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Introduction

String effective actions include higher-curvature terms:

IST = Isugra +
1X

k=0

1X

n=1

g
2k
s (↵0)

n
In,k.
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Introduction

‚ String effective actions involve specific combinations of higher-curvature

terms. Difficult to obtain even at low orders!

‚ Computation of ↵0-corrections to sugra solutions becomes daunting task,
with celebrated exceptions [e.g. Campbell, Duncan, Kaloper, Olive ’91; Cano et al.
’19].

Proposal: Explore the higher-curvature swampland.

Search special effective theories cap-
turing physics of any gravitational
EFT (e.g., string effective actions).



Introduction

‚ String effective actions involve specific combinations of higher-curvature

terms. Difficult to obtain even at low orders!

‚ Computation of ↵0-corrections to sugra solutions becomes daunting task,
with celebrated exceptions [e.g. Campbell, Duncan, Kaloper, Olive ’91; Cano et al.
’19].

Proposal: Explore the higher-curvature swampland.

Search special effective theories cap-
turing physics of any gravitational
EFT (e.g., string effective actions).



Introduction

‚ String effective actions involve specific combinations of higher-curvature

terms. Difficult to obtain even at low orders!

‚ Computation of ↵0-corrections to sugra solutions becomes daunting task,
with celebrated exceptions [e.g. Campbell, Duncan, Kaloper, Olive ’91; Cano et al.
’19].

Proposal: Explore the higher-curvature swampland.

Search special effective theories cap-
turing physics of any gravitational
EFT (e.g., string effective actions).



Introduction

‚ String effective actions involve specific combinations of higher-curvature

terms. Difficult to obtain even at low orders!

‚ Computation of ↵0-corrections to sugra solutions becomes daunting task,
with celebrated exceptions [e.g. Campbell, Duncan, Kaloper, Olive ’91; Cano et al.
’19].

Proposal: Explore the higher-curvature swampland.

Search special effective theories cap-
turing physics of any gravitational
EFT (e.g., string effective actions).

Quantum Gravity

Landscape Higher-
curvature 
Grove

Swampland

Energy scale

Moduli space of 
higher-curvature 
Gravities

↑



Within the terrible confines of the Swampland, a magical
and mysterious Grove towards the Landscape there is.



Generalized Quasitopological Gravities

We focus on a special class of theories with intriguing properties on static and
spherically symmetric ansätze:
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Generalized Quasitopological Gravities

Their definition ensures the following properties for GQGs:

The equation for f(r) is at most second order.

Second-order linearized equations on max. sym. bgrounds [Bueno, Cano ’17].

Black hole thermodynamics can be computed analytically [e.g. Myers, Robin-
son ’10; Bueno, Cano ’17; Hennigar, Kubizňák, Mann ’17].

There are non-trivial GQGs in D � 4 [e.g. Oliva, Ray ’10; Myers, Robinson ’10;
Hennigar, Kubizňák, Mann ’17; Bueno, Cano, Hennigar ’19; Bueno et al. ’22, Moreno, ÁM
’23].

Any purely gravitational higher-curvature theory can be
mapped via perturbative field redefinitions to a GQG

[Bueno, Cano, Moreno, ÁM ’19].
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Type-IIB action at O(↵03) as a GQG

IIIBA5⇥S5 [gA5 ] =
1

16⇡G

Z
d5x

p
|gA5 |


R+

12

`2
+

⇣(3)

8
↵
03
W

4

�
+ . . . ,

We perform the metric redefinition:

gab ! gab �
⇣(3)↵03

8

✓
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8`6 and ! an integration constant related to the energy.
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Type-IIB action at O(↵03) as a GQG

The thermodynamic properties of the black hole are:
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These results match with those obtained by direct computations with the
↵
0-corrected IIB effective action.

Higher-curvature gravities belonging to the swampland can
be extremely useful for Quantum Gravity!
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Weak Gravity Conjecture for higher-curvature gravities

On the other hand, it is possible to use the swampland program to constrain

the couplings of higher-order terms in effective actions [e.g. Bellazzini,
Lewandowski, Serra ’19; Charles ’19; Aalsma, Shiu ’22].

Consider Electromagnetic Quasitopological Gravities (EQGs) [Cano, ÁM ’20;
Cano, ÁM, Rivadulla, Zhang ’22]. These are theories of gravity and a (D � 2) field

strength H = dB admitting solutions:

ds2 = �f(r)dt2 +
dr2

f(r)
+ r

2d⌦2

D�2
, H = Q volSD�2

in which the equation for f(r) is algebraic.

Example in D = 4 at quadratic derivative order:

L = ↵RF
2 + �RabF
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b
c � (10↵+ 2�)RabcdF
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Extremal Black Holes, EQGs and WGC

It is possible to analize which EQGs are consistent with Weak Gravity

Conjecture [Arkani-Hamed, Motl, Nicolis, Vafa ’06]: P/M |ext must not increase as
mass increases1.

