_{\text{AdS}} = -3 \left(e^{K} |W|^{2} \right) \Big|_{D_{a}W=0} = -\frac{a^{2} \mathcal{A}^{2} e^{-2a\sigma_{0}}}{6\sigma_{0}} < 0$$

Idea: trade fluxes with branes

$$\Rightarrow |\Lambda_{AdS}| \ll 1$$

Fluxes/branes for KKLT

• On CY₃: exchange the (F_3, H_3) fluxes with D5/NS5 branes on dual cycles.

- 3d version of KKLT from M theory
- On CY₄: trade the G_4 flux for M5 branes on dual cycle $L_4 \subset CY_4$.

Fluxes/branes for KKLT

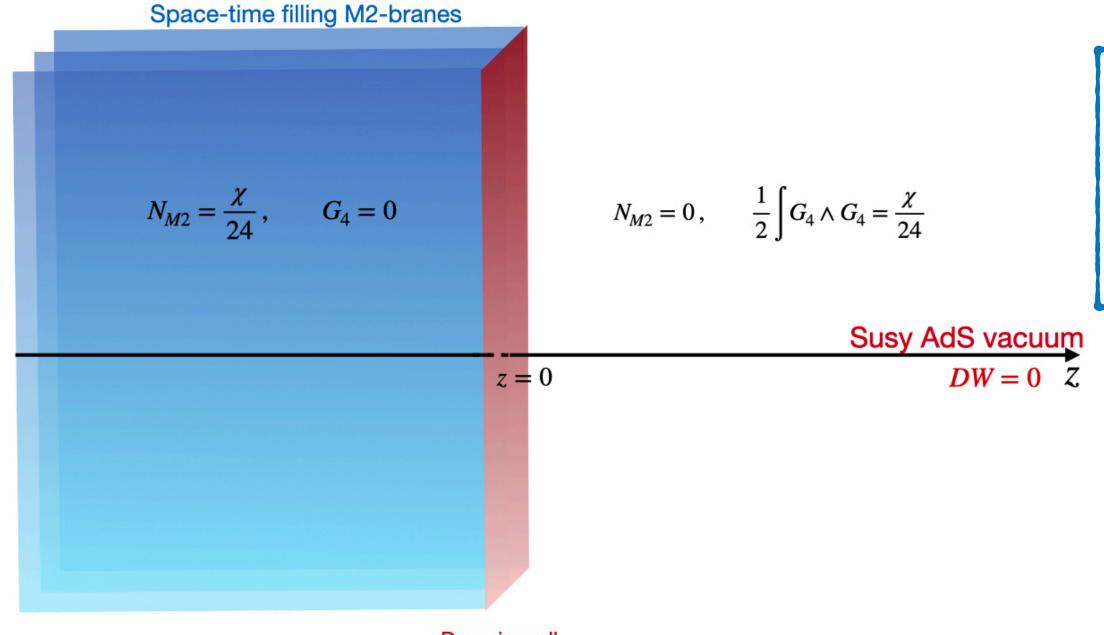
• On CY₃: exchange the (F_3, H_3) fluxes with D5/NS5 branes on dual cycles.

- 3d version of KKLT from M theory
- On CY₄: trade the G_4 flux for M5 branes on dual cycle $L_4 \subset CY_4$.
 - $G_4 = \star G_4$, so locally looks like

		0	y	\boldsymbol{z}	1	2	3	4	5	6	7	8
Domain wall	M5			z=0 ●								
Domain wan	M5			z=0 ●								
Tadpole	M2			z<0 —								

Domain-wall holography

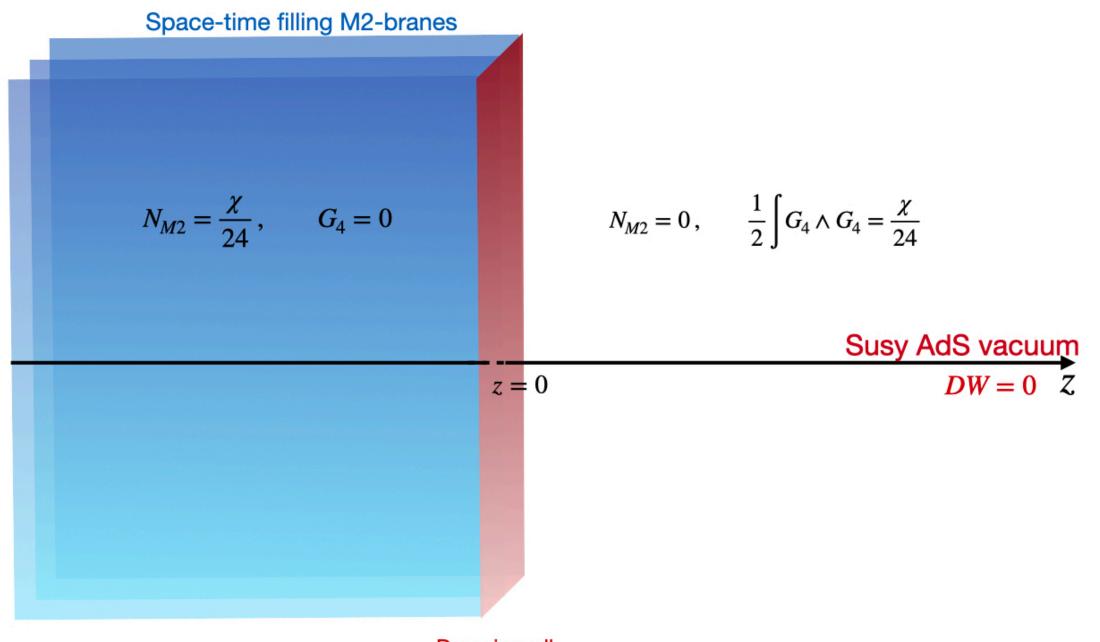
[S. Lüst, Vafa, Wiesner, Xu '22]



Susy AdS_3 from M-theory on X_4 in the presence of self-dual G_4 flux

Domain wall M5-brane on SLag4 dual to G_4

DW: M5 brane on special Lagrangian $L_{\!\scriptscriptstyle 4}$



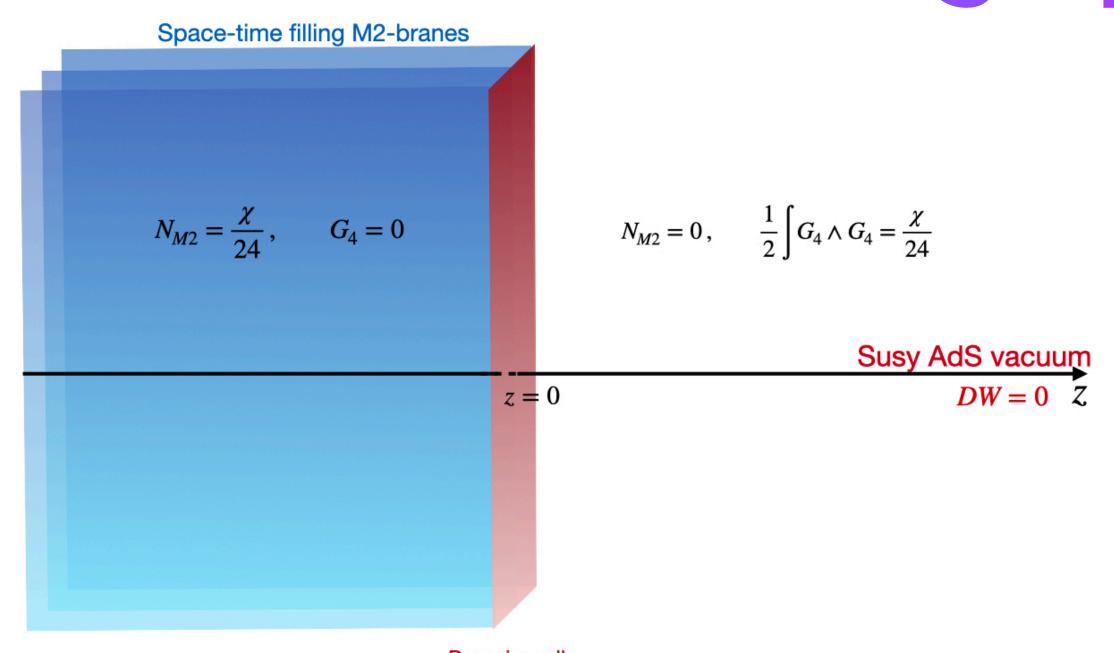
Domain wall

M5-brane on SLag4 dual to G_4

The DW contains d.o.f.

 \sharp (d.o.f.) \rightarrow « UV » central charge, c_{UV} .

