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© Heterotic String Theory. Truncating all Yang-Mills fields [Gross, Sloan '87;
Bergshoeff, de Roo '89]:
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@ I1IB String Theory. On A5 x S® ansatz [Gubser, Klebanov, Tseytlin '98]:
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up to subleading terms in o. W* is certain combination of quartic invariants.
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GR is trivially a GQG. Cubic example in D = 4 [Bueno, Cano '16]:
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@ Black hole thermodynamics can be computed analytically [e.g. Myers, Robin-
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Hennigar, Kubizinak, Mann '17; Bueno, Cano, Hennigar '19; Bueno et al. '22, Moreno, AM
'23].

Any purely gravitational higher-curvature theory can be
mapped via perturbative field redefinitions to a GQG
[Bueno, Cano, Moreno, AM '19].
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We perform the metric redefinition:

3 13 R 1 R
Gab = Gab — C( ;a <Cab - gCgab> )

for a specific cubic-curvature symmetric tensor Cop and C = ég. The new
theory is a GQG with solution:
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where v = % and w an integration constant related to the energy.
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The thermodynamic properties of the black hole are:

Tw) = — (1 ~ %7) +0(7%),

W
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These results match with those obtained by direct computations with the
o’-corrected 11B effective action.

Higher-curvature gravities belonging to the swampland can
be extremely useful for Quantum Gravity!
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in which the equation for f(r) is algebraic.

ds? = —f(r)dt* +

Example in D = 4 at quadratic derivative order:

L =aRF? + Ry F*F°. — (10ac + 28) Rapea F*° F° .
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For EQGs consistent with WGC, extremal BH solutions do not exist below a
minimal mass.

IThis actually corresponds to a mild form of the Weak Gravity Conjecture.
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Interestingly, both unitarity and WGC must be imposed in holographic EQGs to
respect these inequalities! [Cano, AM, Rivadulla, Zhang '22]

WGC bounds are key to produce a sensible dual CFT. J
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