News on the anti-D3-brane uplift

KPV decay at higher order in α'

Simon Schreyer

Based on 2402.13311 and older work 2208.02826, 2212.07437 w/ Arthur Hebecker and Gerben Venken

String Pheno June 25 2024

[News on the anti-D3-brane uplift](#page-25-0) Simon Schreyer

Key challenge: Accelerated expanding universes in String Theory?

• Via $\Lambda > 0$ and $\overline{D3}$ -brane uplift?

Figure: KS throat with M units of F_3 (K units of H_3) flux on A-cycle (B-cycle) glued into compact CY.

Key challenge: Accelerated expanding universes in String Theory?

- Via $\Lambda > 0$ and $\overline{D3}$ -brane uplift?
- ∙ Tip topologically S³ w/ $R_{S^3} \sim \sqrt{g_s M}$ /_s
- Uplifting contribution: $V_{\overline{D3}} \sim \exp{(-N/g_s M^2) / \mathcal{V}^{4/3}}$, $N = KM$

Figure: KS throat with M units of F_3 (K units of H_3) flux on A-cycle (B-cycle) glued into compact CY.

Key challenge: Accelerated expanding universes in String Theory?

- Via $\Lambda > 0$ and $\overline{D3}$ -brane uplift?
- ∙ Tip topologically S³ w/ $R_{S^3} \sim \sqrt{g_s M}$ /_s
- Uplifting contribution: $V_{\overline{D3}} \sim \exp{(-N/g_s M^2) / \mathcal{V}^{4/3}}$, $N = KM$

$$
\cdot \ |V_{\text{AdS}}| \sim \mathcal{V}^{-3} \approx V_{\overline{D3}} \Rightarrow N \gg g_s M^2
$$

- Problem: Tadpole cancellation ⇒ lower bound on $_{\mathcal{S}_{\mathcal{S}}}$ M 2 key
- Stability against KPV decay: $g_s M^2 > 12$

Figure: KS throat with M units of F_3 (K units of H_3) flux on A-cycle (B-cycle) glued into compact CY.

Key challenge: Accelerated expanding universes in String Theory?

- Via $\Lambda > 0$ and $\overline{D3}$ -brane uplift?
- ∙ Tip topologically S³ w/ $R_{S^3} \sim \sqrt{g_s M}$ /_s
- Uplifting contribution: $V_{\overline{D3}} \sim \exp{(-N/g_s M^2) / \mathcal{V}^{4/3}}$, $N = KM$

$$
\cdot \ |V_{\text{AdS}}| \sim \mathcal{V}^{-3} \approx V_{\overline{D3}} \Rightarrow N \gg g_s M^2
$$

- Problem: Tadpole cancellation ⇒ lower bound on $_{\mathcal{S}_{\mathcal{S}}}$ M 2 key
- Stability against KPV decay: $g_s M^2 > 12$

Figure: KS throat with M units of F_3 (K units of H_3) flux on A-cycle (B-cycle) glued into compact CY.

Problem: Small $_{\mathcal{S}_{\mathcal{S}}}M^2$: α' corrections large \Rightarrow study KPV at higher order in α'

KPV decay at leading order K

Classical instability: brane-flux annihilation

Figure: The tip of the throat.

Figure: NS5-brane potential.

 \Rightarrow Metastable minimum if $\rho/M < 0.08$, leading order in α' analysis!

[News on the anti-D3-brane uplift](#page-0-0) Simon Schreyer

Two perspectives to study the KPV decay

- 1. NS5-brane perspective, controlled if $R_{S^2}\approx \sqrt{g_s M}\frac{\rho}{M}$ /s \gg /s
	- \cdot Study single NS5 w/ ρ units of worldvolume flux wrapping \mathcal{S}^2 inside \mathcal{S}^3 at tip

Two perspectives to study the KPV decay

- 1. NS5-brane perspective, controlled if $R_{S^2}\approx \sqrt{g_s M}\frac{\rho}{M}$ /s \gg /s
	- \cdot Study single NS5 w/ ρ units of worldvolume flux wrapping \mathcal{S}^2 inside \mathcal{S}^3 at tip
- 2. Nonabelian stack of $\overline{D3}$ -branes, controlled if $R_{S^2} \approx \sqrt{g_s M \frac{\rho}{M}} \, l_s \ll \sqrt{g_s \, \rho} l_s$
	- Study nonabelian Dp -brane action [Myers '99]
	- Crucial nonabelian feature: Transverse displacement of branes described by noncommutative scalars Φ^i (live in adjoint rep of $U(\rho))$
	- Nonabelian nature + flux background \Rightarrow brane stack expands into \mathcal{S}^2