[S. Lüst, Vafa, Wiesner, Xu '22]



[S. Lüst, Vafa, Wiesner, Xu '22]

At $z = + \infty$, the IR central charge measures the radius of the AdS₃:

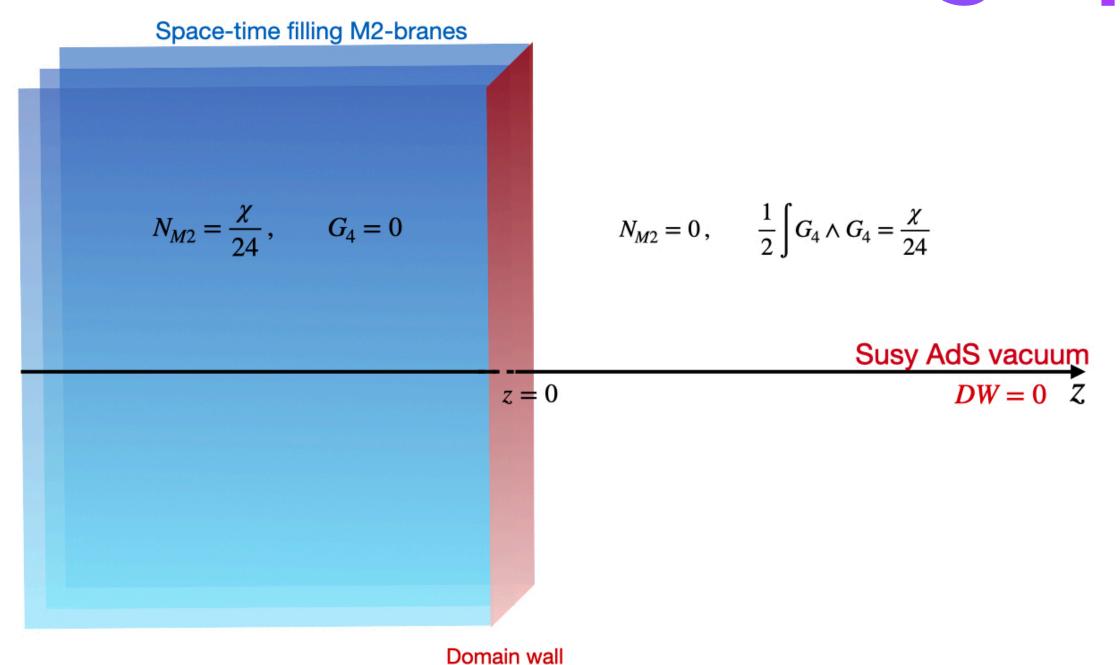
$$c_{\rm IR} = \frac{3}{2} l_{\rm AdS} \sim \frac{1}{|\Lambda|}$$

Domain wall

M5-brane on SLag4 dual to G_4

The DW contains d.o.f.

 \sharp (d.o.f.) \rightarrow « UV » central charge, c_{UV} .



[S. Lüst, Vafa, Wiesner, Xu '22]

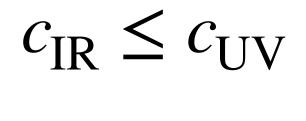
At $z = + \infty$, the IR central charge measures the radius of the AdS₃:

$$c_{\rm IR} = \frac{3}{2} l_{\rm AdS} \sim \frac{1}{|\Lambda|}$$

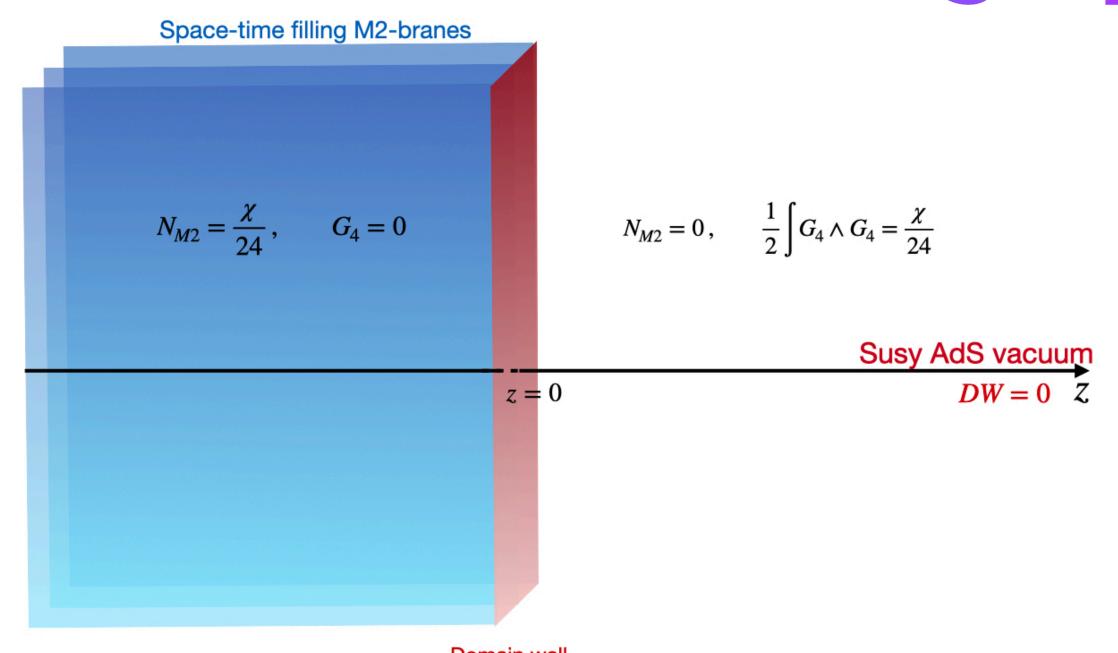
M5-brane on SLag4 dual to G_4

The DW contains d.o.f.

$$\sharp$$
 (d.o.f.) \rightarrow « UV » central charge, c_{UV} .



 \Rightarrow lower bound on $|\Lambda|$



At $z = + \infty$, the IR central charge

[S. Lüst, Vafa, Wiesner, Xu '22]

measures the radius of the AdS₃:

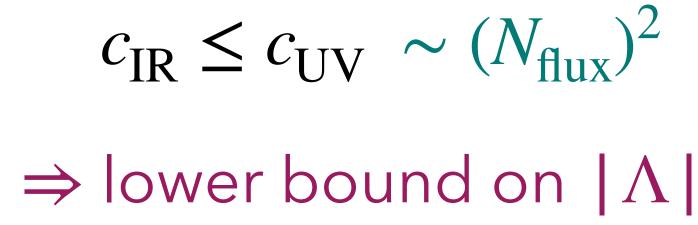
$$c_{\rm IR} = \frac{3}{2} l_{\rm AdS} \sim \frac{1}{|\Lambda|}$$

Domain wall M5-brane on SLag4 dual to G_4

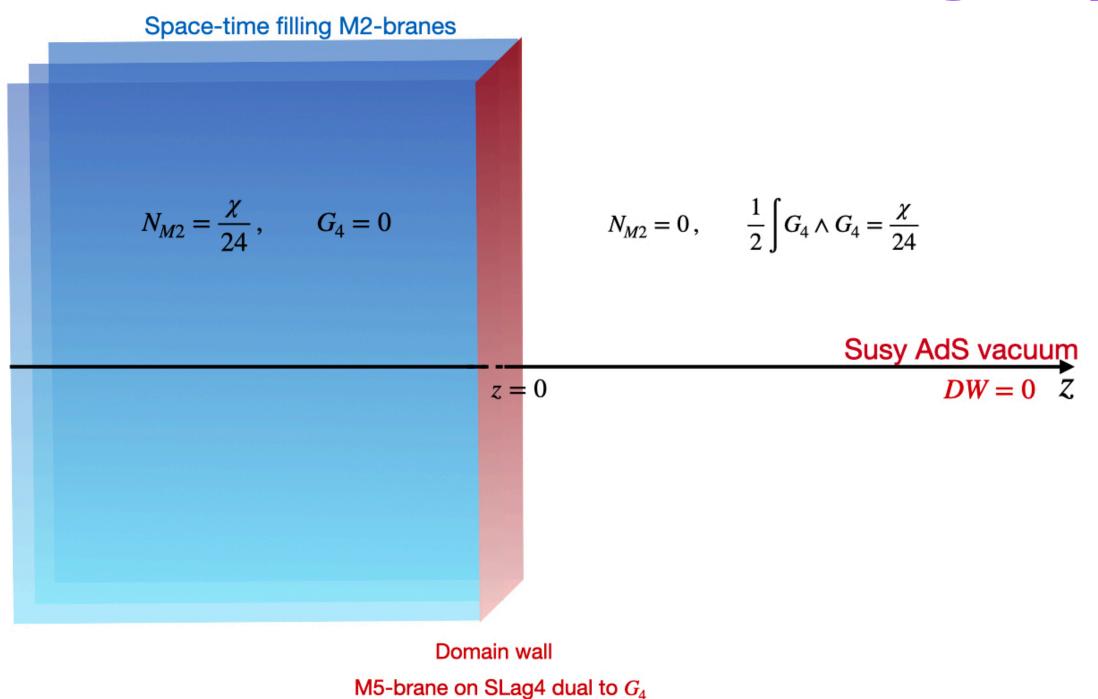
The DW contains d.o.f.

