

(A)dS solutions from type II Scherk-Schwarz orbifolds

Marco Serra

June 24, 2024

Arxiv 2406.XXXX with Susha Parameswaran

In a warped compactification of D-dimensional gravity, de Sitter spacetime is obstructed by a **Strong Energy Condition** Maldacena, Nunez '00

$$
\int_{D-d} \mathcal{R}_d + e^{2A} \tilde{\mathcal{T}} = 0, \quad \tilde{\mathcal{T}} := -T^{\mu}_{\mu} + \frac{d}{D-2} T^L_L,
$$

SEC: at tree-level in g_s and α' , w/out localised sources, non-perturbative effects etc..

$$
\tilde{T}\geq 0\implies \mathcal{R}_d\leq 0
$$

 SEC is a necessary condition for dS

$$
\tilde{T}_{\text{loc}} \sim T_p \delta(\Sigma) < 0 \quad \text{if} \quad T_p < 0 \implies O_p\text{-planes}
$$

Very intensive research conjectured 3 open problems Andriot '19, references therein

$$
\tilde{T}_{\text{loc}} \sim T_p \delta(\Sigma) < 0 \quad \text{if} \quad T_p < 0 \implies O_p\text{-planes}
$$

Very intensive research conjectured 3 open problems Andriot '19, references therein

1. No classical de Sitter solution with parallel sources

$$
\tilde{T}_{\text{loc}} \sim T_p \delta(\Sigma) < 0 \quad \text{if} \quad T_p < 0 \implies O_p\text{-planes}
$$

Very intensive research conjectured 3 open problems Andriot '19, references therein

1. No classical de Sitter solution with parallel sources 2. Classical de Sitter solutions with interstecting sources are pert. unstable

 $\widetilde{T}_{\mathsf{loc}} \sim T_p \delta(\Sigma) < 0 \quad \text{if} \quad T_p < 0 \implies \mathcal{O}_p\text{-planes}$

Very intensive research conjectured 3 open problems Andriot '19, references therein

- 1. No classical de Sitter solution with parallel sources
- 2. Classical de Sitter solutions with interstecting sources are pert. unstable

3. No small g_s and large V within string-theory origin (quantised fluxes, bounded N_{O_p} ,...)

Refined dS conjecture: No (metastable) de Sitter in the asymptotics of moduli space

10d tachyon-free non-susy strings: $SO(16) \times SO(16)$, Sugimoto Usp(32), Sagnotti 0'B

 $M_{SUSY} \sim M_s$

10d tachyon-free non-susy strings: $SO(16) \times SO(16)$, Sugimoto Usp(32), Sagnotti 0'B

 $M_{SUSY} \sim M_s$

SEC:
$$
V_{\text{eff}} \supset \Lambda_{1-\text{loop}}^{SO(16)\times SO(16)} = M_s^{10} e^{\frac{5}{2}\Phi}, V_{\text{disk}}^{Usp(32),0'B} = T_{D9} e^{\frac{3}{2}\Phi}
$$

10d tachyon-free non-susy strings: $SO(16) \times SO(16)$, Sugimoto Usp(32), Sagnotti $0'B$

 $M_{SUSY} \sim M_s$

SEC:
$$
V_{\text{eff}} \supset \Lambda_{1-\text{loop}}^{SO(16)\times SO(16)} = M_s^{10} e^{\frac{5}{2}\Phi}, V_{\text{disk}}^{Usp(32),0'B} = T_{D9} e^{\frac{3}{2}\Phi}
$$

There are **no de Sitter solutions** Basile, Lanza '20

... still very interesting Mink, AdS solutions: "Dudas-Mourad" , $AdS_3\times S^7$, $AdS_7\times S^3...$ Dudas, Mourad '00 Mourad, Sagnotti '17

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

in M-theory: $dS_4 \times \mathbb{H}^7$ with flux, Casimir energy and negative curvature De Luca, Silverstein, Torroba '21

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

in M-theory: $dS_4 \times \mathbb{H}^7$ with flux, Casimir energy and negative curvature De Luca, Silverstein, Torroba '21 Ricci-flat manifolds? Bruno Bento's talk

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

in M-theory: $dS_4 \times \mathbb{H}^7$ with flux, Casimir energy and negative curvature De Luca, Silverstein, Torroba '21 Ricci-flat manifolds? Bruno Bento's talk

This talk:

1. $∃ dS$ solutions with simple ingredients (flux, Casimir, curvature)?

