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Maldacena-Nunez no-go

In a warped compactification of D-dimensional gravity, de Sitter

spacetime is obstructed by a Strong Energy Condition Maldacena,

Nunez ’00 ∫
D−d

Rd + e2AT̃ = 0 , T̃ := −Tµ
µ +

d

D − 2
T L
L ,

SEC: at tree-level in gs and α′, w/out localised sources,

non-perturbative effects etc..

T̃ ≥ 0 =⇒ Rd ≤ 0

���SEC is a necessary condition for dS
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classical de Sitter?

���SEC from p + 1-dim localised sources, still classical corner

T̃loc ∼ Tpδ(Σ) < 0 if Tp < 0 =⇒ Op-planes

Very intensive research conjectured 3 open problems Andriot ’19,

references therein

1. No classical de Sitter solution with parallel sources

2. Classical de Sitter solutions with interstecting sources are

pert. unstable

3.No small gs and large V within string-theory origin

(quantised fluxes, bounded NOp ,...)

Refined dS conjecture: No (metastable) de Sitter in the

asymptotics of moduli space
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SUSY-breaking at string scale

Let’s move to the non-supersymmetric corner

10d tachyon-free non-susy strings: SO(16)× SO(16), Sugimoto

Usp(32), Sagnotti 0′B

MSUSY ∼ Ms

���SEC : Veff ⊃ Λ
SO(16)×SO(16)
1-loop = M10

s e
5
2
Φ ,V

Usp(32),0′B
disk = TD9e

3
2
Φ

There are no de Sitter solutions Basile, Lanza ’20

... still very interesting Mink, AdS solutions: ”Dudas-Mourad” ,

AdS3 × S7, AdS7 × S3... Dudas, Mourad ’00 Mourad, Sagnotti ’17
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SUSY-breaking at compactification scale

Our work: Strings with SSB MSUSY ∼ MKK : Scherk-Schwarz

toroidal orbifolds

���SEC from 1-loop (negative) ”Casimir energy”

in M-theory: dS4 ×H7 with flux, Casimir energy and negative

curvature De Luca, Silverstein, Torroba ’21 Ricci-flat manifolds? Bruno

Bento’s talk

This talk:

1. ∃ dS solutions with simple ingredients (flux, Casimir,

curvature)? Yes

2. any pert. stable dS solutions? No: universal tachyon

3. dS with control on gs , V expansions? No,

gs ∼ nH3
Vα, α > 0
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Scherk-Schwarz orbifolds

IIB on a Torus T n
ss(Rss) → orbifold g = (−1)F δkk

F : spacetime fermion number

δkk : (xL, xR) → (xL+πRss/2, xR+πRss/2) =⇒ nkk → nkk+
F
2

Gravitini acquire mass MSUSY ∼ Ms
Rss

∼ Mkk ����SUSY

In the large Rss limit, no-tachyons and twisted states are very

massive due to non-trivial windings: integrated out from EFT

1-loop effective potential of runaway type:

Vss(Rss) ∼ −
∫
F

d2τ

2τ22
TIIB/g

Rss≫1∼ (n0F − n0B)︸ ︷︷ ︸
∆massless dof

×const× 1

R10−n
ss

fermions massed up n0f = 0, bosons still massless n0b = 64
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The idea

Can we stabilise Rss within a de Sitter solution using fluxes?

6



Compactification ansatz

Unwarped product compactifications, w/out localised sources

M1,d−1 × Ym × T 10−d−m
ss︸ ︷︷ ︸

internal space

Ym: m-dimensional curved Euclidean manifold

NSNS H3, H7 and RR Fq fluxes

Φ = Φ0 = Log(gs)

Useful to decompose fluxes as

H3 =
3∑

p3=0

H
(p3)
3 ,Fq =

q∑
sq=0

F
(sq)
q

with p3, sq legs on Ym and remaining 3− s3, (q − sq) legs on T n
ss

7
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10d dS No-gos

Strategy:

dilaton eom + traces Einstein eqs =⇒ Rd ≤ 0 =⇒ dS No-gos

We find: ∄ dS solutions in d≥ 6

in d ≤ 5 dS solutions could exist, must minimally have

Negative Casimir︸ ︷︷ ︸
��SEC if n0b > n0f

, RY > 0, H
(0)
3 , F

(sq)
q |q<5−2sq

H
(0)
3 : H3 flux component with 3 legs on the SS-torus (will spoil

control!!)

