

Flat manifolds, fluxes & Casimir energies A recipe for de Sitter?

Work in progress w/ Miguel Montero

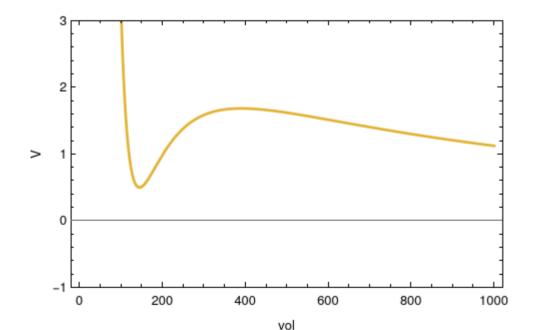
String Pheno 2024, Padova

Bruno Valeixo Bento

The de Sitter conundrum

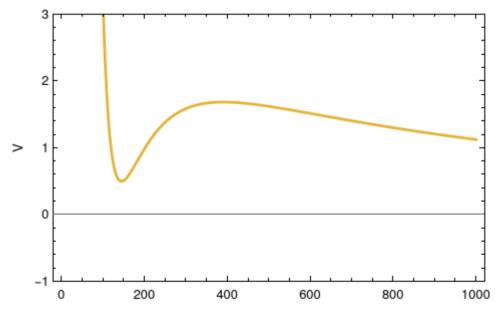
Does String Theory have dS vacua?

[a lot of work on this]



The de Sitter conundrum

Does String Theory have dS vacua? Can we get dS vacua in String Theory?



Our ability to compute (and control) is part of the problem!

[D. Junghans, X. Gao, A. Hebecker, S. Schreyer,
G. Venken, I. Bena, E. Dudas, M. Graña, S. Lust,
F. Carta, J. Moritz, L. McAllister, R. Nally, A.
Schachner, A. Westphal, D. Chakraborty, S.
Parameswaran, I. Zavala, ...]

vol

D-dimensional supergravity n-dimensional manifold d-dimensional EFT de Sitter??

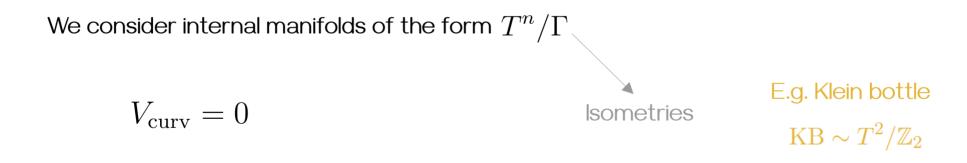
What's the simplest thing we can try?

D-dimensional supergravity

What's the simplest thing we can try?

What's the simplest thing we can try?

1) Flat manifolds (curvature)



Parametrise as $(R_1, R_2, ..., R_2) \rightarrow R^n = R_1 (R_2)^{n-1}, \ x = R_2/R_1$.

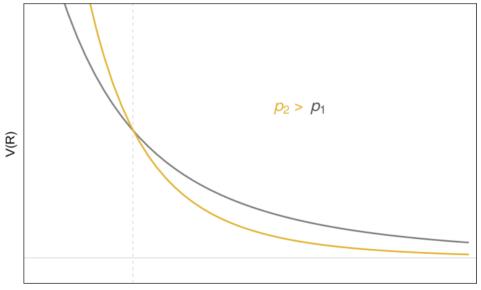
cf. G. B. De Luca, E. Silverstein, G. Torroba '21

What's the simplest thing we can try?

2) Fluxes

Fluxes always contribute positively.

$$V_p^{(lpha)} \propto rac{1}{R^{rac{d\cdot n}{d-2}}} \cdot rac{n_{p,lpha}^2}{R^{2p-n}} \cdot x^{2lpha - rac{2p}{5}}$$
Einstein frame

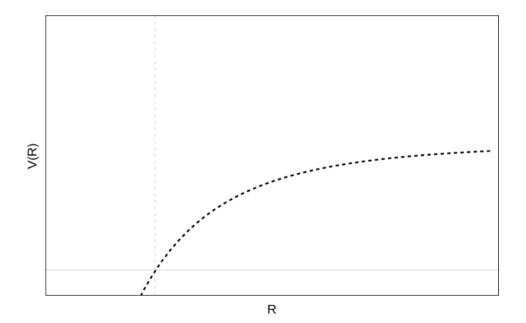


What's the simplest thing we can try?