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

in M-theory: $dS_4 \times \mathbb{H}^7$ with flux, Casimir energy and negative curvature De Luca, Silverstein, Torroba '21 Ricci-flat manifolds? Bruno Bento's talk

This talk:

1. $∃ dS$ solutions with simple ingredients (flux, Casimir, curvature)? Yes

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

in M-theory: $dS_4 \times \mathbb{H}^7$ with flux, Casimir energy and negative curvature De Luca, Silverstein, Torroba '21 Ricci-flat manifolds? Bruno Bento's talk

This talk:

1. $∃ dS$ solutions with simple ingredients (flux, Casimir, curvature)? Yes

2. any pert. stable dS solutions?

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

in M-theory: $dS_4 \times \mathbb{H}^7$ with flux, Casimir energy and negative curvature De Luca, Silverstein, Torroba '21 Ricci-flat manifolds? Bruno Bento's talk

This talk:

1. $∃ dS$ solutions with simple ingredients (flux, Casimir, curvature)? Yes

2. any pert. stable dS solutions? No: universal tachyon

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

in M-theory: $dS_4 \times \mathbb{H}^7$ with flux, Casimir energy and negative curvature De Luca, Silverstein, Torroba '21 Ricci-flat manifolds? Bruno Bento's talk

This talk:

1. $∃ dS$ solutions with simple ingredients (flux, Casimir, curvature)? Yes

- 2. any pert. stable dS solutions? No: **universal tachyon**
- 3. dS with control on g_s , V expansions?

Our work: Strings with SSB $M_{SUSY} \sim M_{KK}$: Scherk-Schwarz toroidal orbifolds

SEC from 1-loop (negative) "Casimir energy"

in M-theory: $dS_4 \times \mathbb{H}^7$ with flux, Casimir energy and negative curvature De Luca, Silverstein, Torroba '21 Ricci-flat manifolds? Bruno Bento's talk

This talk:

1. $∃ dS$ solutions with simple ingredients (flux, Casimir, curvature)? Yes

- 2. any pert. stable dS solutions? No: **universal tachyon**
- 3. dS with control on g_s , V expansions? No,
- $\mathbf{g}_\mathbf{s} \sim \mathbf{n}_{\mathbf{H}_3} \mathcal{V}^\alpha, \alpha > \mathbf{0}$

Scherk-Schwarz orbifolds

IIB on a Torus $\mathcal{T}_{\mathsf{ss}}^n(R_{\mathsf{ss}}) \to \mathsf{orbifold}$ $g = (-1)^F \delta_{kk}$

F: spacetime fermion number

$$
\delta_{kk} : (x_L, x_R) \to (x_L + \pi R_{ss}/2, x_R + \pi R_{ss}/2) \implies n_{kk} \to n_{kk} + \frac{F}{2}
$$

Scherk-Schwarz orbifolds

IIB on a Torus $\mathcal{T}_{\mathsf{ss}}^n(R_{\mathsf{ss}}) \to \mathsf{orbifold}$ $g = (-1)^F \delta_{kk}$

F: spacetime fermion number

$$
\delta_{kk} : (x_L, x_R) \to (x_L + \pi R_{ss}/2, x_R + \pi R_{ss}/2) \implies n_{kk} \to n_{kk} + \frac{F}{2}
$$