(sq) = #flux legs onY
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Bianchi identity and parametric control

W/out localised sources and for non-trivial background fluxes,

Bianchi identities require tadpole-free fluxes

dFq = 0 = H3 ∧ Fq−2

can be satisfied by distributing appropriately the flux legs in the

internal space

If so, flux numbers are unbounded DeWolfe, Giryavets, Kachru, Taylor’05:

Can we have

gs ∼ n−α V ∼ nβ α, β > 0

for a (A)dS solution?

9



We now go in the EFT to discuss stability and control on

putative dS solutions

10



The EFT

In lower d-dimensional Einstein frame φi = {ϕd , ω, χ} universal

moduli

ds210 = e
4

d−2
(ϕd−⟨ϕd ⟩)ds2M1,d−1

+ e2χds2Ym(R) + e2ωds2T n
ss(Rss)

ω, χ: string-frame volume moduli e⟨χ⟩ = R , e⟨ω⟩ = Rss

ϕd := Φ− n
2ω − m

2 χ lower-dim dilaton

Scalar potential V from dim. reduction

Sd =
1

2κ2d

∫
ddx

√
−gd

(
Rd − Kij∂µφ

i∂µφj − V (φi )

)
V = Vflux + Vcurv︸ ︷︷ ︸

tree-level

+ Vss︸︷︷︸
1-loop

Assumption: gs ≪ 1 and R,Rss ≫ 1 higher order corrections

negligible
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EFT analysis: stability

de Sitter: ∇V |crit = 0, V |crit > 0

For consistent truncations, stability can be addressed in the EFT

by inspecting Hessian/Mass-matrix M i
j = K ik ∇k ∂jV |crit

∃ negative Eigen(M i
j) =⇒ instability

we find for d ≥ 4 (Kij is positive def)

∂2
ϕd
V |crit = −2d V |crit universal tachyon

Hence, by Sylvester’s criterion:

Any de Sitter solution (V |crit > 0) in d ≥ 4 is pert. unstable.

ηV :=
min(Eigen(M i

j))

V
|crit ≤ −d

2
(d − 2) ≲ −O(1)
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EFT analysis: dS under (parametric) control?

M1,d−1 × Ym(R)× T 10−m−d
ss (Rss)

Notice that:

1. Crucially Vss ∼ g2
s

R10
ss

is only suppressed in gs and 1
Rss

but not

in 1
R

2. for any solution, terms in the potential must be comparable

Let us define δ = Rss
R internal anisotropy

Vss ∼ V
H

(p3)
3

⊂ Vflux =⇒ gs ∼ nH3,p3 R
2
ss δ

p3 , (p3 ≥ 0)

if δ ≪ 1 and p3 ̸= 0, then could be gs ≪ 1 at Rss ≫ 1

but for dS H
(0)
3 term i.e p3 = 0 should be leading! =⇒ No

control on putative dS sol (gs ∼ nH3R
2
ss)

13
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Vss ∼ V
H

(p3)
3

⊂ Vflux =⇒ gs ∼ nH3,p3 R
2
ss δ

p3 , (p3 ≥ 0)

if δ ≪ 1 and p3 ̸= 0, then could be gs ≪ 1 at Rss ≫ 1

but for dS H
(0)
3 term i.e p3 = 0 should be leading! =⇒ No

control on putative dS sol (gs ∼ nH3R
2
ss)
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AdS solution

An example of AdS solution under control: In IIA

AdS7 × S2 × S1
ss

with F
(2)
2 ∼ volS2 , H

(2)
3 ∼ volS2 ∧ volS1

We solved all the 10d eoms, including BI

Flux numbers
∫
S2 F2 ∼ n2,

∫
S2×S1 H3 ∼ n3 are unbounded

Solution is perfectly under control (δ ≪ 1):

gs ∼ n
5
7
3 n

− 6
7

2 , R ∼ n
5
7
3 n

1
7
2 , Rss ∼ n

2
7
3 n

− 1
7

2
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Conclusions

1. type II Scherk-Schwarz orbifolds come with a one-loop

negative runaway potential that breaks the SEC

2. We looked for dS in product compactifications where the

runaway could be stabilised with fluxes

3. We individuated dS no-gos as well as minimally required

ingredients for dS solutions

4. for dS , we found a tachyon in the set of universal moduli

=⇒ instability of consistent truncations

5. dS solutions cannot be under control. In contrast, we

provide an AdS solution to the 10d eoms that shows

parametric control.

...Thank you!
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