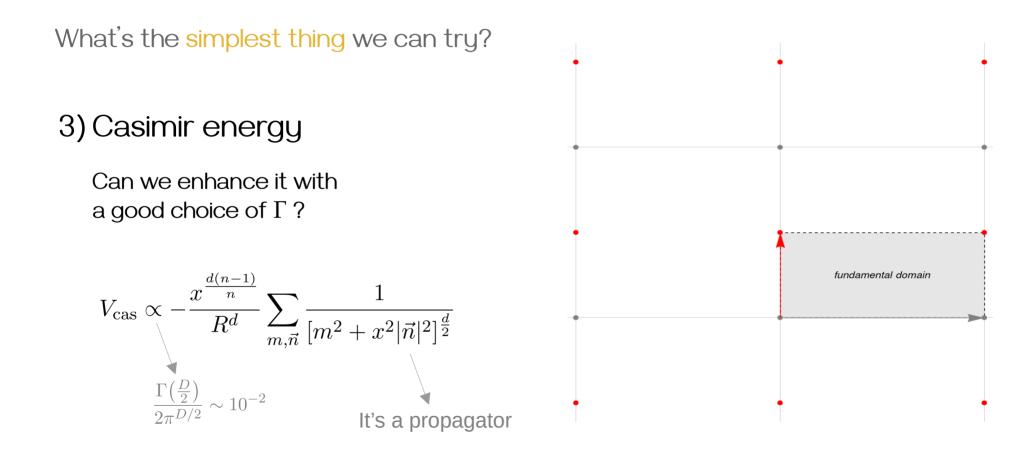
3) Casimir energy
 Quantum leftover of compact space
 → can contribute negatively

$$V_{\text{cas}} \propto -\frac{1}{R^{\frac{d \cdot n}{d-2}}} \cdot \frac{\mathcal{C}}{R^d} \cdot x^{\frac{d(n-1)}{n}} f(x)$$

Einstein frame

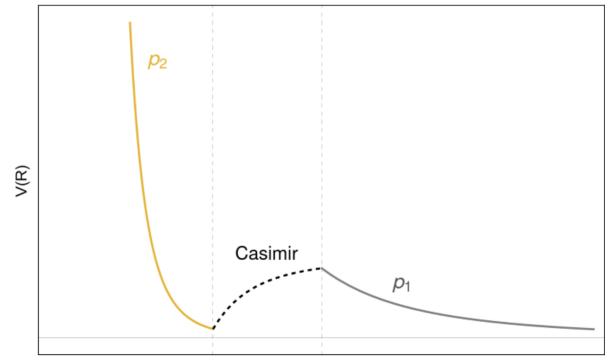


cf. G. B. De Luca, E. Silverstein, G. Torroba '21



Fluxes vs Casimir

How can a dS minimum arise from fluxes and Casimir? (3-term potential)

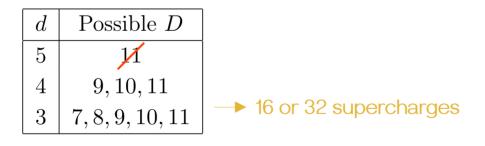


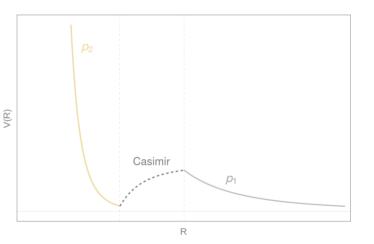
Fluxes vs Casimir

For a dS minimum to arise from fluxes and Casimir (in 3-term potential)

$$V_{p_2} \propto \frac{1}{R^{2p_2-n}}$$
 $V_{cas} \propto \frac{1}{R^d}$ $V_{p_1} \propto \frac{1}{R^{2p_1-n}}$

we need D > 2d and some $n \ge p_2 > D/2$.





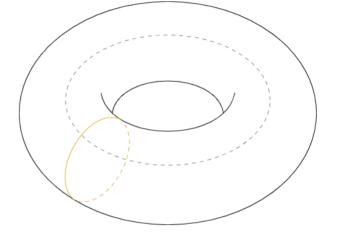
What about D-dim moduli?

We can stabilise D-dimensional moduli in two ways:

- 1) Flux potential (needs appropriate structure)
- 2) Duality freeze-out ("Scherk-Schwarz mechanism")

If the D-dimensional theory has a symmetry, we can use it when imposing boundary conditions

 $\Phi(2\pi R_1) = \mathbf{g} \cdot \Phi(0)$



e.g.
$$\mathbb{Z}_2: r \to \frac{\alpha'}{r}, \quad r = \frac{\alpha'}{r} \Rightarrow r = \sqrt{\alpha'}$$

Bigger symmetry (duality) groups will provide more options for the "freeze-out". (e.g. IIB D=10 \rightarrow SL(2, Z), max.susy D=7 \rightarrow SL(5, Z), ...)

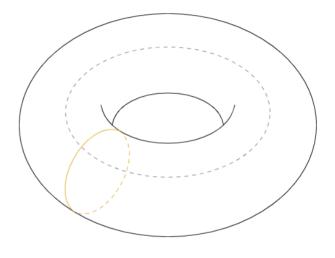
What about D-dim moduli?

We can stabilise D-dimensional moduli in two ways:

Flux potential (needs appropriate structure)
 Duality freeze-out ("Scherk-Schwarz mechanism")

Warning: a duality freeze-out might kill some fluxes!

