News on the anti-D3-brane uplift

KPV decay at higher order in α'

Simon Schreyer

Based on 2402.13311 and older work 2208.02826, 2212.07437 w/ Arthur Hebecker and Gerben Venken

String Pheno June 25 2024

News on the anti-D3-brane uplift Simon Schreyer

Key challenge: Accelerated expanding universes in String Theory?

• Via $\Lambda > 0$ and $\overline{D3}$ -brane uplift?

Figure: KS throat with M units of F_3 (K units of H_3) flux on A-cycle (B-cycle) glued into compact CY.

Motivation

Key challenge: Accelerated expanding universes in String Theory?

- Via $\Lambda > 0$ and $\overline{D3}$ -brane uplift?
- Tip topologically S 3 w/ $R_{S^3} \sim \sqrt{g_s M} \, I_s$
- Uplifting contribution: $V_{\overline{D3}} \sim \exp{(-N/g_s M^2)}/\mathcal{V}^{4/3}$, N = KM

Figure: KS throat with M units of F_3 (K units of H_3) flux on A-cycle (B-cycle) glued into compact CY.

Motivation

Key challenge: Accelerated expanding universes in String Theory?

- Via $\Lambda > 0$ and $\overline{D3}$ -brane uplift?
- Tip topologically S 3 w/ $R_{S^3} \sim \sqrt{g_s M} \, I_s$
- Uplifting contribution: $V_{\overline{D3}} \sim \exp{(-N/g_s M^2)}/\mathcal{V}^{4/3}$, N = KM

•
$$|V_{AdS}| \sim \mathcal{V}^{-3} \approx V_{\overline{D3}} \Rightarrow N \gg g_s M^2$$

- Problem: Tadpole cancellation \Rightarrow lower bound on $g_s M^2$ key
- Stability against KPV decay: $g_s M^2 > 12$

Figure: KS throat with M units of F_3 (K units of H_3) flux on A-cycle (B-cycle) glued into compact CY.

Motivation

Key challenge: Accelerated expanding universes in String Theory?

- Via $\Lambda > 0$ and $\overline{D3}$ -brane uplift?
- Tip topologically S 3 w/ $R_{S^3} \sim \sqrt{g_s M} \, I_s$
- Uplifting contribution: $V_{\overline{D3}} \sim \exp{(-N/g_s M^2)}/\mathcal{V}^{4/3}$, N = KM

•
$$|V_{AdS}| \sim \mathcal{V}^{-3} \approx V_{\overline{D3}} \Rightarrow N \gg g_s M^2$$

- Problem: Tadpole cancellation \Rightarrow lower bound on $g_s M^2$ key
- Stability against KPV decay: $g_s M^2 > 12$

Figure: KS throat with M units of F_3 (K units of H_3) flux on A-cycle (B-cycle) glued into compact CY.

Problem: Small $g_s M^2$: α' corrections large \Rightarrow study KPV at higher order in α'

KPV decay at leading order [KPV 01]

Classical instability: brane-flux annihilation

Figure: The tip of the throat.

Figure: NS5-brane potential.

 \Rightarrow Metastable minimum if p/M < 0.08, leading order in α' analysis!

News on the anti-D3-brane uplift Simon Schreyer

Two perspectives to study the KPV decay

- 1. NS5-brane perspective, controlled if $R_{S^2} \approx \sqrt{g_s M} \frac{p}{M} l_s \gg l_s$
 - Study single NS5 w/ p units of worldvolume flux wrapping S^2 inside S^3 at tip

Two perspectives to study the KPV decay

- 1. NS5-brane perspective, controlled if $R_{S^2} \approx \sqrt{g_s M} \frac{p}{M} l_s \gg l_s$
 - Study single NS5 w/ p units of worldvolume flux wrapping S^2 inside S^3 at tip
- 2. Nonabelian stack of $\overline{D3}$ -branes, controlled if $R_{S^2} \approx \sqrt{g_s M} \frac{p}{M} l_s \ll \sqrt{g_s p} l_s$
 - Study nonabelian Dp-brane action [Myers '99]
 - Crucial nonabelian feature: Transverse displacement of branes described by noncommutative scalars Φⁱ (live in adjoint rep of U(p))
 - Nonabelian nature + flux background \Rightarrow brane stack expands into S^2