Two perspectives to study the KPV decay

- 1. NS5-brane perspective, controlled if $R_{S^2}\approx \sqrt{g_s M}\frac{\rho}{M}$ /s \gg /s
	- \cdot Study single NS5 w/ ρ units of worldvolume flux wrapping \mathcal{S}^2 inside \mathcal{S}^3 at tip
- 2. Nonabelian stack of $\overline{D3}$ -branes, controlled if $R_{S^2} \approx \sqrt{g_s M \frac{\rho}{M}} \, l_s \ll \sqrt{g_s \, \rho} l_s$
	- Study nonabelian Dp-brane action [Myers '99]
	- Crucial nonabelian feature: Transverse displacement of branes described by noncommutative scalars Φ^i (live in adjoint rep of $U(\rho))$
	- Nonabelian nature + flux background \Rightarrow brane stack expands into \mathcal{S}^2

 \Rightarrow at $\sqrt{\bar{g_s}\bar{\rho}} \lesssim \mathcal{O}(1)$: opposite regimes of validity, at $\sqrt{\bar{g_s}\bar{\rho}} \gtrsim \mathcal{O}(1)$: overlapping regimes of validity

 \Rightarrow Possibility to study KPV decay in broad region of parameter space

 \Rightarrow Calculation of α'^2 corrected NS5-brane potential + study where in $({\bf g_s} M, p/M)$ space minimum exists

 \Rightarrow Calculation of α'^2 corrected NS5-brane potential + study where in $({\bf g_s} M, p/M)$ space minimum exists

- Minimal bound on $g_s M^2$: $g_s M^2 > 144 \Rightarrow$ need much more flux in throat for consistent uplift
- New way of uplifting w/o large warping by tuning tree-level against α' corrections?

 \Rightarrow Calculation of α'^2 corrected NS5-brane potential + study where in $({\bf g_s} M, p/M)$ space minimum exists

- Minimal bound on $g_s M^2$: $g_s M^2 > 144 \Rightarrow$ need much more flux in throat for consistent uplift
- New way of uplifting w/o large warping by tuning tree-level against α' corrections?
- Find for $V(\psi_{\text{min}}) = 0$: $R_{\mathsf{S}^2} \sim \mathcal{O}(1) l_{\mathsf{S}}$ ⇒ very boundary of control

 \Rightarrow Calculation of α'^2 corrected NS5-brane potential + study where in $({\bf g_s} M, p/M)$ space minimum exists

- Minimal bound on $g_s M^2$: $g_s M^2 > 144 \Rightarrow$ need much more flux in throat for consistent uplift
- New way of uplifting w/o large warping by tuning tree-level against α' corrections?
- Find for $V(\psi_{\text{min}}) = 0$: $R_{\mathsf{S}^2} \sim \mathcal{O}(1) l_{\mathsf{S}}$ ⇒ very boundary of control
- New bound and new uplift work at boundary of control

⇒Advance into region not controlled from NS5 perspective by studying stack of $\overline{D3}$ -branes (valid for $R_{S^2} \ll \sqrt{g_s\rho} l_s$)

Nonabelian $\overline{D3}$ -brane stack picture (SIS)

• Q: What's the minimal bound on $_{\mathcal{S}_{\mathcal{S}}}$ M2? What's the energy of the puffed up configuration?

 \Rightarrow Calculate stationary points of potential $V(\Phi)$ of noncommutative scalars Φ using Myers action + α' corrections

Nonabelian $\overline{D3}$ -brane stack picture

• Q: What's the minimal bound on $_{\mathcal{S}_{\mathcal{S}}}$ M2? What's the energy of the puffed up configuration?

 \Rightarrow Calculate stationary points of potential $V(\Phi)$ of noncommutative scalars Φ using Myers action + α' corrections

- Leading order calculation by KPV [KPV '01], Goal: Extend to next-to-leading order
- At NLO, two types of higher order corrections:

Nonabelian $\overline{D3}$ -brane stack picture

• Q: What's the minimal bound on $_{\mathcal{S}_{\mathcal{S}}}$ M2? What's the energy of the puffed up configuration?

