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Type IIB flux compactifications on manifolds with no geometric       
interpretation. 

Why?    

Is there a fully stabilized  SUSY Minkowski vacuum? 

 How? 

Use higher-than-quadratic order terms to lift massless deformations. 

𝒩 = 1
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• Potential issues were noticed in explicit constructions.           

Becker, Bena, Blåbäck, Brodie, Coudarchet, Gonzalo, Gra a, Grimm, van de Heisteeg, Herraez, 
Lüst, Marchesano, Monnee, Plauschinn, Prieto, Tsagkaris, Walcher, Wiesner, Wrase …

ñ

[Braun, Valandro ’20]

Tadpole Conjecture  (Type IIB) -  The number of moduli 
stabilized by fluxes is constrained by, 

                                                      Nflux > 1
3 nstab

[Bena, Blåbäck, Graña, Lüst ’20]
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For the  model we have  chiral fields with the following world sheet 
superpotential, 
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G3 ∧ Ω
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•The A-branes of this model are the contours in the complex-  plane given 
by  

      

19

𝒲 = x3, g : x e
2πi
3 x

x
Im(𝒲) = 0

V0 + V1 + V2 = 0
[Hori, Iqbal, Vafa ’00]
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What?
• The  model has  and .  

• We would like to study orientifolds of these models. In particular, we will 
restrict to, 

                                       

      which has an orientifold charge of 12 that has to be cancelled by fluxes.     
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σ : (x1, x2 . . . , x9) − (x2, x1 . . . , x9)

h(2,1) = 63 h(1,1) = 0

[Becker, Becker, Vafa, Walcher ’06]
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There are 63 complex structure moduli arising from the (c, c) ring

There are 0 Kähler moduli arising from the (a, c) ring
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• The overlap integral between the cycles and RR ground states is then 
calculable, 
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• When the worldsheet superpotential is deformed as,   
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What?

• GVW superpotential exists in these LG orbifold models as well.  

                                                                                           

• The superpotential is in fact exact!                                                           

                                

WGVW = ∫M
G3 ∧ Ω

1
τ − τ̄ ∫ G3 ∧ Ḡ3 = ∫ F3 ∧ H3 = 12

[Becker, Becker, Vafa Walcher ’06]

[Gukov, Vafa, Witten ’99]
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• Finding SUSY Minkowski vacua -  

1. Pick fluxes     

2. Ensure flux quantization and tadpole cancellation 
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• We would like to expand the superpotential around the critical points, 
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Moduli Stabilization

( ∂
∂t )r

t=0

⟨Vn | l⟩ = ∫Vn

xr+l−1e−x3dx =
1
3

Γ ( r + l
3 )(1 − ωr+l)ω(r+l)n



Moduli Stabilization

  
∂

∂tk1

∂
∂tk2

…
∂

∂tkr ∫ Ωl ∧ Ω
tk=0

= δl+L
1
39

9

∏
i=1

(1 − ωLi)Γ( Li

3 ) .

( ∂
∂t )r

t=0

⟨Vn | l⟩ = ∫Vn

xr+l−1e−x3dx =
1
3

Γ ( r + l
3 )(1 − ωr+l)ω(r+l)n

L =
r

∑
α=1

kα + 1where,



• Now going upto cubic order in the fields,  

                    

                                                                

• The correct thing to do would be, 

                   

W2 + W3 =
1
2

ϕ2 − ϕψ2

∂ϕ(W2 + W3) = ϕ − ψ2 = 0 , ∂ψ(W2 + W3) = − 2ϕψ = 0

⟹ ϕ = ψ = 0

∂ϕW2 + (∂ϕW3)
ϕ=ϕ(1)=0

= ϕ − ψ2 = 0 ∂ψW2 + (∂ψW3)
ϕ=ϕ(1)=0

= 0

W =
1
2

(ϕ − ψ2)2
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• The fluxes are classified in terms of number of ’s “turned on”. 
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Moduli Stabilization



Summary

• Non-geometric LG Models are promising tools for the Swampland program. 

• Moduli stabilization is possible with higher order terms in the 
superpotential. 

• Tadpole Conjecture appears to hold in non-geometric models (for now) in 
the interiors of moduli space. 