 \sharp (d.o.f.) \rightarrow « UV » central charge, c_{UV} .

Estimate c_{IIV} : deformations of SLag



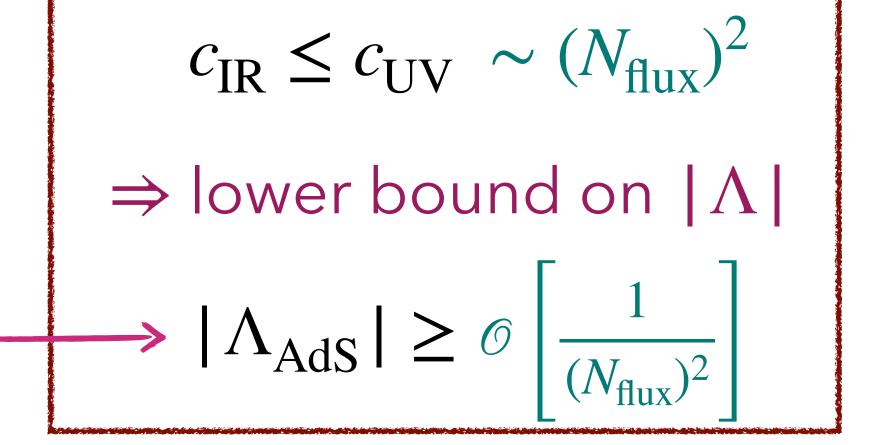
$$|\Lambda_{AdS}| \ge \emptyset$$
 $\frac{1}{(N_{flux})^2}$



[S. Lüst, Vafa, Wiesner, Xu '22]

⇒ Not enough d.o.f. on the brane to get a sufficiently small C.C.!

Need it exponentially small



Hidden degrees of freedom?

- ullet They take a DW sourcing the KKLT AdS, and declare the UV d.o.f. to be the deformations of the SLag L_4 .
- What if there are hidden d.o.f.?
 - At the M5-M5 brane intersections there could have much more d.o.f.
 - (D1-D5 system: central charge is N_1N_5 instead of N_1+N_5 .)
 - Here: potentially d.o.f. from M2 branes ending on M5 branes

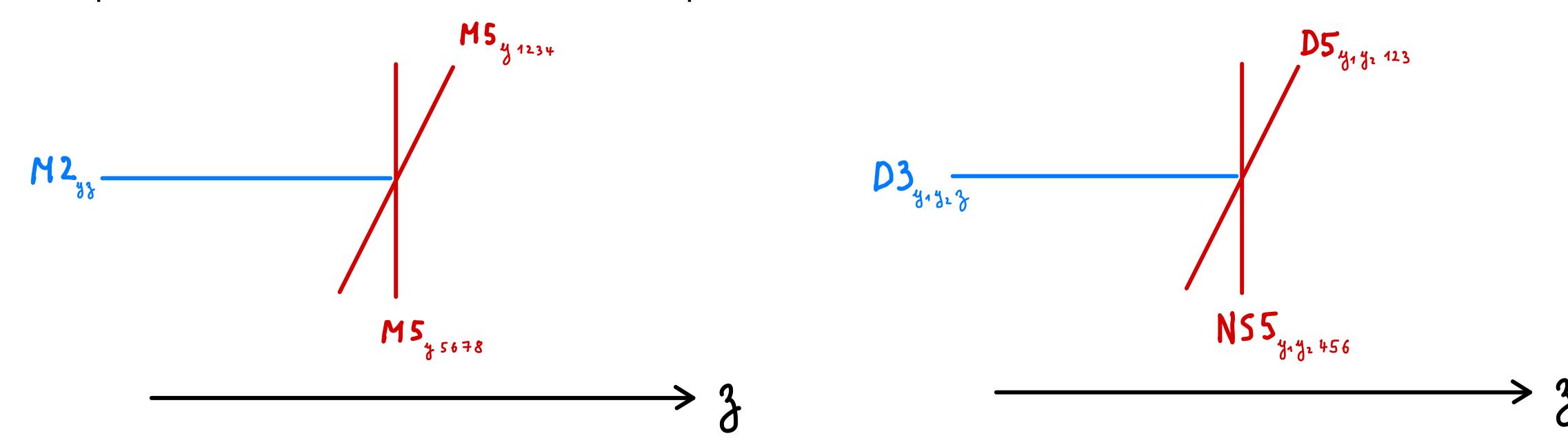
Hidden degrees of freedom?

- ullet They take a DW sourcing the KKLT AdS, and declare the UV d.o.f. to be the deformations of the SLag L_4 .
- What if there are hidden d.o.f.?
 - At the M5-M5 brane intersections there could have much more d.o.f.
 - (D1-D5 system: central charge is N_1N_5 instead of N_1+N_5 .)
 - Here: potentially d.o.f. from M2 branes ending on M5 branes

→ Need to evaluate the radius of the AdS corresponding to the brane intersection (with the most d.o.f.)!

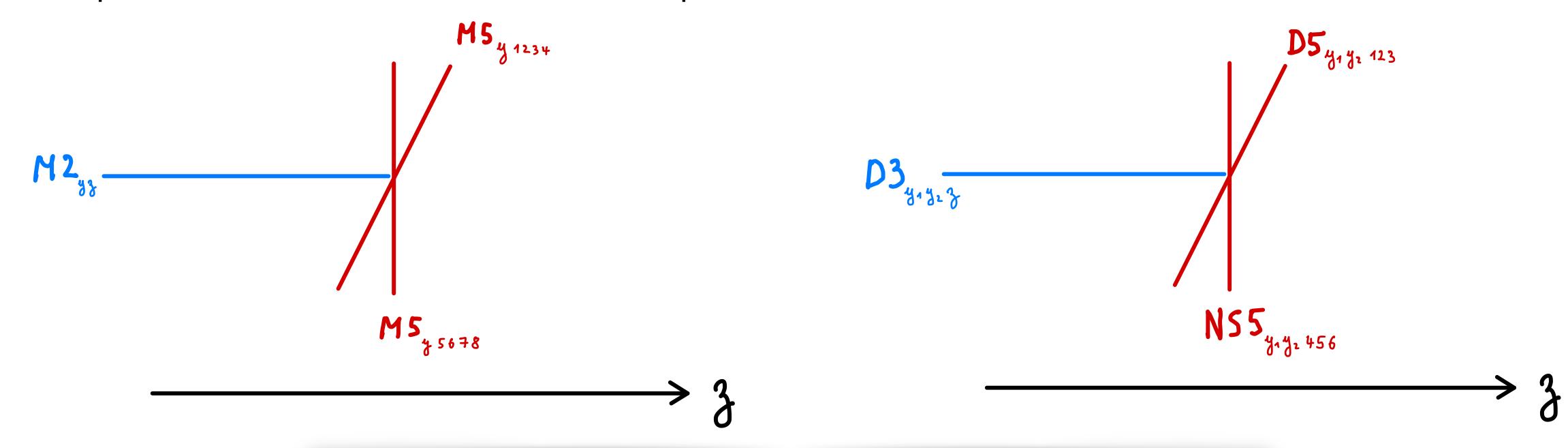
The most « entropic » domain wall

- Configuration with the most d.o.f.?
- ullet Squeeze all branes at the same place ullet brane interaction enhanced



