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o [ixpanding the String Landscape is an interesting problem in its own right.
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Why?

® Potential issues were noticed in explicit constructions.  sraun, vaiandro 207

1 adpole Conjecture (1ype lIB) - The number of moduli
stabilized by fluxes is constrained by;

1

N flux > Enstab

Bena, Blaback, Grana, Lust '20]

Becker, Bena, Blabéack, Brodie, Coudarchet, Gonzalo, Grana, Grimm, van de Heisteeq, Herraez,
Last, Marchesano, Monnee, Plauschinn, Prieto, 1sagkaris, Walcher, Wiesner, Wrase ...
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® Motivated by these results in type 1A, BBVW constructed the mirror dual
in type LIB.
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® ‘|'he mirror manifold admits no geometric interpretation, but there exists a
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® 'T'his provides a way out of the problem of volume stabilization in type 11B!
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® Perturbative consistency of the superstring requires thatc = 15.
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What?

For the 17 model we have 9 chiral fields with the following world sheet
superpotential,

9
W({x)) =) x
=1

21l

g x> wx,, w=es3
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Where is the 4d physics?
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What?

e Consider the single variable building block of the 1% model,

27l

W =x>, g:xX—>e€3x

* The A-branes of this model are the contours in the complex-x plane given

by Im(#') = 0
\ — VO+V1+V2=O

>
//// [Hori, Igbal, Vafa 00]
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Vo = VX VX, XV n = (n,n..., o)

[}/n] .= Vn + Vn+1 T Vn+2



=V XV, X ... XV n = (ny,n,...,ny)
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® The RR ground states of the full model are labelled by €2; where
l — (ll’ 12 c e e l9)Wlthll — 1,2 -

S, o9 [ 12 ] 15 [ 18
Hea | gBO | gy | g2 | go3)

Q eHY, 1=(1,1..,1)

QeH',1=(01,1,1,1,1,1,2,2,2)
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What?

® The 1°/Z; model has h*V) = 84 and h1:V) = 0.

® We would like to study orientifolds of these models. In particular, we will
restrict to,

O:. (X, Xr...,.Xg) > — (X, X;...,X
( [>42 ? 9) ( 2> , 9) [Becker, Becker, Vafa, Walcher '06]

which has an orientifold charge of 12 that has to be cancelled by fluxes.

h>D = 63 hD =0
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e Marginal deformations of the worldsheet superpotential are

W = x> = x> —tx

W ({x)) = 2x3 — W (D = ) = ), 1
i=1 k

Zki:3
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9 9
W({x)) =) x5 — WD =) = )
i=1 i=1 ij; :
9 9
W({x}) =) x — W{xHt*D) = ) x7 — (t'xpox; + 2xxx,...)

=1 =1



What?

There are 63 complex structure moduli arising from the (c, ¢) ring
There are () Kihler moduli arising from the (a, ¢) ring



What?

® The overlap integral between the cycles and RR ground states is then
calculable,

| [
<Vn ‘ l> — J xl—le_xgdx — —[° <_>(1 _ a)l)a)ln
v, 3 \3

2l

with /=12, n=0,1,2 andw =e¢€3
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e When the worldsheet superpotential is deformed as, 7" = x> — x° — tx

J xr+l—le—x3dx — %1—* ( 7’-3|— l) (1 - 60r+l)60(r+l)n
v

n
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What?

o VW superpotental exists in these LG orbifold models as well.

WGVW — J G3 A £ [Gukov, Vafa, Witten '99]
M
® The superpotenual is in fact exact! [Becker, Becker, Vafa Walcher ‘06]
1 _



Moduli Stabilization

* Finding SUSY Minkowski vacua -

I. PickfluxesQ, , , € H®Y (Z [ = 12)

i
2. Ensure flux quantization and tadpole cancellation

® They generically have massless directions (maximal mass matrix rank of 26). Becker, Gonzalo, waicher, Wrase '22]

 We would like to expand the superpotential around the critical points,

expand —

1 o .
W —Z—!aiajw(zlﬂ) | B!aiajakw(ﬂzfrk) + ...

t',i = 1,.2....64 are the deformations around the critical point.