For instance, for three different particular EQGs:

(a) WGC 3 (b) WGC 7

For EQGs consistent with WGC, extremal BH solutions do not exist below a
minimal mass.

1This actually corresponds to a mild form of the Weak Gravity Conjecture.
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Holographic EQGs and WGC

Direct application of holographic dictionary to EQGs produces holographic
CFTs with a chemical potential µ.

Focus on Rényi entropies Sn across an entangling sphere. Either for µ = 0 or
holographic Einstein-Maxwell, the following inequalities are met [Hung, Myers,
Smolkin, Yale ’11]:
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Interestingly, both unitarity and WGC must be imposed in holographic EQGs to
respect these inequalities! [Cano, ÁM, Rivadulla, Zhang ’22]

WGC bounds are key to produce a sensible dual CFT.



Holographic EQGs and WGC

Direct application of holographic dictionary to EQGs produces holographic
CFTs with a chemical potential µ.

Focus on Rényi entropies Sn across an entangling sphere.

Either for µ = 0 or
holographic Einstein-Maxwell, the following inequalities are met [Hung, Myers,
Smolkin, Yale ’11]:

@

@n
Sn  0 ,

@

@n

✓
n� 1

n
Sn

◆
� 0

@

@n
((n� 1)Sn) � 0 ,

@
2

@n2
((n� 1)Sn)  0 .

Interestingly, both unitarity and WGC must be imposed in holographic EQGs to
respect these inequalities! [Cano, ÁM, Rivadulla, Zhang ’22]

WGC bounds are key to produce a sensible dual CFT.



Holographic EQGs and WGC

Direct application of holographic dictionary to EQGs produces holographic
CFTs with a chemical potential µ.

Focus on Rényi entropies Sn across an entangling sphere. Either for µ = 0 or
holographic Einstein-Maxwell, the following inequalities are met [Hung, Myers,
Smolkin, Yale ’11]:

@

@n
Sn  0 ,

@

@n

✓
n� 1

n
Sn

◆
� 0

@

@n
((n� 1)Sn) � 0 ,

@
2

@n2
((n� 1)Sn)  0 .

Interestingly, both unitarity and WGC must be imposed in holographic EQGs to
respect these inequalities! [Cano, ÁM, Rivadulla, Zhang ’22]

WGC bounds are key to produce a sensible dual CFT.



Holographic EQGs and WGC

Direct application of holographic dictionary to EQGs produces holographic
CFTs with a chemical potential µ.

Focus on Rényi entropies Sn across an entangling sphere. Either for µ = 0 or
holographic Einstein-Maxwell, the following inequalities are met [Hung, Myers,
Smolkin, Yale ’11]:

@

@n
Sn  0 ,

@

@n

✓
n� 1

n
Sn

◆
� 0

@

@n
((n� 1)Sn) � 0 ,

@
2

@n2
((n� 1)Sn)  0 .

Interestingly, both unitarity and WGC must be imposed in holographic EQGs to
respect these inequalities! [Cano, ÁM, Rivadulla, Zhang ’22]

WGC bounds are key to produce a sensible dual CFT.



Holographic EQGs and WGC

Direct application of holographic dictionary to EQGs produces holographic
CFTs with a chemical potential µ.

Focus on Rényi entropies Sn across an entangling sphere. Either for µ = 0 or
holographic Einstein-Maxwell, the following inequalities are met [Hung, Myers,
Smolkin, Yale ’11]:

@

@n
Sn  0 ,

@

@n

✓
n� 1

n
Sn

◆
� 0

@

@n
((n� 1)Sn) � 0 ,

@
2

@n2
((n� 1)Sn)  0 .

Interestingly, both unitarity and WGC must be imposed in holographic EQGs to
respect these inequalities! [Cano, ÁM, Rivadulla, Zhang ’22]

WGC bounds are key to produce a sensible dual CFT.



Conclusions

Gravitational EFTs in the Swampland may be of great use for
Quantum Gravity!

GQGs form a perturbative basis of the space of effective

theories of gravity.

WGC constraints are needed to produce physically sensible

theories, even holographically!

Grazie mille!



Conclusions

Gravitational EFTs in the Swampland may be of great use for
Quantum Gravity!

GQGs form a perturbative basis of the space of effective

theories of gravity.

WGC constraints are needed to produce physically sensible

theories, even holographically!

Grazie mille!



Conclusions

Gravitational EFTs in the Swampland may be of great use for
Quantum Gravity!

GQGs form a perturbative basis of the space of effective

theories of gravity.

WGC constraints are needed to produce physically sensible

theories, even holographically!

Grazie mille!



Conclusions

Gravitational EFTs in the Swampland may be of great use for
Quantum Gravity!

GQGs form a perturbative basis of the space of effective

theories of gravity.

WGC constraints are needed to produce physically sensible

theories, even holographically!

Grazie mille!