The most « entropic » domain wall

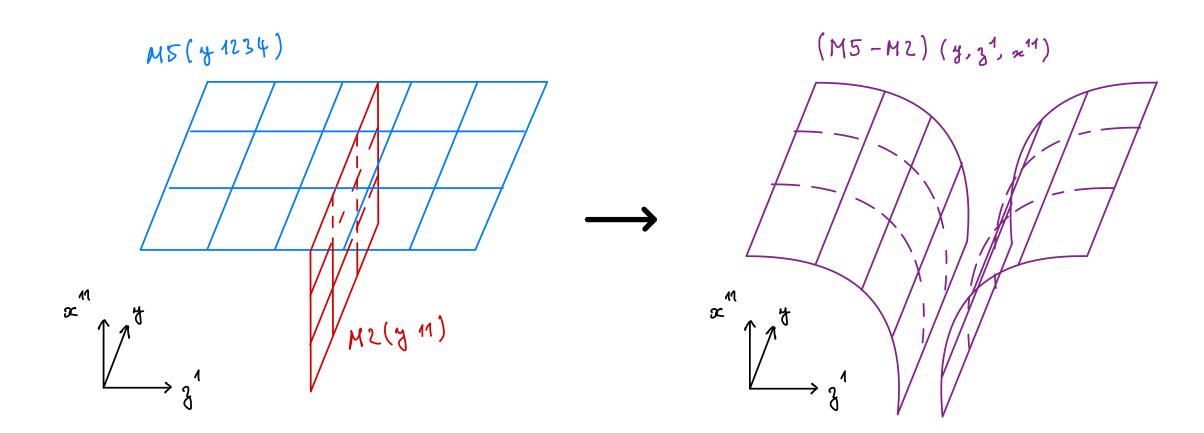
- Configuration with the most d.o.f.?
- ullet Squeeze all branes at the same place ullet brane interaction enhanced

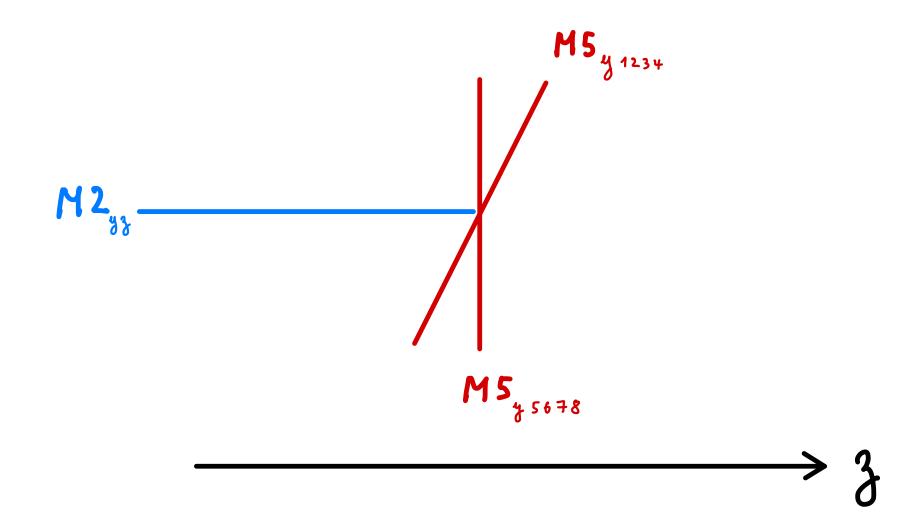


These configurations contain the maximum number of d.o.f. one can get from the branes

Radius of a warped AdS₃?

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5

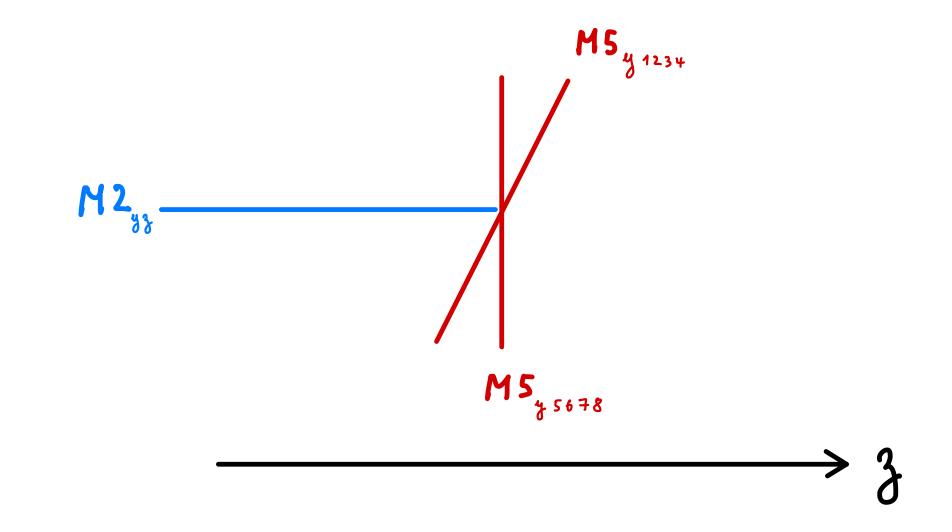


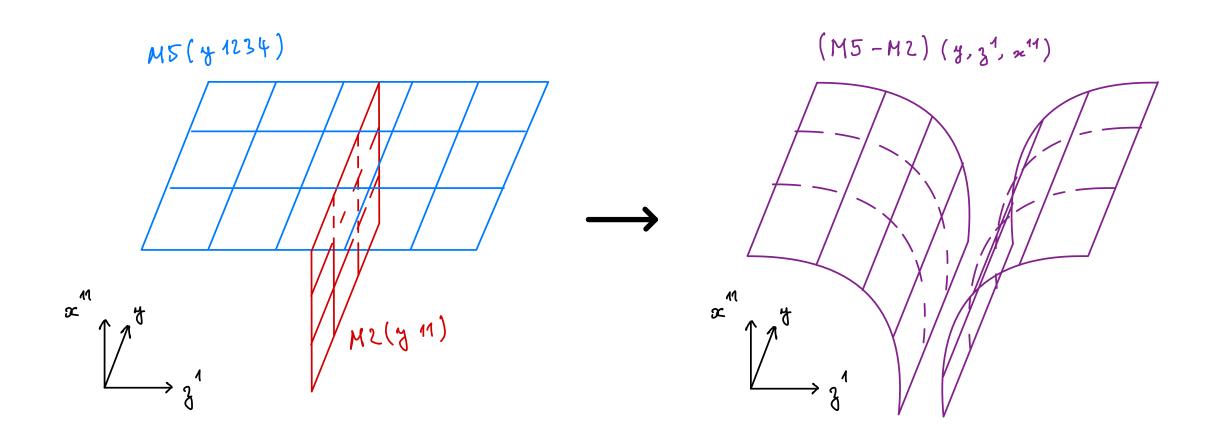


[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

Radius of a warped AdS₃?

- How to get an AdS capturing the d.o.f. of intersection?
- Locally, M2 ending on M5-M5.
- The M2 pulls on the worldvolume of the M5





• Sugra solution, with infrared limit:

$$\begin{array}{l} {\rm AdS_3 \times S^3 \times S^3 \times_w W_2} \\ {\rm [Lunin~'07]} \quad {\rm [Bachas,\,D'Hoker,\,Estes,\,Krym~'13]} \\ {\rm [Bena,\,Houppe,\,Toulikas,\,Warner~'23]} \end{array}$$

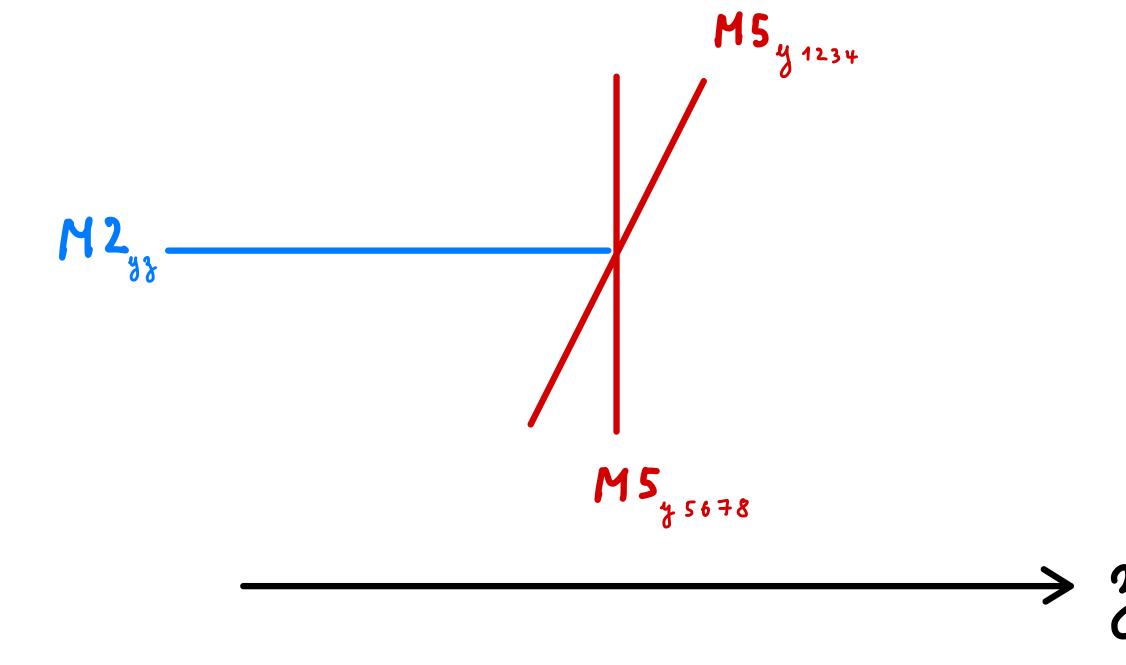
[Bena, Hampton, Houppe, YL, Toulikas '22] [Eckardt, YL '23]

Reading off central charge is a mess

Asmeared M5-M5-M2 intersection

• Can compute central charge from a similar configuration.