Moduli Stabilization

* Finding SUSY Minkowski vacua -

I. PickfluxesQ; , , € H®Y (Z [ = 12)

i
2. Ensure flux quantization and tadpole cancellation

® They generically have massless directions (maximal mass matrix rank of 26).  Becker, Gonzalo, Walcher, Wrase 22]

* We would like to expand the superpotential around the critical points,

Wexpand=2i!aiajw(rirf) | 31! OO W (1'7t) + ...

' i = 1,2....64 are the deformations around the critical point.



Moduli Stabilization

* Finding SUSY Minkowski vacua -

I. PickfluxesQ; , , € H®Y (Z [ = 12)

i
2. Ensure flux quantization and tadpole cancellation

* They generically have massless directions (maximal mass matrix rank of 26).  Becker, Gonzalo, Walcher, Wrase "22]

* We would like to expand the superpotential around the critical points,

W spand = %aiajw(rizf) | 31! 00,0, W (1'P1") + ...

' i = 1,2....64 are the deformations around the critical point.



Moduli Stabilization

* Finding SUSY Minkowski vacua -

1. PiCkﬂUXGS Qll,lz...lg < H(Z,l) ( Z li — 12)

2. Ensure flux quantization and tadpole cancellation

® They generically have massless directions (maximal mass matrix rank of 26). Becker, Gonzalo, Walcher, Wrase "22]



Moduli Stabilization

Tadpole conjecture target = 12 X 3 = 36 moduli



Moduli Stabilization

* Finding SUSY Minkowski vacua -

1. PiCkﬂUXGS Qll,lz...lg < H(Z,l) ( Z li — 12)

i
2. Ensure flux quantization and tadpole cancellation

® They generically have massless directions (maximal mass matrix rank of 26). Becker, Gonzalo, Walcher, Wrase "22]

* We would like to expand the superpotential around the critical points,

Wexpand=2i!a,.ajw(tiﬂ) | 31! 0O W (') + ...

i = 1,.2....64 are the deformations around the critical point.



Moduli Stabilization

’”_"‘l> (1 - a)r+l)a)(r+l)n
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1

|
o Now going upto cubic order in the fields, W, + W, = _¢2 _ ¢l/12
a¢(W2+WB> ¢ l// W2+W3> =—2§bl//=0
® The correct thing to do would be,
OpW> + (8¢W3> =¢—y> =0 0, W, + (awwg)

¢:¢(1)=0
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Moduli Stabilization

e Consider2 s, G3 — Alg)ll +A2le Nflux = 13

6 choicesof 1,1, ( Z [ = 12)

o 4.Q’s can give rise to physical solutions with Ny, = 12

® PhYSiCﬂl SO]U.tiOHS arc Oﬂly pOSSiblC uptO 12 Q’S. [Becker, Brady, Sengupta 23]



Moduli Stabilization
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Moduli Stabilization

Model | massive | 3rd power | 4th power | 5th power | 6th power
Gl 14 0 0 0 0
G| 22 0 0 0 0
Go'2 | 26 0 0 0 0
G| 26 0 0 0 0
G| 22 0 0 0 0
G | 26 0 0 0 0
Gt | 16 6 0 0 0
16 6 0 0 ?
16 6 4 0 0
16 7 1 0 0
16 7 4 0 0
G| 20 2 0 4 1
20 2 0 0 0




Summary

® Non-geometric LG Models are promising tools for the Swampland program.

® Moduli stabilization 1s possible with higher order terms in the
superpotential.

® Tadpole Conjecture appears to hold in non-geometric models (for now) in
the interiors of moduli space.

® Stay tuned!



T'hank you!



Deformations

(¢, c) ring — R = [ L) ]

OxiW(xl, .cees Xg)

® The above ring is spanned by,

k _ kl, kz,,. kg
X —Xl X2 X9

withK = (ky, ..., kg) such thatk; € {0,1} and Z k; = O mod 3.