Two perspectives to study the KPV decay

- 1. NS5-brane perspective, controlled if $R_{S^2} \approx \sqrt{g_s M} \frac{p}{M} l_s \gg l_s$
 - Study single NS5 w/ p units of worldvolume flux wrapping S^2 inside S^3 at tip
- 2. Nonabelian stack of $\overline{D3}$ -branes, controlled if $R_{S^2} \approx \sqrt{g_s M} \frac{p}{M} l_s \ll \sqrt{g_s p} l_s$
 - Study nonabelian Dp-brane action [Myers '99]
 - Crucial nonabelian feature: Transverse displacement of branes described by noncommutative scalars Φⁱ (live in adjoint rep of U(p))
 - Nonabelian nature + flux background \Rightarrow brane stack expands into S^2

 \Rightarrow at $\sqrt{g_s p} \lesssim O(1)$: opposite regimes of validity, at $\sqrt{g_s p} \gtrsim O(1)$: overlapping regimes of validity

 \Rightarrow Possibility to study KPV decay in broad region of parameter space

 \Rightarrow Calculation of α'^2 corrected NS5-brane potential + study where in $(g_s M, p/M)$ space minimum exists

 \Rightarrow Calculation of α'^2 corrected NS5-brane potential + study where in $(g_s M, \rho/M)$ space minimum exists

- Minimal bound on g_sM²: g_sM² > 144 ⇒ need much more flux in throat for consistent uplift
- New way of uplifting w/o large warping by tuning tree-level against α' corrections?

 \Rightarrow Calculation of α'^2 corrected NS5-brane potential + study where in $(g_s M, \rho/M)$ space minimum exists

- Minimal bound on g_sM²: g_sM² > 144 ⇒ need much more flux in throat for consistent uplift
- New way of uplifting w/o large warping by tuning tree-level against α' corrections?
- Find for $V(\psi_{\min}) = 0$: $R_{S^2} \sim O(1) l_s$ \Rightarrow very boundary of control

 \Rightarrow Calculation of α'^2 corrected NS5-brane potential + study where in $(g_s M, p/M)$ space minimum exists

- Minimal bound on g_sM²: g_sM² > 144 ⇒ need much more flux in throat for consistent uplift
- New way of uplifting w/o large warping by tuning tree-level against α' corrections?
- Find for $V(\psi_{\min}) = 0$: $R_{S^2} \sim O(1) I_s$ \Rightarrow very boundary of control
- New bound and new uplift work at boundary of control

 \Rightarrow Advance into region not controlled from NS5 perspective by studying stack of $\overline{D3}$ -branes (valid for $R_{S^2} \ll \sqrt{g_s p} l_s$)

Nonabelian $\overline{D3}$ -brane stack picture [55 24]

• Q: What's the minimal bound on $g_s M^2$? What's the energy of the puffed up configuration?

 \Rightarrow Calculate stationary points of potential $V(\Phi)$ of noncommutative scalars Φ using Myers action + α' corrections

Nonabelian $\overline{D3}$ -brane stack picture [55 24]

• Q: What's the minimal bound on $g_s M^2$? What's the energy of the puffed up configuration?

 \Rightarrow Calculate stationary points of potential $V(\Phi)$ of noncommutative scalars Φ using Myers action + α' corrections

- Leading order calculation by KPV [KPV 10], Goal: Extend to next-to-leading order
- At NLO, two types of higher order corrections:

Nonabelian $\overline{D3}$ -brane stack picture [55.24]

• Q: What's the minimal bound on $g_s M^2$? What's the energy of the puffed up configuration?