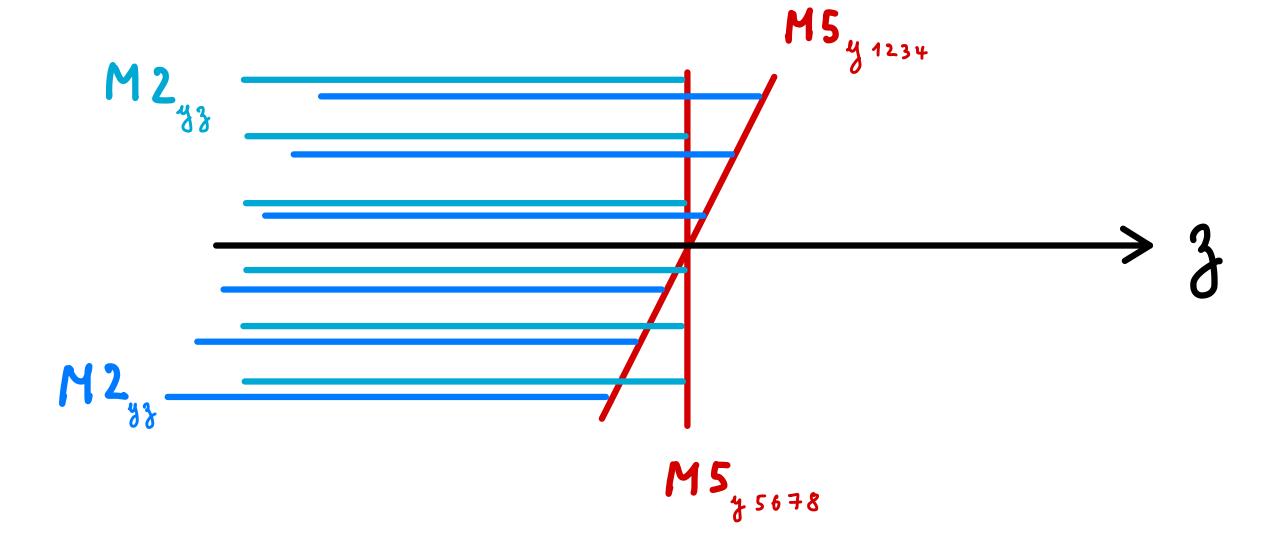
	0	y	z	1	2	3	4	5	6	7	8
M5		_	z=0	_							
M5			z=0								_
M2			z<0 —								



Asmeared M5-M5-M2 intersection

• Can compute central charge from a similar configuration.

	0	y	z	1	2	3	4	5	6	7	8
M5	_	_	z=0	_			_				
M5			z=0								
M2			z<0 _								



We propose:

- Put M2 charge ending on M5 branes (cross shape).
- Smear M5(1234,y) along z. Smear M5(5678,y) along z.
- Take near-horizon limit

→ central charge

Branes at M5 self-intersections

 There is a sugra solution corresponding to the smeared M5-M5-M2. [de Boer, Pasquinucci, Skenderis '99]

	y	z	$(r, \Omega_3^{(1)})$	$\boxed{(r',\Omega_3^{(2)})}$
$M5_1$	\otimes	2	\otimes	r'=0
$M5_2$	\otimes	2	r=0 ●	\otimes
$M2_1$	\otimes	\otimes	\sim	r'=0
$M2_2$	\otimes	\otimes	r=0 ●	~

Metric Ansatz:

$$ds^{2} = H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{-1/3} \left(-dt^{2} + dx_{1}^{2} \right) + H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{2/3} dx_{2}^{2}$$

$$+ H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{-1/3} \left(H_{F}^{(2)} \right)^{2/3} \left(dr^{2} + r^{2} d\Omega_{(1)}^{2} \right)$$

$$+ H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{2/3} \left(H_{F}^{(2)} \right)^{-1/3} \left(dr'^{2} + r'^{2} d\Omega_{(2)}^{2} \right) .$$

• (Localised) M5 harmonic functions:
$$H_F^{(1)} = 1 + \frac{Q_F^1}{r'^2}$$
, $H_F^{(2)} = 1 + \frac{Q_F^2}{r^2}$

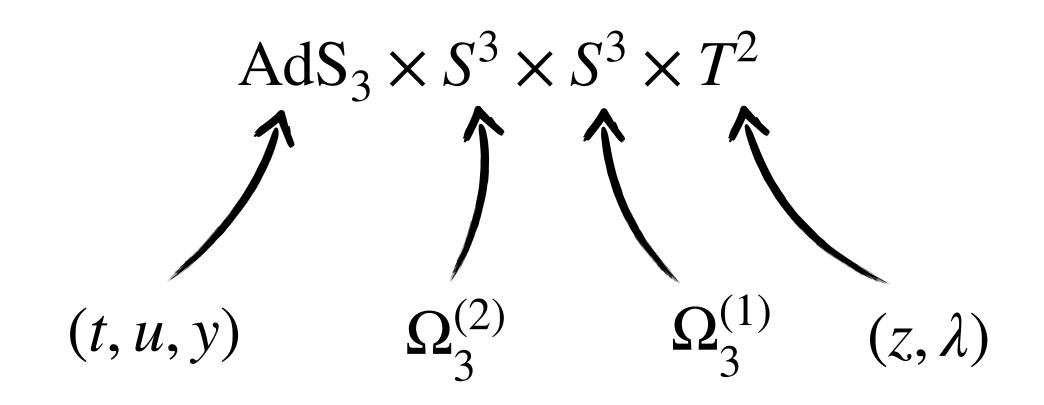
M2-charge function:

$$H_T = \left(1 + \frac{Q_T^{(1)}}{r'^2}\right)\left(1 + \frac{Q_T^{(2)}}{r^2}\right)$$

[de Boer, Pasquinucci, Skenderis '99]

Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]

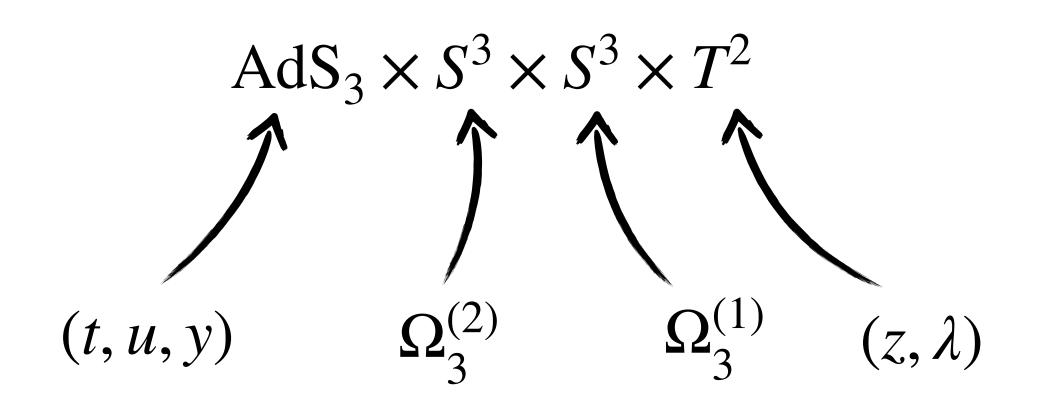


$$r, r' \rightarrow u \propto rr', \lambda \approx \log r - \log r'$$

	y	z	$(r,\Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	2	\bigotimes	r'=0
$M5_2$	\otimes	2	r=0 ●	\otimes
$M2_1$	\otimes	\otimes	>	r′=0 ●
$M2_2$	\otimes	\otimes	r=0 ●	~

Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]



$$r, r' \rightarrow u \propto rr', \lambda \approx \log r - \log r'$$

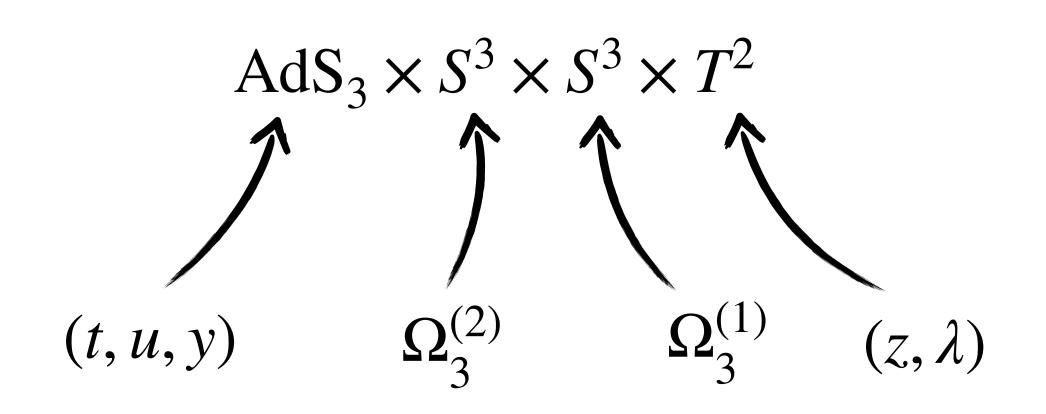
Used
$$N_2 = \frac{\chi(X_4)}{24} = \frac{1}{2} \int G_4 \wedge G_4$$

• Central charge: $c \propto N_2 N_5 \propto (N_{\rm flux})^3$

	y	z	$(r,\Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	2	\bigotimes	r'=0
$M5_2$	\otimes	2	r=0 ●	\otimes
$M2_1$	\otimes	\otimes	>	r′=0 ●
$M2_2$	\otimes	\otimes	r=0 ●	~

Near-horizon limit:

[de Boer, Pasquinucci, Skenderis '99]



	r, r'	\rightarrow	$u \propto$	rr	$\lambda \approx$	$\log r$ -	$-\log r'$
--	-------	---------------	-------------	----	-------------------	------------	------------

	y	z	$(r,\Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	2	\otimes	r'=0
$M5_2$	\otimes	2	r=0 ●	\otimes
$M2_1$	\otimes	\otimes	~	r'=0
$M2_2$	\otimes	\otimes	r=0 ●	\sim

Used
$$N_2 = \frac{\chi(X_4)}{24} = \frac{1}{2} \int G_4 \wedge G_4$$

- Central charge: $c \propto N_2 N_5 \propto (N_{\rm flux})^3 > (N_{\rm flux})^2$
 - [S. Lüst, Vafa, Wiesner, Xu '22]
- \rightarrow Weaker bound on Λ due to the M2 branes!

Warped AdS₄ in type IIB

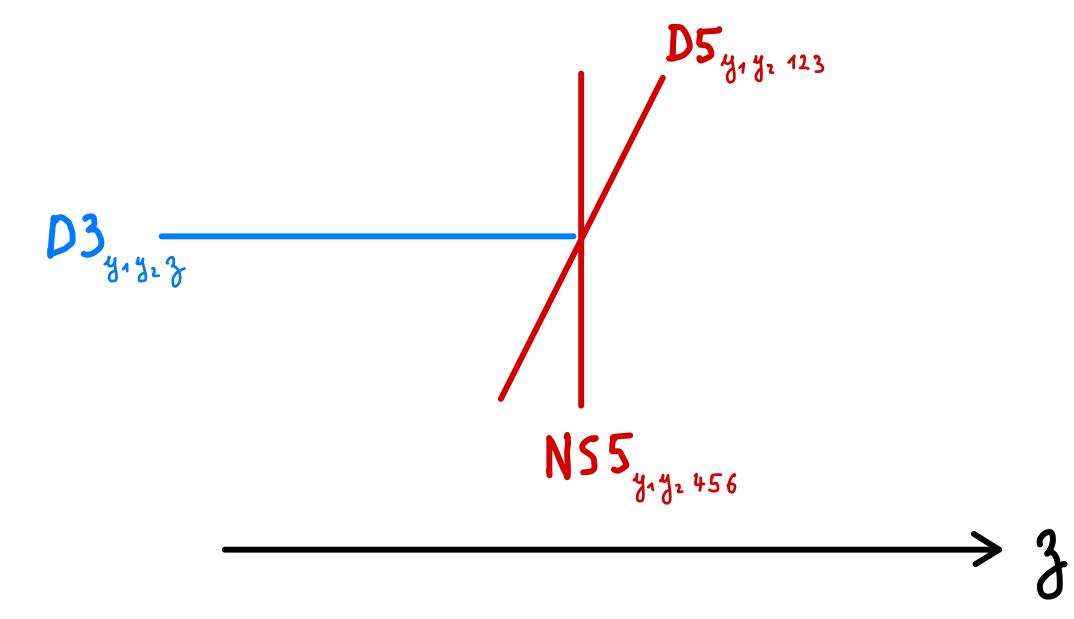
• Sugra solution for D5-NS5-D3 intersection is known.

[D'Hoker, Estes, Gutperle '07]

[Aharony, Berdichevsky, Berkooz, Shamir '11]

[Assel, Bachas, Estes, Gomis '11]

• The solution is an $AdS_4 \times S^2 \times S^2 \times_w \Sigma_2$



Warped AdS₄ in type IIB

• Sugra solution for D5-NS5-D3 intersection is known.

[D'Hoker, Estes, Gutperle '07]

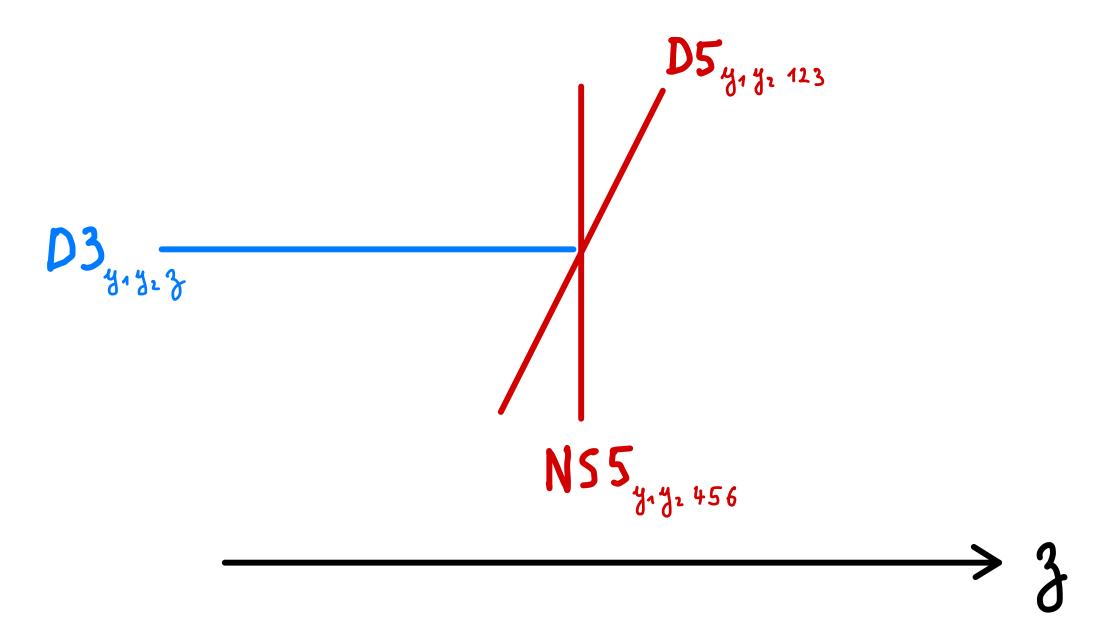
[Aharony, Berdichevsky, Berkooz, Shamir '11]

[Assel, Bachas, Estes, Gomis '11]

- The solution is an $AdS_4 \times S^2 \times S^2 \times_w \Sigma_2$
- Compute of AdS radius in 4d Planck units:

$$\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})$$

[Assel, Estes, Yamazaki '12]



Matches the free energy of the 3d CFT!

[Assel, Estes, Yamazaki '12]

[Karch, Sun, Uhlemann '22]

- Realised KKLT AdS as being sourced by a DW made of M5 or D5/NS5 branes
- Computed AdS radius of the brane intersection (UV)
 - ► M theory: radius of the AdS₃

$$\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^3$$

► IIB: radius of the AdS₄

$$\frac{l_{AdS}}{G_N} \sim (N_{\text{flux}})^4$$

- Realised KKLT AdS as being sourced by a DW made of M5 or D5/NS5 branes
- Computed AdS radius of the brane intersection (UV)
 - M theory: radius of the AdS₃

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^3 > (N_{\rm flux})^2$$

$$\uparrow$$
Deformations
of SLag
[S. Lüst, Vafa, Wiesner, Xu '22]

► IIB: radius of the AdS₄

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^4 > (N_{\rm flux})^2$$
Hanany-Witten-like d.o.f.