E.g. Type IIB \rightarrow SL(2,Z) $\tau \rightarrow \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} B_2 \\ C_2 \end{pmatrix} \rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} B_2 \\ C_2 \end{pmatrix}$



$$\mathbf{g} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \begin{aligned} \tau &= i \\ B_2 &= C_2 &= 0 \end{aligned}$$

$$\mathbf{F}_1 = \mathbf{F}_3 = \mathbf{H}_3 = \mathbf{F}_7 = \mathbf{H}_7 = \mathbf{0}$$

32 supercharges

<u>d = 4</u>

 $\int G_4 \wedge G_4 \wedge C_3$ (n = 7)

- $D = 11^* \rightarrow M$ -theory with $G_4/G_7 \rightarrow Axion$ monodromy runaway \mathbf{X}
- $D = 10 \rightarrow No F_6$ in IIB / dilaton unstabilised in IIA \times
- $D = 9 \rightarrow F_2$ from KK vectors (cf. M-theory on T²)

Equivalent to replacing G₄ with nilmanifold curvature

*cf. G. B. De Luca, E. Silverstein, G. Torroba '21

32 supercharges

d = 3

 $\int G_4 \wedge G_4 \wedge C_3$ (n = 8)

- D = 11 \rightarrow M-theory with $G_4/G_7 \rightarrow$ Axion monodromy runaway
- $D = 10 \rightarrow H_7/F_7$ in IIB* / H_7 in IIA
- $D = 9 \rightarrow Duality freeze-out & fluxes$
- $D = 8 \rightarrow 1$ unstabilised scalar (duality freeze-out vs F_5)
- $D = 7 \rightarrow 1$ unstabilised scalar (duality freeze-out vs F₄)

*we cannot freeze-out axio-dilaton, because (H₇,F₇) would also vanish.

16 supercharges

We could also start with a theory with 16 supercharges.

1) $D \leq 10$

2) Only 2-forms/3-forms $\rightarrow p_2 \ge D - 3 \rightarrow d \le 3$

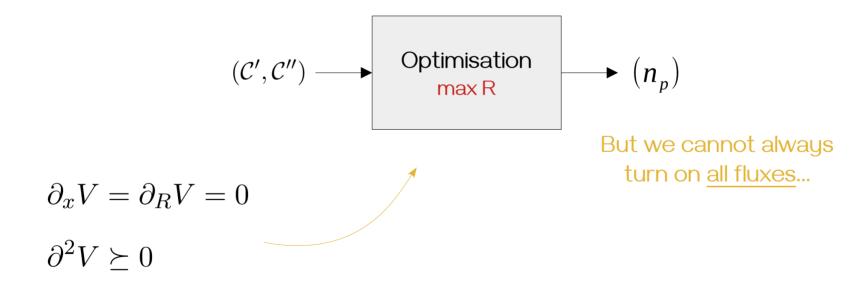
 \Rightarrow dS₃ with H_{D-3}

3) Non-trivial elements in duality group for $\mathsf{D}\leq 8$

We need to check each case to decide if they have dS_{3} .

Semidefinite optimisation

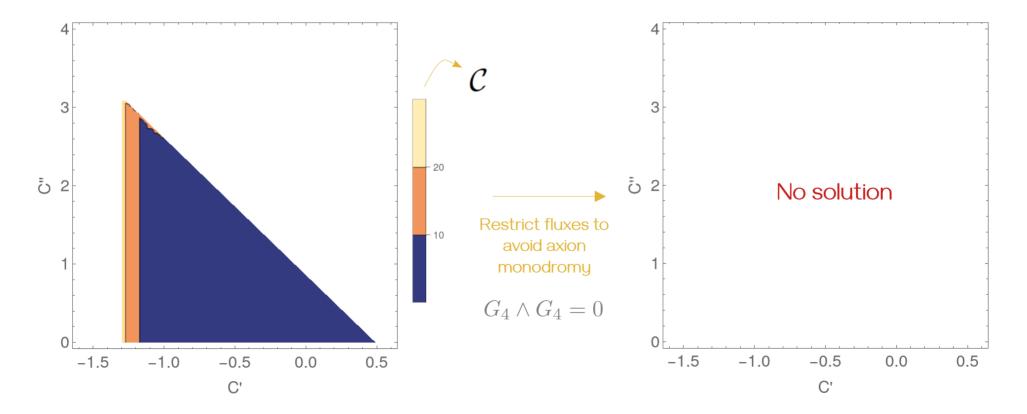
To check if the surviving cases actually work, we can turn this into an optimisation problem.



*we need to check several constraints (e.g. R \gg 1, n_p \gg 1, ...)

Numerical optimisation

Example: D = 11, $d = 3 \rightarrow M$ -theory with $G_4/G_7 \times$



Take away

Our analysis: flat manifold + fluxes + Casimir

- 1) No dS_d for d > 4
- 2) dS_4 only for D = 9 with F_2 fluxes (maybe)
- 3) dS_3 possible in many cases (but duality freeze-out not enough)

This analysis focused on a dS minimum – we are also looking at saddle points and the possibility of having quintessence (less constrained).

→ Work in progress – stay tuned!