¢ ['’he monomials of the kind XXX, withi # j # k # i form a basis of the allowed
marginal deformations of the superpotential.



GKPvs BBYW

o How is this different from GKP? [Giddings, Kachru, Polchinski ‘01]
Kqxp=Kqg—3log] — (T —T)] = log[ — (t — 7)]
® Solving the SUSY equations, D W =DW =0 = ISD fluxes
Kgpyw = Krg —4log| — (7 — 7)] [Becker, Becker, Walcher 07]

o SUSY equations do not require ISD fluxes unlike in GKP.

o For SUSY Minkowski solutions GKP and BBVW are almost identical.



Explicit Example

1
G3 = 3\/5 (Q1,1,1,1,2,1,2,1,2 _ Q1,1,1,1,2,1,2,2,1 _ Q1,1,1,1,2,2,1,1,2 o Q1,1,1,1,2,2,1,2,1)

e Mass matrixrank =16 [Becker et al ‘22]
® The already massive fields can be fixed order by order with no ambiguity. Thatis,
;W =20
where d runs over the 16 massive fields can be solved to get,

t =1 a(1) + ta(z) + ta(3) + .



Explicit Example

® Solving the quadratic order constraints from the cubic order terms for the
massless fields leads to six new stabilized directions.

bo = Ty T hop) T - -
® Several branches of solutions. Need to be careful to not overfix.
® An exhaustve search is cumbersome and maybe even impossible.
® Progress towards classifying the various solutions. [Becker et al 23]

® (eneral patterns and symmetry arguments?



2°/7,

o Similarly we can indentity the cohomology and homology bases starting from the
building block of the 2°/Z, model, W, . = x*.

* A cohomology basis is given by the RR ground states of the minimal model | /)with
[ = 1,2,3. Ahomology basis is given by V,,, V|, V,, Vawith Vy + V, + V, + V, = 0.

® T'he overlap integral between the cycles and RR ground states is then calculable,

1 [
(V, 1) = J xle ™ dx = ZF (Z)(l — D™ [Hori et al *00]
V.

211

with [=1,23,n=0,1,23andw = e+
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6 |
¢ The 26/Z4 model has A% = 90 and A1) = 0. (W26 = ZXf,g DX o ezfxi)

=1

* The RR ground states of the model are labelled by €, wherel = (1,1, ..., ) with . = 1,2,3 -

® 'The orientifold involution we will work with 1s,

27l

0. (X[, Xy...,X) > €4 (X1,%...,X)

which has an orientfold charge of 40 that has to be canceled by fluxes. [Becker et al ‘06]
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 The 2°/Z, orientifold with tadpole charge 40 could give a way out.
® This model has 91 moduli including the axio-dilation.

® ‘T'he tadpole conjecture does not imply that all 91 moduli cannot be
stabilized (40 X 3 = 120 > 91).

® For example, we find solutions with mass matrix rank of 84 (out of 91)
moduli.
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® A flux choice that gives 84 massive fields,

1.

1
Gy = —591,1 3,3,1,1 T+
1 i 1, 1 i
+ (Z + Z) 31,122+ 5101,2,1,1,3,2 - (Z + Z) a2z +
1 i 1 i 1
- 5 5 33111+ 1 T 1 9
. + : () + : + : :
4 A 2,1,3,2,1,1 4 4 2
L1, (L] 1
1 T 1) 2210 11 9
+ 11 Q + ! + ! :
2 2 2,3,2,1,1 1 4 4 2
1 i I
(22 ) Qagog10— =4+ =
(4+4> 3.1,2.1,1,2 (4"'4) 9
1 1 1
+(Z Z)Q;zzlll'*'zﬂ&illll

1 1 1 1 1
(Z + Z) 121132 — (Z — Z) (1990311 — ( + ) (2193112

211132 — =f212311 —

291122+ =ifd221131 —

+

(2993111 + 182231121
2311122+ =12311131 —

(312211 — =1{231311.1 + 2'93,2,1,1,2,1