• Stay tuned!



Thank you!



Deformations
                                                                        

• The above ring is spanned by,        

                                                                       

    with  such that . 

• The monomials of the kind  form a basis of the allowed 
marginal deformations of the superpotential. 

(c, c) ring ↦ ℛ = [ ℂ[x1, …, x9]
∂xi

𝒲(x1, …, x9) ]

xk = xk1
1 ⋅ xk2

2 ⋯xk9
9

k = (k1, …, k9) ki ∈ {0,1} and ∑
i

ki = 0 mod 3

xixjxk with i ≠ j ≠ k ≠ i



GKP vs BBVW
• How is this different from GKP?                                                                 

                          

• Solving the SUSY equations,        ISD fluxes 

                                                                     

• SUSY equations do not require ISD fluxes unlike in GKP.       

• For SUSY Minkowski solutions GKP and BBVW are almost identical. 

KGKP = KCS − 3log[ − (T − T̄)] − log[ − (τ − τ̄)]

DτW = DiW = 0 ⟹

KBBVW = KCS − 4log[ − (τ − τ̄)]

[Giddings, Kachru, Polchinski ’01]

[Becker, Becker, Walcher ’07]



Explicit Example
        

• Mass matrix rank = 16                                                                                              [Becker et al ‘22] 

• The already massive fields can be fixed order by order with no ambiguity. That is, 

                                                                       

      where  runs over the 16 massive fields can be solved to get, 

                                                       

G3 =
i

3 3
(Ω1,1,1,1,2,1,2,1,2 − Ω1,1,1,1,2,1,2,2,1 − Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,2,1,2,1)

∂ãW = 0

ã

ta = ta(1) + ta(2) + ta(3) + . . .



Explicit Example
• Solving the quadratic order constraints from the cubic order terms for the 

massless fields leads to six new stabilized directions. 

                                                    

• Several branches of solutions. Need to be careful to not overfix.  

• An exhaustive search is cumbersome and maybe even impossible.  

• Progress towards classifying the various solutions.                                   [Becker et al ‘23] 

• General patterns and symmetry arguments?

t20 = t20(1) + t20(2) + . . .



26/ℤ4
• Similarly we can indentify the cohomology and homology bases starting from the 

building block of the  model,  .                      

• A cohomology basis is given by the RR ground states of the minimal model with 
. A homology basis is given by  with . 

• The overlap integral between the cycles and RR ground states is then calculable, 

                                           [Hori et al ’00] 

                                                     with   ,   and 

26/ℤ4 Wws = x4

| l⟩
l = 1,2,3 V0, V1, V2, V3 V0 + V1 + V2 + V3 = 0

⟨Vn | l⟩ = ∫Vn

xl−1e−x4dx =
1
4

Γ ( l
4 )(1 − ωl)ωln

l = 1,2,3 n = 0,1,2,3 ω = e
2πi
4



26/ℤ4
• The  model has  and .  

• The RR ground states of the model are labelled by  where  with   - 

1. For    , .  

2. For   ,   

• The orientifold involution we will work with is, 

                                                            

      which has an orientifold charge of 40 that has to be canceled by fluxes.                               [Becker et al ’06]

26/ℤ4 h(2,1) = 90 h(1,1) = 0

Ωl l = (l1, l2 . . . , l6) li = 1,2,3

Ωl1,l2,....,l6 ∈ H(2,1) ∑
i

li = 10

Ωl1,l2,....,l6 ∈ H(3,0) ∑
i

li = 6

σ : (x1, x2 . . . , x6) e
2πi
4 (x1, x2 . . . , x6)

 (W26 =
6

∑
i=1

x4
i , g : xi e

2πi
4 xi)



26/ℤ4

• The  orientifold with tadpole charge 40 could give a way out.  

• This model has 91 moduli including the axio-dilation.  

• The tadpole conjecture does not imply that all 91 moduli cannot be 
stabilized ( ). 

• For example, we find solutions with mass matrix rank of 84 (out of 91) 
moduli.

26/ℤ4

40 × 3 = 120 > 91



26/ℤ4
• A flux choice that gives 84 massive fields, 