 \Rightarrow Calculate stationary points of potential $V(\Phi)$ of noncommutative scalars Φ using Myers action + α' corrections

- Leading order calculation by KPV [KPV '01], Goal: Extend to next-to-leading order
- At NLO, two types of higher order corrections:
	- Higher commutator corrections $((p/M)^2)$ expansion)
	- Higher derivative corrections at order α'^2 (1/($g_s M$)² expansion)

- Q1: When is puffed up brane stack configuration meta stable?
	- 1. Worked in flat space approximation, best we can do is demand $R_{5^2} \ll R_{5^3}$

- Q1: When is puffed up brane stack configuration meta stable?
	- 1. Worked in flat space approximation, best we can do is demand $R_{5^2} \ll R_{5^3}$
- Q2: Where do we trust brane stack analysis?
	- 2. Need control α' expansion, commutator expansion, solution for stationary point

- Q1: When is puffed up brane stack configuration meta stable?
	- 1. Worked in flat space approximation, best we can do is demand $R_{S^2} \ll R_{S^3}$
- Q2: Where do we trust brane stack analysis?
	- 2. Need control α' expansion, commutator expansion, solution for stationary point

 \Rightarrow Study where in $(g_s M, p/M)$ space 1. and 2. how well satisfied (parametrized by control parameter c_m)

• Compare $(g_{\sf s} M^2)_{\sf min}$ in Table w/ NS5 for $\rho=1\mathrm{:}~(g_{\rm s}M^{2})$ min,NS5 $=144$

- Q1: When is puffed up brane stack configuration meta stable?
	- 1. Worked in flat space approximation, best we can do is demand $R_{S^2} \ll R_{S^3}$
- Q2: Where do we trust brane stack analysis?
	- 2. Need control α' expansion, commutator expansion, solution for stationary point

 \Rightarrow Study where in $(g_s M, p/M)$ space 1. and 2. how well satisfied (parametrized by control parameter c_m)

- Compare $(g_{\sf s} M^2)_{\sf min}$ in Table w/ NS5 for $\rho=1\mathrm{:}~(g_{\rm s}M^{2})$ min,NS5 $=144$
- $V_{\text{min}} > 0 \ \forall \varepsilon_s M > 2.25 \Rightarrow$ No new way of uplifting at large $g_s M$

Summary: Comparison of both pictures

• KPV setup can (and should!) be studied from 2 perspectives

- Advantage NS5 picture:
	- Control for large $g_s M$, $p/M \iff$ $R_{s^2}\gg l_s$
	- See decay explicitly (requires control for $R_{s2} \approx R_{s3}$
- Advantage $\overline{D3}$ -stack picture:
	- Control for large $g_s M$, small $p/M \Longleftrightarrow$ $R_{S^2} \ll \sqrt{g_s p} l_s$
	- Includes pheno relevant regime of string size \mathcal{S}^2

Figure: Regions of control in the $(g_s M, p/M)$ plane.

Summary

- $\bm{\cdot} \ \ (g_{\bm{s}} M^2)_{\sf min} \approx \mathcal{O}(100)$ from both perspectives (tree level: $g_{\bm{s}} M^2 > 12)$ \Rightarrow Crucial to take α' corrections into account
	- \Rightarrow Controlled uplift requires much larger flux contribution to D3 tadpole
- New way of uplifting proposed in H Hebecker, SJS, Venken '22] can (if at all) work for small $_{\mathcal{G}_{\mathcal{S}}} \mathcal{M}$ where α' expansion breaks down

Summary

- $\bm{\cdot} \ \ (g_{\bm{s}} M^2)_{\sf min} \approx \mathcal{O}(100)$ from both perspectives (tree level: $g_{\bm{s}} M^2 > 12)$ \Rightarrow Crucial to take α' corrections into account
	- \Rightarrow Controlled uplift requires much larger flux contribution to D3 tadpole
- New way of uplifting proposed in H Hebecker, SJS, Venken '22] can (if at all) work for small $_{\mathcal{G}_{\mathcal{S}}} \mathcal{M}$ where α' expansion breaks down
- Main limitations of stack analysis: Worked in flat space approx. $(R_{\mathsf{S}^3}\gg R_{\mathsf{S}^2})$, do not control small $g_{\mathsf{s}}\mathsf{M}$ since α' expansion breaks down
- Future: Extend stack analysis to KPV background, sum up all order commutators to access regime of larger p/M

Thank you! Questions?