- Realised KKLT AdS as being sourced by a DW made of M5 or D5/NS5 branes
- Computed AdS radius of the brane intersection (UV)
 - M theory: radius of the AdS₃

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^3 > (N_{\rm flux})^2$$

$$\uparrow$$
Deformations
of SLag
[S. Lüst, Vafa, Wiesner, Xu '22]

- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with $|\Lambda| \ll 1$ in the KKLT scenario.

► IIB: radius of the AdS₄

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^4 > (N_{\rm flux})^2$$
Hanany-Witten-like d.o.f.

$$|\Lambda_{AdS}| \ge \mathcal{O}\left[\frac{1}{(N_{flux})^4}\right]$$

- Realised KKLT AdS as being sourced by a DW made of M5 or D5/NS5 branes
- Computed AdS radius of the brane intersection (UV)
 - M theory: radius of the AdS₃

$$\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^3 > (N_{\rm flux})^2$$

$$\uparrow$$
Deformations
of SLag
[S. Lüst, Vafa, Wiesner, Xu '22]

 $(N_{\rm flux})^2$ $\frac{l_{AdS}}{G_N} \sim (N_{\rm flux})^4 > (N_{\rm flux})^2$ Deformations Hanany-Witten-like d.o.f.

► IIB: radius of the AdS₄

- Cannot have more d.o.f. than that, since we compute the radius of the UV AdS.
- Therefore there is not enough d.o.f. to get the AdS with $|\Lambda| \ll 1$ in the KKLT scenario.

$$|\Lambda_{AdS}| \geq \sigma \left[\frac{1}{(N_{flux})^4}\right]$$

Thank you!

Backup slides

Fluxes/branes for KKLT

- On CY₄ X_4 : trade the G_4 flux for M5 branes on orthogonal cycle $L_4 \subset X_4$.
- $G_4 = \star G_4$, so locally looks like

	0	y	z	1	2	3	4	5	6	7	8
M5	_	_	z=0			_	_				
M5	_	_	z=0 ●						_	_	

• 3d: KKLT AdS₃ as sourced by a domain wall

$$ds^{2} = e^{2D(z)}(-dt^{2} + dy^{2}) + dz^{2}$$

$$\frac{dD}{dz} = -\zeta |Z| \qquad \frac{d\phi^{a}}{dz} = 2\zeta g^{a\bar{b}}\partial_{\bar{b}}|Z|$$
tension of the wall

At
$$z = + \infty$$
, reach KKLT AdS₃

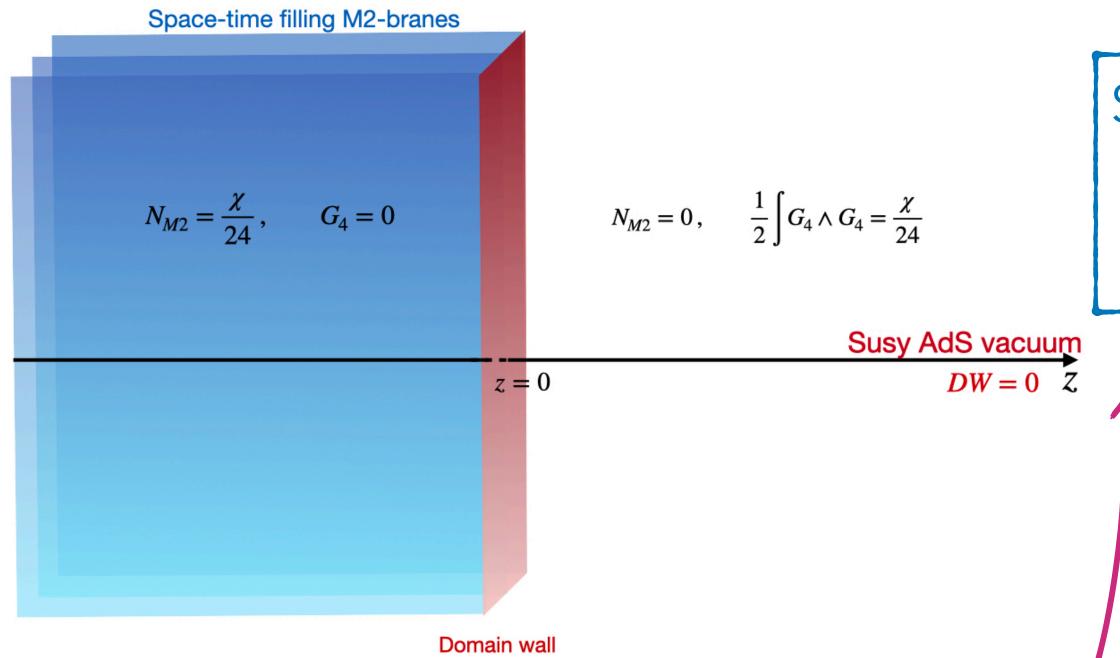
$$|Z|^2 \sim \Delta \langle V \rangle$$

Domain-wall holography

[S. Lüst, Vafa, Wiesner, Xu '22]

No G_4 flux on X_4

$$\frac{\chi(X_4)}{24} = N_{\text{M2}} + \frac{1}{2} \int G_4 \times G_4$$



M5-brane on SLag4 dual to G_4

Lagrangian L_4

(1+1)dQFTDW: M5 brane on special UV

Susy AdS₃ from M-theory on X_4 in the presence of self-dual G_4 flux

$$\frac{\chi(X_4)}{24} = N_{M2} + \frac{1}{2} \int G_4 \wedge G_4$$

$$IR$$

The estimated UV CFT

[S. Lüst, Vafa, Wiesner, Xu '22]

ullet Count possible deformations of special Lagrangian L_4 in X_4

$$c_{\text{UV}} = \left(1 + \frac{1}{2}\right) L_4 \cdot L_4 + \left(4 + \frac{4}{2}\right) b_1(L_4)$$

M5 self-intersections

in X_4 $\sim (N_{\text{flux}})^2$

Scale $L_4 \rightarrow N_{\rm flux} L_4$:

$$b_1$$
 independent M5-strips in X_4
$$\mathcal{O}[(N_{\rm flux})^2]$$

Need it exponentially
$$\begin{array}{c} c_{\rm IR} \leq c_{\rm UV} \sim (N_{\rm flux})^2 \\ \rightarrow |\Lambda_{\rm AdS}| \geq \sigma \left[\frac{1}{(N_{\rm flux})^2}\right] \\ {\rm small} \end{array}$$

⇒ Not enough d.o.f. on the brane to get a sufficiently small C.C.!

$$ds^{2} = H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{-1/3} \left(-dt^{2} + dx_{1}^{2} \right) + H_{T}^{-2/3} \left(H_{F}^{(1)} H_{F}^{(2)} \right)^{2/3} dx_{2}^{2}$$

$$+ H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{-1/3} \left(H_{F}^{(2)} \right)^{2/3} \left(dr^{2} + r^{2} d\Omega_{(1)}^{2} \right)$$

$$+ H_{T}^{1/3} \left(H_{F}^{(1)} \right)^{2/3} \left(H_{F}^{(2)} \right)^{-1/3} \left(dr'^{2} + r'^{2} d\Omega_{(2)}^{2} \right) .$$

	y	z	$(r, \Omega_3^{(1)})$	$(r', \Omega_3^{(2)})$
$M5_1$	\otimes	~	\otimes	r'=0
$M5_2$	\otimes	2	r=0 ●	\otimes
$M2_1$	\otimes	\otimes	>	r'=0
$M2_2$	\otimes	\otimes	r=0 ●	2

Near-horizon limit: [de Boer, Pasquinucci, Skenderis '99]

$$l_p \to 0, \qquad U = \frac{r^2}{l_p^3} = \text{fixed}, \qquad U' = \frac{r'^2}{l_p^3} = \text{fixed}. \qquad \longrightarrow \qquad \text{AdS}_3 \times T^2 \times S^3 \times S^3$$

$$u^2 = l^2 \frac{UU'}{Q_3}, \qquad \lambda = \frac{l}{2} \left(\sqrt{\frac{Q_1}{Q_2}} \log U - \sqrt{\frac{Q_2}{Q_1}} \log U' \right), \qquad l = \sqrt{\frac{Q_1 Q_2}{Q_1 + Q_2}} \qquad \bigwedge \qquad (z, \lambda) \qquad \Omega_3^{(1)} \qquad \Omega_3^{(2)}$$
 w radial »
$$\qquad \text{(t, u, y)} \qquad (z, \lambda) \qquad \Omega_3^{(1)} \qquad \Omega_3^{(2)}$$