 \Rightarrow Calculate stationary points of potential $V(\Phi)$ of noncommutative scalars Φ using Myers action + α' corrections

- Leading order calculation by KPV [KPV 101], Goal: Extend to next-to-leading order
- At NLO, two types of higher order corrections:
 - Higher commutator corrections ($(p/M)^2$ expansion)
 - Higher derivative corrections at order α'^2 (1/($g_s M$)² expansion)

- Q1: When is puffed up brane stack configuration meta stable?
 - 1. Worked in flat space approximation, best we can do is demand $R_{S^2} \ll R_{S^3}$

- Q1: When is puffed up brane stack configuration meta stable?
 - 1. Worked in flat space approximation, best we can do is demand $R_{S^2} \ll R_{S^3}$
- Q2: Where do we trust brane stack analysis?
 - 2. Need control α' expansion, commutator expansion, solution for stationary point

- Q1: When is puffed up brane stack configuration meta stable?
 - 1. Worked in flat space approximation, best we can do is demand $R_{S^2} \ll R_{S^3}$
- Q2: Where do we trust brane stack analysis?
 - 2. Need control α' expansion, commutator expansion, solution for stationary point

 \Rightarrow Study where in $(g_s M, p/M)$ space 1. and 2. how well satisfied (parametrized by control parameter c_m)

- Compare $(g_s M^2)_{min}$ in Table w/ NS5 for p = 1: $(g_s M^2)_{min,NS5} = 144$

Cm	$\left(g_s M^2\right)_{\min}$	$(g_s M)_{\min}$
0.1	302 <i>p</i>	3.23
0.2	165 <i>p</i>	3.559
$\frac{1}{3}$	106 <i>p</i>	3.714
0.5	83 <i>p</i>	4.369

- Q1: When is puffed up brane stack configuration meta stable?
 - 1. Worked in flat space approximation, best we can do is demand $R_{S^2} \ll R_{S^3}$
- Q2: Where do we trust brane stack analysis?
 - 2. Need control α' expansion, commutator expansion, solution for stationary point

 \Rightarrow Study where in $(g_s M, p/M)$ space 1. and 2. how well satisfied (parametrized by control parameter c_m)

- Compare $(g_s M^2)_{min}$ in Table w/ NS5 for p = 1: $(g_s M^2)_{min,NS5} = 144$
- $V_{\min} > 0 \ \forall g_s M > 2.25 \Rightarrow$ No new way of uplifting at large $g_s M$

Cm	$\left(g_{s}M^{2} ight)_{\min}$	$(g_s M)_{\min}$
0.1	302 <i>p</i>	3.23
0.2	165 <i>p</i>	3.559
$\frac{1}{3}$	106 <i>p</i>	3.714
0.5	83 <i>p</i>	4.369

Summary: Comparison of both pictures

· KPV setup can (and should!) be studied from 2 perspectives

- Advantage NS5 picture:
 - Control for large $g_s M$, $p/M \iff R_{s^2} \gg I_s$
 - See decay explicitly (requires control for $R_{S^2} \approx R_{S^3}$)
- Advantage D3-stack picture:
 - Control for large $g_s M$, small $p/M \iff R_{S^2} \ll \sqrt{g_s p} I_s$
 - Includes pheno relevant regime of string size S² (smallish g_s M)

Figure: Regions of control in the $(g_s M, p/M)$ plane.

Summary

- $(g_s M^2)_{\min} \approx O(100)$ from both perspectives (tree level: $g_s M^2 > 12$) \Rightarrow Crucial to take α' corrections into account
 - \Rightarrow Controlled uplift requires much larger flux contribution to D3 tadpole
- New way of uplifting proposed in [Hebecker, SJS, Venken '22] can (if at all) work for small $g_{\rm s}M$ where α' expansion breaks down

Summary

- $(g_s M^2)_{\min} \approx O(100)$ from both perspectives (tree level: $g_s M^2 > 12$) \Rightarrow Crucial to take α' corrections into account
 - \Rightarrow Controlled uplift requires much larger flux contribution to D3 tadpole
- New way of uplifting proposed in [Hebecker, SJS, Venken '22] can (if at all) work for small $g_{\rm s}M$ where α' expansion breaks down
- Main limitations of stack analysis: Worked in flat space approx. ($R_{S^3} \gg R_{S^2}$), do not control small $g_s M$ since α' expansion breaks down
- Future: Extend stack analysis to KPV background, sum up all order commutators to access regime of larger p/M

Thank you! Questions?