Nonabelian $\overline{D3}$ -brane stack at higher order $\overline{S3}$

• Nonabelian $\overline{D3}$ -brane stack dynamics in S-dual frame (Myers action supplemented by α' corrections):

$$
S = -\frac{T_3}{g_s} \int d^4 \sigma \, \text{STr} \left(\sqrt{\det \left(G_{ab} \right) \det \left(Q_j \right)} \left(1 + \alpha'^2 \mathcal{L}_{\alpha'^2} \right) \right) + S_{\text{CS},\alpha'^2} - T_3 \int \text{STr} \left(P \left[i \lambda i_{\Phi} i_{\Phi} C_2 \wedge C_4 - \frac{\lambda^2}{4} (i_{\Phi} i_{\Phi})^2 C_2 \wedge C_2 \wedge C_4 + \dots \right] \right)
$$

- Nonabelian features: Φ noncommutative scalars, $Q^i_j=\delta^i_{~j}+\frac{i\lambda}{\mathrm{g}_\mathrm{s}}[\Phi^i,\Phi^k]$ $(G_{kj}+g_{\mathrm{s}}C_{kj})$, interior product i_Φ , symmetric trace STr
- Two types of higher order corrections:
	- Higher commutator corrections $((p/M)^2)$ expansion)
	- Higher derivative corrections at order α'^2 (1/($g_s M$)² expansion)

Higher order scalar potential

$$
V_{\text{tot}} = V_{\text{DBI},\mathcal{O}(\lambda^{4})} \left(1 - \frac{c}{(g_{s}M)^{2}} \right) + V_{\text{CS},\mathcal{O}(\lambda^{4})} + \frac{T_{3} p}{g_{s}} \frac{c_{2}}{(g_{s}M)^{2}},
$$

\n
$$
V_{\text{CS},\mathcal{O}(\lambda^{4})} = -\frac{T_{3}}{g_{s}} \left(\frac{i\lambda^{2}}{6} F_{ikl} \text{ tr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} \right) + \frac{\lambda^{4}}{72} \text{STr} \left([\Phi^{i}, \Phi^{j}] \Phi^{k} [\Phi^{l}, \Phi^{m}] \Phi^{n} \right) F_{kji} F_{nml} \right)
$$

\n
$$
V_{\text{DBI},\mathcal{O}(\lambda^{4})} = \frac{T_{3}}{g_{s}} \left(\text{tr}(\mathbb{1}) + \frac{\lambda^{2}}{4g_{s}^{2}} \text{tr} \left([\Phi^{i}, \Phi^{j}] [\Phi^{j}, \Phi^{i}] \right) - \frac{i\lambda^{2}}{6} F_{ikl} \text{tr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} \right)
$$

\n
$$
- \frac{\lambda^{4}}{72} \text{STr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} [\Phi^{j}, \Phi^{m}] \Phi^{p} \right) F_{lki} F_{pmj} + \frac{\lambda^{4}}{36} \text{STr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} [\Phi^{j}, \Phi^{m}] \Phi^{p} \right) F_{lkj} F_{pmi}
$$

\n
$$
+ \frac{i\lambda^{4}}{24g_{s}^{2}} \text{STr} \left([\Phi^{i}, \Phi^{k}] \Phi^{l} [\Phi^{j}, \Phi^{m}] [\Phi^{m}, \Phi^{j}] \right) F_{lki} - \frac{\lambda^{4}}{32g_{s}^{4}} \text{STr} \left(\left([\Phi^{i}, \Phi^{j}] [\Phi^{j}, \Phi^{i}] \right)^{2} \right)
$$

\n
$$
- \frac{i\lambda^{4}}{6g_{s}^{2}} \text{STr} \left([\Phi^{i}, \Phi^{j}] [\Phi^{j}, \Phi^{m}] [\Phi^{m}, \Phi^{k}] \Phi^{l}
$$

,