Gravitini acquire mass $M_{\text{SUSY}} \sim \frac{M_{\text{s}}}{R_{\text{ss}}}$ $\frac{M_s}{R_{\rm ss}} \sim M_{kk}$ SUSY

Scherk-Schwarz orbifolds

IIB on a Torus $\mathcal{T}_{\mathsf{ss}}^n(R_{\mathsf{ss}}) \to \mathsf{orbifold}$ $g = (-1)^F \delta_{kk}$

F: spacetime fermion number

 $\delta_{kk} : (x_L, x_R) \rightarrow (x_L + \pi R_{ss}/2, x_R + \pi R_{ss}/2) \implies n_{kk} \rightarrow n_{kk} + \frac{F}{2}$ 2

Gravitini acquire mass $M_{\text{SUSY}} \sim \frac{M_{\text{s}}}{R_{\text{ss}}}$ $\frac{M_s}{R_{\rm ss}} \sim M_{kk}$ SUSY

In the large R_{ss} limit, no-tachyons and twisted states are very massive due to non-trivial windings: integrated out from EFT IIB on a Torus $\mathcal{T}_{\mathsf{ss}}^n(R_{\mathsf{ss}}) \to \mathsf{orbifold}$ $g = (-1)^F \delta_{kk}$

F: spacetime fermion number

 $\delta_{kk} : (x_L, x_R) \rightarrow (x_L + \pi R_{ss}/2, x_R + \pi R_{ss}/2) \implies n_{kk} \rightarrow n_{kk} + \frac{F}{2}$ 2

Gravitini acquire mass $M_{\text{SUSY}} \sim \frac{M_{\text{s}}}{R_{\text{ss}}}$ $\frac{M_s}{R_{\rm ss}} \sim M_{kk}$ SUSY

In the large R_{ss} limit, no-tachyons and twisted states are very massive due to non-trivial windings: integrated out from EFT

1-loop effective potential of runaway type:

$$
V_{\text{ss}}(R_{\text{ss}}) \sim -\int_{\mathcal{F}} \frac{d^2 \tau}{2\tau_2^2} \mathcal{T}_{\text{IIB}/g} \stackrel{R_{\text{ss}} \gg 1}{\sim} \underbrace{(n_{\text{F}}^0 - n_{\text{B}}^0)}_{\Delta \text{ massless dof}} \times \text{const} \times \frac{1}{R_{\text{ss}}^{10-n}}
$$

fermions massed up $\boldsymbol{\mathsf{n}}^0_{\boldsymbol{\mathsf{f}}}=\boldsymbol{0}$, bosons still massless $\boldsymbol{\mathsf{n}}^0_{\boldsymbol{\mathsf{b}}}=\boldsymbol{64}$

Can we stabilise R_{ss} within a de Sitter solution using fluxes?

Compactification ansatz

Unwarped product compactifications, w/out localised sources

$$
M_{1,d-1} \times \underbrace{Y^m \times T_{\text{ss}}^{10-d-m}}_{\text{internal space}}
$$

Y ^m: m-dimensional curved Euclidean manifold NSNS H_3 , H_7 and RR F_q fluxes $\Phi = \Phi_0 = \text{Log}(g_s)$

Compactification ansatz

Unwarped product compactifications, w/out localised sources

$$
M_{1,d-1} \times \underbrace{Y^m \times T_{\text{ss}}^{10-d-m}}_{\text{internal space}}
$$

Y ^m: m-dimensional curved Euclidean manifold NSNS H_3 , H_7 and RR F_a fluxes $\Phi = \Phi_0 = \text{Log}(g_s)$

Useful to decompose fluxes as

$$
H_3 = \sum_{p_3=0}^3 H_3^{(p_3)}, F_q = \sum_{s_q=0}^q F_q^{(s_q)}
$$

with p_3 , s_q legs on Y^m and remaining $3 - s_3$, $(q - s_q)$ legs on \mathcal{T}_{ss}^n

dilaton eom + traces Einstein eqs $\implies \mathcal{R}_d \leq 0 \implies dS$ No-gos

dilaton eom + traces Einstein eqs $\implies \mathcal{R}_d \leq 0 \implies dS$ No-gos