Nonabelian $\overline{D3}$ -brane stack at higher order [55 24]

- Nonabelian $\overline{D3}$ -brane stack dynamics in S-dual frame (Myers action supplemented by α' corrections):

$$S = -\frac{T_3}{g_s} \int d^4 \sigma \operatorname{STr}\left(\sqrt{\det\left(G_{ab}\right) \det\left(Q_j^i\right)} \left(1 + {\alpha'}^2 \mathcal{L}_{\alpha'^2}\right)\right) + S_{\operatorname{CS},\alpha'^2} - T_3 \int \operatorname{STr}\left(P\left[i\lambda i_\Phi i_\Phi C_2 \wedge C_4 - \frac{\lambda^2}{4} (i_\Phi i_\Phi)^2 C_2 \wedge C_2 \wedge C_4 + \dots\right]\right)$$

- Nonabelian features: Φ noncommutative scalars, $Q_{j}^{i} = \delta_{j}^{i} + \frac{i\lambda}{g_{s}} [\Phi^{i}, \Phi^{k}] (G_{kj} + g_{s}C_{kj})$, interior product i_{Φ} , symmetric trace STr
- Two types of higher order corrections:
 - Higher commutator corrections ($(p/M)^2$ expansion)
 - Higher derivative corrections at order $\alpha'^2 (1/(g_s M)^2 \text{ expansion})$

Higher order scalar potential

$$\begin{split} \mathcal{V}_{\text{tot}} &= \mathcal{V}_{\text{DBI},\mathcal{O}(\lambda^{4})} \left(1 - \frac{c}{(g_{s}M)^{2}} \right) + \mathcal{V}_{\text{CS},\mathcal{O}(\lambda^{4})} + \frac{T_{3} p}{g_{s}} \frac{c_{2}}{(g_{s}M)^{2}} \,, \\ \mathcal{V}_{\text{CS},\mathcal{O}(\lambda^{4})} &= -\frac{T_{3}}{g_{s}} \left(\frac{i\lambda^{2}}{6} F_{ikl} \operatorname{tr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} \right) + \frac{\lambda^{4}}{72} \operatorname{STr} \left([\Phi^{i}, \Phi^{j}] \Phi^{k} [\Phi^{l}, \Phi^{m}] \Phi^{n} \right) F_{kji} F_{nml} \right) \\ \mathcal{V}_{\text{DBI},\mathcal{O}(\lambda^{4})} &= \frac{T_{3}}{g_{s}} \left(\operatorname{tr}(\mathbb{1}) + \frac{\lambda^{2}}{4g_{s}^{2}} \operatorname{tr} \left([\Phi^{i}, \Phi^{j}] [\Phi^{j}, \Phi^{i}] \right) - \frac{i\lambda^{2}}{6} F_{ikl} \operatorname{tr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} \right) \\ &- \frac{\lambda^{4}}{72} \operatorname{STr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} [\Phi^{j}, \Phi^{m}] \Phi^{p} \right) F_{lki} F_{pmj} + \frac{\lambda^{4}}{36} \operatorname{STr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} [\Phi^{j}, \Phi^{m}] \Phi^{p} \right) F_{lkj} F_{pmi} \\ &+ \frac{i\lambda^{4}}{24g_{s}^{2}} \operatorname{STr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} [\Phi^{j}, \Phi^{m}] [\Phi^{m}, \Phi^{j}] \right) F_{lki} - \frac{\lambda^{4}}{32g_{s}^{4}} \operatorname{STr} \left(\left([\Phi^{i}, \Phi^{j}] [\Phi^{j}, \Phi^{j}] \right)^{2} \right) \\ &- \frac{i\lambda^{4}}{6g_{s}^{2}} \operatorname{STr} \left([\Phi^{i}, \Phi^{j}] [\Phi^{j}, \Phi^{m}] [\Phi^{m}, \Phi^{k}] \Phi^{l} F_{lki} \right) \right). \end{split}$$

,