Used
$$N_2 = \frac{\chi(X_4)}{24} = \frac{1}{2} \int G_4 \wedge G_4$$

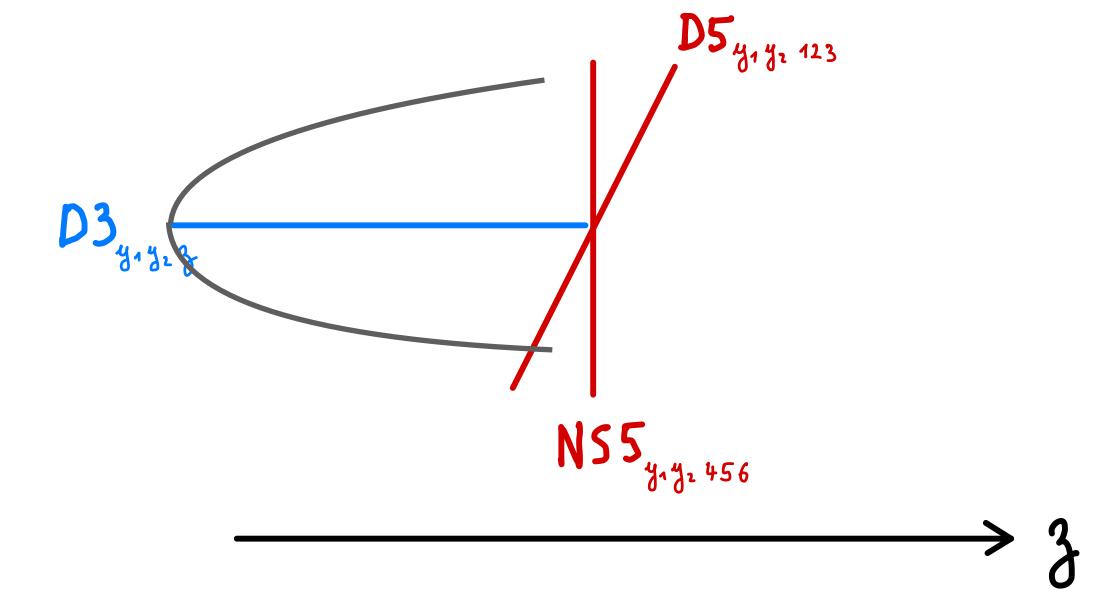
• Central charge: $c \propto N_2 N_5 \propto (N_{\rm flux})^3 > (N_{\rm flux})^2$

 \rightarrow Weaker bound on Λ due to the M2 branes!

[S. Lüst, Vafa, Wiesner, Xu '22]

KKLT ex nihilo

- In fact the D3 branes can have infinitely-many d.o.f.
- But we are interested in the d.o.f. of the intersection



- The location of the D3 branes modify $W_{n.p.}$.
 - → Choose it such that the CY shrinks on the left
 - → Space-time ends there
- This brane system sources the KKLT AdS out of nothing.

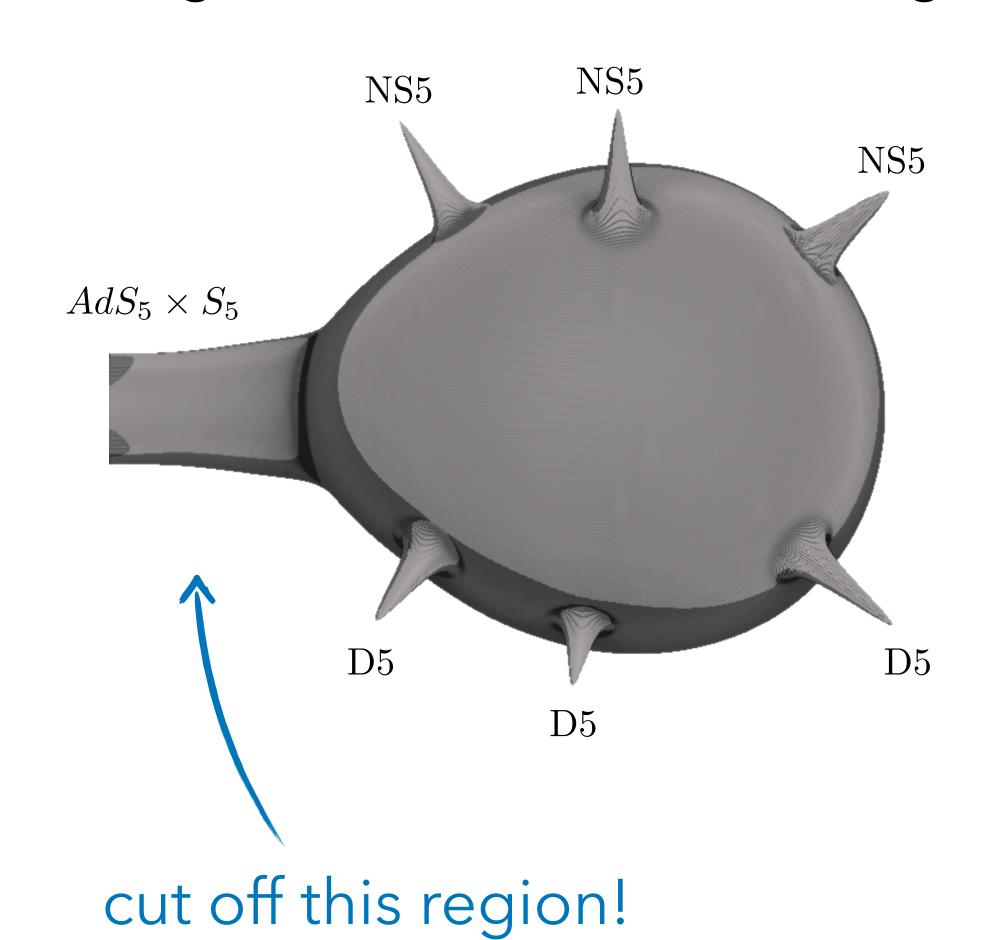
Infinite central charge?

• Sugra solution for D3 ending on D5-NS5 is known.

[D'Hoker, Estes, Gutperle '07]

[Aharony, Berdichevsky, Berkooz, Shamir '11]

[Assel, Bachas, Estes, Gomis '11]

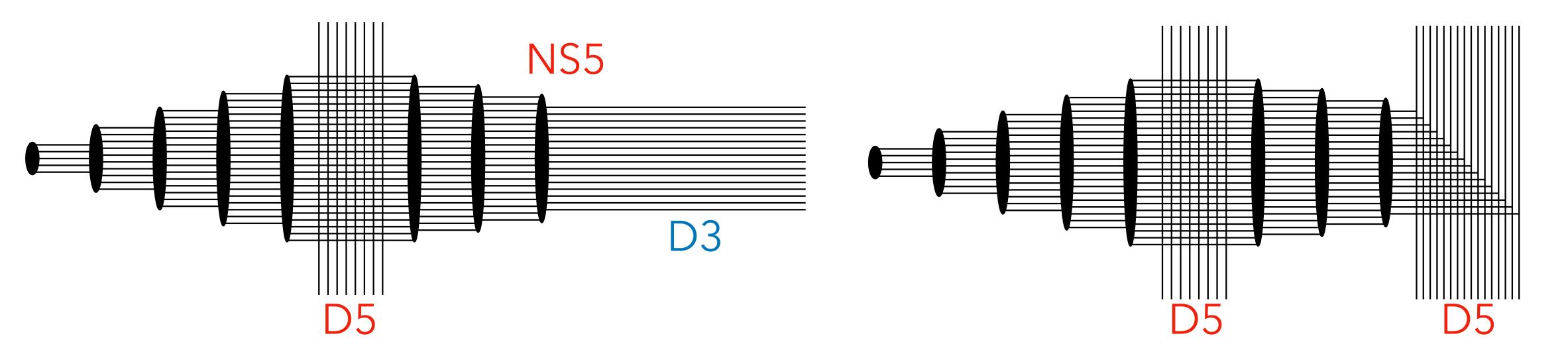


- The solution is an $AdS_4 \times S^2 \times S^2 \times_w \Sigma_2$
- Need estimate of AdS radius in 4d Planck units: $c_{UV} \sim \frac{l_{AdS}}{G_N}$
- V_6 infinite because of the AdS $_5$ region

Finite central charge

• Trick to cut off infinite AdS₅ region from CFT: end the D3's on some D5's.

[Karch, Sun, Uhlemann '22]



• Compute free energy: $F \sim (N_{\rm flux})^4 \log(N_{\rm flux})$

$$F \sim (N_{\text{flux}})^4 \log(N_{\text{flux}})$$

The radius of the AdS₄ solution dual to this quiver has the same scaling!

[Assel, Estes, Yamazaki '12] [Bachas, Lavdas '17]