We find: \sharp dS solutions in d \geq 6

dilaton eom + traces Einstein eqs $\implies \mathcal{R}_d \leq 0 \implies dS$ No-gos

We find: \sharp dS solutions in d> 6

in $d \leq 5$ dS solutions could exist, must minimally have

Negative Casimir, $\mathcal{R}_Y > 0$, $\mathsf{H}^{(0)}_3$ **SEC** if $n_b^0 > n_f^0$ $\mathcal{F}_q^{(s_q)}|_{q<5-2s_q}$

dilaton eom + traces Einstein eqs $\implies \mathcal{R}_d \leq 0 \implies dS$ No-gos

We find: \sharp dS solutions in d> 6

in $d \leq 5$ dS solutions could exist, must minimally have

Negative Casimir,
$$
\mathcal{R}_Y > 0
$$
, $H_3^{(0)}$, $F_q^{(s_q)}|_{q<5-2s_q}$
SEC if $n_b^0 > n_f^0$

 $H_3^{(0)}$ $\frac{1}{3}$ ⁽⁰⁾: H_3 flux component with 3 legs on the SS-torus (**will spoil** control!!)

$$
(s_q) = #flux legs on Y
$$

W/out localised sources and for non-trivial background fluxes, Bianchi identities require tadpole-free fluxes

$$
dF_q = 0 = H_3 \wedge F_{q-2}
$$

can be satisfied by distributing appropriately the flux legs in the internal space

If so, flux numbers are **unbounded** DeWolfe, Giryavets, Kachru, Taylor'05: Can we have

$$
g_s \sim n^{-\alpha} \quad \mathcal{V} \sim n^{\beta} \quad \alpha, \beta > 0
$$

for a $(A)dS$ solution?

We now go in the EFT to discuss stability and control on putative dS solutions

The EFT

In lower d -dimensional Einstein frame $\varphi^i = \{\phi_d, \omega, \chi\}$ universal moduli

$$
ds_{10}^2 = e^{\frac{4}{d-2}(\phi_d - \langle \phi_d \rangle)} ds_{M_{1,d-1}}^2 + e^{2\chi} ds_{Y^m(R)}^2 + e^{2\omega} ds_{T_{ss}(R_{ss})}^2
$$

 $\omega,\chi:$ string-frame volume moduli $\quad \ \ \, {\rm e}^{\langle \chi \rangle} = R \, , \, {\rm e}^{\langle \omega \rangle} = R_{\rm ss}$ $\phi_d := \Phi - \frac{n}{2}$ $rac{n}{2}\omega - \frac{m}{2}$ $\frac{m}{2}\chi$ lower-dim dilaton

The EFT

In lower d -dimensional Einstein frame $\varphi^i = \{\phi_d, \omega, \chi\}$ universal moduli

$$
ds_{10}^2 = e^{\frac{4}{d-2}(\phi_d - \langle \phi_d \rangle)} ds_{M_{1,d-1}}^2 + e^{2\chi} ds_{Y^m(R)}^2 + e^{2\omega} ds_{T_{ss}^n(R_{ss})}^2
$$

 $\omega,\chi:$ string-frame volume moduli $\quad \ \ \, {\rm e}^{\langle \chi \rangle} = R \, , \, {\rm e}^{\langle \omega \rangle} = R_{\rm ss}$ $\phi_d := \Phi - \frac{n}{2}$ $rac{n}{2}\omega - \frac{m}{2}$ $\frac{m}{2}\chi$ lower-dim dilaton

Scalar potential V from dim. reduction

$$
S_d = \frac{1}{2\kappa_d^2} \int d^d x \sqrt{-g_d} \left(\mathcal{R}_d - K_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V(\varphi^i) \right)
$$

$$
V = \underbrace{V_{\text{flux}} + V_{\text{curv}}}_{\text{tree-level}} + \underbrace{V_{\text{ss}}}_{1-\text{loop}}
$$

Assumption: $g_s \ll 1$ and $R, R_{ss} \gg 1$ higher order corrections negligihle

11

EFT analysis: stability

de Sitter: $\nabla V|_{\text{crit}} = 0$, $V|_{\text{crit}} > 0$

For **consistent truncations**, stability can be addressed in the EFT by inspecting Hessian/Mass-matrix $M^i{}_j = K^{ik}\,\nabla_k\,\partial_j V|_{\mathsf{crit}}$

 \exists negative $\mathsf{Eigen}({\mathsf{M}^i}_j)\implies$ instability

EFT analysis: stability

de Sitter: $\nabla V|_{crit} = 0$, $V|_{crit} > 0$

For **consistent truncations**, stability can be addressed in the EFT by inspecting Hessian/Mass-matrix $M^i{}_j = K^{ik}\,\nabla_k\,\partial_j V|_{\mathsf{crit}}$

$$
\exists \text{ negative Eigen}(M^i{}_j) \implies \text{instability}
$$

we find for $d \geq 4$ (K_{ii} is positive def)

 $\partial^2_{\phi_d}$ V $|_\text{crit} = -2d$ V $|_\text{crit}$ universal tachyon

Hence, by Sylvester's criterion:

Any de Sitter solution ($V|_{\text{crit}} > 0$) in $d \geq 4$ is pert. unstable.

EFT analysis: stability

de Sitter: $\nabla V|_{crit} = 0$, $V|_{crit} > 0$

For **consistent truncations**, stability can be addressed in the EFT by inspecting Hessian/Mass-matrix $M^i{}_j = K^{ik}\,\nabla_k\,\partial_j V|_{\mathsf{crit}}$

$$
\exists \text{ negative Eigen}(M^i{}_j) \implies \text{instability}
$$

we find for $d \geq 4$ (K_{ii} is positive def)

 $\partial^2_{\phi_d}$ V $|_\text{crit} = -2d$ V $|_\text{crit}$ universal tachyon

Hence, by Sylvester's criterion:

Any de Sitter solution ($V|_{\text{crit}} > 0$) in $d \geq 4$ is pert. unstable.

$$
\eta_{\mathcal{V}} := \frac{\mathsf{min}(\mathsf{Eigen}(M^{i}{}_{j}))}{\mathcal{V}}|_{\mathsf{crit}} \leq -\frac{d}{2}(d-2) \lesssim -\mathcal{O}(1)
$$

12

$$
M_{1,d-1}\times Y^m(R)\times T_{\rm ss}^{10-m-d}(R_{\rm ss})
$$

Notice that:

1. Crucially
$$
V_{ss} \sim \frac{g_s^2}{R_{ss}^{10}}
$$
 is only suppressed in g_s and $\frac{1}{R_{ss}}$ but not in $\frac{1}{R}$

2. for any solution, terms in the potential must be comparable

$$
M_{1,d-1}\times Y^m(R)\times T_{\rm ss}^{10-m-d}(R_{\rm ss})
$$

Notice that:

1. Crucially
$$
V_{ss} \sim \frac{g_s^2}{R_{ss}^{10}}
$$
 is only suppressed in g_s and $\frac{1}{R_{ss}}$ but not in $\frac{1}{R}$

2. for any solution, terms in the potential must be comparable

Let us define $\delta=\frac{R_{\rm ss}}{R}$ internal anisotropy

$$
M_{1,d-1}\times Y^m(R)\times T_{\rm ss}^{10-m-d}(R_{\rm ss})
$$

Notice that:

1. Crucially
$$
V_{ss} \sim \frac{g_s^2}{R_{ss}^{10}}
$$
 is only suppressed in g_s and $\frac{1}{R_{ss}}$ but not in $\frac{1}{R}$

2. for any solution, terms in the potential must be comparable

Let us define $\delta=\frac{R_{\rm ss}}{R}$ internal anisotropy

$$
V_{ss} \sim V_{H_3^{(p3)}} \subset V_{\text{flux}} \implies g_s \sim n_{H_3,p_3} R_{ss}^2 \, \delta^{p_3} \,, \qquad (p_3 \geq 0)
$$

$$
M_{1,d-1}\times Y^m(R)\times T_{\rm ss}^{10-m-d}(R_{\rm ss})
$$

Notice that:

1. Crucially
$$
V_{ss} \sim \frac{g_s^2}{R_{ss}^{10}}
$$
 is only suppressed in g_s and $\frac{1}{R_{ss}}$ but not in $\frac{1}{R}$

2. for any solution, terms in the potential must be comparable

Let us define $\delta=\frac{R_{\rm ss}}{R}$ internal anisotropy

$$
V_{ss} \sim V_{H_3^{(p3)}} \subset V_{\text{flux}} \implies g_s \sim n_{H_3,p_3} R_{ss}^2 \, \delta^{p_3} \,, \qquad (p_3 \geq 0)
$$

if $\delta \ll 1$ and $p_3 \neq 0$, then could be $g_5 \ll 1$ at $R_{ss} \gg 1$

$$
M_{1,d-1}\times Y^m(R)\times T_{\rm ss}^{10-m-d}(R_{\rm ss})
$$

Notice that:

1. Crucially
$$
V_{ss} \sim \frac{g_s^2}{R_{ss}^{10}}
$$
 is only suppressed in g_s and $\frac{1}{R_{ss}}$ but not in $\frac{1}{R}$

2. for any solution, terms in the potential must be comparable

Let us define $\delta=\frac{R_{\rm ss}}{R}$ internal anisotropy

$$
V_{ss} \sim V_{H_3^{(p3)}} \subset V_{\text{flux}} \implies g_s \sim n_{H_3,p_3} R_{ss}^2 \, \delta^{p_3} \,, \qquad (p_3 \geq 0)
$$

if $\delta \ll 1$ and $p_3 \neq 0$, then could be $g_5 \ll 1$ at $R_{ss} \gg 1$

but for dS $H_3^{(0)}$ $t_3^{(0)}$ term i.e $p_3 = 0$ should be leading! \implies No control on putative dS sol ($g_s \sim n_{H_3} R_{\rm ss}^2$)

An example of AdS solution under control: In IIA

$$
AdS_7\times S^2\times S^1_{ss}
$$

with $\mathit{F}_{2}^{(2)}\sim \mathsf{vol}_{\mathcal{S}^{2}},\, \mathit{H}_{3}^{(2)}\sim \mathsf{vol}_{\mathcal{S}^{2}}\wedge \mathsf{vol}_{\mathcal{S}^{1}}$

We solved all the 10d eoms, including BI Flux numbers $\int_{S^2} F_2 \sim n_2$, $\int_{S^2 \times S^1} H_3 \sim n_3$ are unbounded Solution is perfectly under control $(\delta \ll 1)$:

$$
g_{s} \sim n_{3}^{\frac{5}{7}} n_{2}^{-\frac{6}{7}}, \quad R \sim n_{3}^{\frac{5}{7}} n_{2}^{\frac{1}{7}}, \quad R_{ss} \sim n_{3}^{\frac{2}{7}} n_{2}^{-\frac{1}{7}}
$$

Conclusions

1. type II Scherk-Schwarz orbifolds come with a one-loop negative runaway potential that breaks the SEC

2. We looked for dS in product compactifications where the runaway could be stabilised with fluxes

3. We individuated dS no-gos as well as minimally required ingredients for dS solutions

4. for dS , we found a **tachyon** in the set of universal moduli \implies instability of consistent truncations

5. dS solutions cannot be under control. In contrast, we provide an AdS solution to the 10d eoms that shows parametric control.

...Thank you!